Sentinel lymph node biopsies in patients with malignant melanoma — qualifying principles and histopathological assessment (2017)

Anna Nasierowska-Guttmejer1, 2, Wojciech Biernat3, Piotr Wiśniewski4, Radzisław Kordek5, Wojciech M. Wysocki6, Arkadiusz Jeziorski7, Marcin Zdzienicki8, Piotr Rutkowski8

In 1999, the World Health Organisation (WHO) stated that sentinel lymph node biopsy should be the standard of management for those patients with melanomas without clinical signs of metastases to the regional lymph nodes. This procedure should include preoperative and intraoperative lymphoscintigraphy, combined with staining. Sentinel lymph node biopsies should be performed after excision biopsy of the melanoma and simultaneously with radical excision of the remaining scar after melanoma excision biopsy. Whenever sentinel lymph node(s) are found tumour occupied, metastases are most likely to be located in one or more lymph nodes that were first occupied along lymphatic drainage from the primary focal point of the cancer. Detecting even single melanoma cells in the sentinel lymph node is usually used to determine the stage of the disseminating cancer and radically changes prognoses and further therapeutic decisions. Guidelines on lymph nodes examined during melanoma have been established by the College of American Pathologists (CAP), the European Society of Pathology (ESP) and the Polish Society of Pathologists in 2013. If melanoma metastases are found in sentinel lymph node(s) then:

— the number of lymph nodes should be specified as well as the number of those with metastases;
— microscopic features of sentinel lymph node(s) metastases should be defined as follows: the largest metastasis/
metastases size, their location (subcapsular, intraparenchymal, mixed or extended), signs of possible infiltration and crossing the node capsule, penetration into adipose tissue and vasculature involvement.

Key words: melanoma, sentinel lymph node, examination of sentinel lymph nodes

Epidemiology

In Poland, according to the 2013 data of the National Cancer Registry, 3027 new cases of skin melanoma were reported; 1414 males and 1613 females. The disease caused 1400 deaths; 739 males and 661 females [1]. In the USA, 73 870 new cases of this malignancy were diagnosed in 2015 and 9940 patients died [2]. In Poland, melanoma is a tumour whose incidence is very rapidly increasing.

Pathological-clinical factors

Skin melanoma is a malignant tumour arising from the uncontrolled proliferation of cells termed melanocytes,
located in the epidermis. The tumour most frequently develops from a primary transformation of those cells which settle the epidermis. At the preinvasive stage, melanocytes proliferate which is characteristic of the in situ phase of radial growth. At the invasive stage, they penetrate into the skin forming a vertical phase (nodule). Infiltration of the stroma is associated with the risk of dissemination via the lymphatic or blood vessels. Hyperplasia in the skin lymphatic vessels may cause satellite foci to develop (in-transit metastases), and their transfer to lymph nodes; metastatic lymphadenopathy. Important prognostic factors associated with primary tumour features (pT features) include [3, 4, 8]:

- infiltration thickness in mm (according to Breslov);
- ulceration of significant prognostic value in cases without metastases. The presence of ulceration in invasive melanomas elevates the pT progression stage from pT1a’ to the pT1b’ substage.

The number of mitotic figures counted only in the vertical plane, the radial plane not being taken into account, in hot spots [3–6] is a prognostic factor but has no effect on the pT feature according to the TNM classification of 2017 [8].

The extent of invasion according to Clark’s classification is however of lower prognostic importance [6–8]. Apart from the aforementioned prognostic parameters of primary melanoma and micrometastases, (in the current TNM classification revision of 2017 called ‘clinically occult metastases’), to sentinel lymph nodes, particularly at the pT1 stage, then they are of prognostic value, especially in medium-thickness melanomas without clinically detectable metastases [8].

Clinical and pathological procedures

Total excision of a primary tumour, along with a margin of surrounding tissues is the optimal recommended surgical procedure making it possible to establish a pathological diagnosis of melanoma as well as assessing prognostic factors. The shave technique or punch biopsy of a tumour fragment are not recommended, as both methods preclude any assessment of tissues at the tumour margin or of detecting microsatellite foci. Pathological assessment of a full lesion cross-section is recommended. There are however no indications for examining frozen preparations, both from the primary lesion and the sentinel lymph node, because assessing such material by these means can reduce the sensitivity of the examination thereby rendering detection of single metastatic cells impossible [7, 10].

The clinical procedure used for invasive melanomas without clinically detectable metastases upon gross examination consists of excising the primary lesion with a margin of surrounding tissues together with a possibly following-on sentinel lymph node (SLN) biopsy. According to pathological indications, the examination should be performed following the standard procedure after fixing the tissue material in buffered 10% formalin solution, processing it to paraffin blocks and routinely staining the preparations with haematoxylin and eosin with possible application of immunophenotyping [4, 5, 11].

Patients are qualified for sentinel lymph node biopsy without clinical signs of metastases to regional lymph nodes and distant organs and by the following [10–13]:

- after an excision biopsy where diagnosis of skin melanoma is confirmed by histopathological examination, but not after extensive excision of the primary focus;
- with a Breslow infiltration thickness ≥ 1.0 mm;
- with (micro) ulceration on the melanoma surface regardless of infiltration thickness or mitotic index ≥ 1/mm² [melanoma, with the primary focus being classified as in the pT1b–T4b category according to the TNM UICC/AJCC 2010 classification]. According to the data from the American Society of Surgical Oncology (SSO), American Society of Clinical Oncology (ASCO) [14, 15] and European Society for Medical Oncology (ESMO) [16], sentinel lymph node biopsy can be abandoned in pT1b melanomas of thickness up to 0.75 mm (however it should still be considered when finding an ulceration of the primary lesion) (Tab. I);
- without clinical signs of metastases to regional lymph nodes and distant organs.

Sentinel lymph node biopsy is currently an indispensable method for assessing clinically occult metastases (earlier termed micrometastases) in lymph nodes [13–18]. In 1999, the WHO stated that sentinel lymph node biopsy should be the standard management in those patients with skin melanomas without clinical signs of metastases to the regional lymph nodes. For these biopsies, preoperative lymphoscintigraphy and intraoperative lymphoscintigraphy combined with staining should be performed. Sentinel lymph node biopsy should be undertaken after excision biopsy of the melanoma, simultaneously with radical excision of the remaining scar after the melanoma excision biopsy. Available data do not suggest any adverse effects on the prognosis following sentinel lymph node biopsy performed six weeks after the primary focus excision. The method’s accuracy relies on the collaboration between nuclear medicine specialists, surgeons and pathologists. Sentinel lymph node biopsy is a ‘minimally invasive’ diagnostic method in view of the low incidence of postoperative complications; both early and late.

The Multicenter Selective Lymphadenectomy Trial-1 (MSLT) demonstrated that sentinel lymph node biopsy in patients with melanomas made it possible to detect groups at high risk of malignancies disseminating, helped to correctly determine the disease progression stage, provided excellent local control and enabled patients to be
qualified for clinical trials according to uniform criteria [17]. Nevertheless, the MSLT-1 trial showed no improvement of survival time to disease recurrence and total survival time in all patients subjects that underwent sentinel lymph node biopsy, compared with the test group. Despite this, the patient subgroup with lymph nodes metastases, had a significantly higher incidence of 10-year survival in those patients who had immediate lymphadenectomy after finding a sentinel lymph node metastasis compared with patients being so treated at later stages due to clinically evident metastases being detected (62.1% vs 41.5%; p = 0.006) [17].

Upon finding melanoma metastases in sentinel lymph node(s) (in the case of N > 0) after histopathological examination, a sufficiently adequate group of regional lymph nodes should be totally excised (complementary lymphadenectomy) because in the remaining non-sentinel lymph nodes, melanoma metastases are found in about 20–30% patients [19].

Currently clinical trials are pending that are investigating whether the incidence of complementary lymphadenectomy can be limited in those patients having small and clinically occult metastases in sentinel lymph nodes of diameter below 0.1 mm or of a diameter up to 0.4 mm when found in the subcapsular location without having any contemporaneously adverse effects on melanoma recurrence [19].

Metastases to regional lymph nodes

It is commonly recognised that regional lymph nodes consist of one or two groups of lymph nodes situated at the lymphatic drainage regions closest to the primary lesion. This definition is applied to those lymph nodes that are inguinal-iliaic, supraclavicular-axillary, cervical-supraclavicular, popliteal, antecubital, axillary-inguinal or bilateral axillary or inguinal.

Melanoma metastases to regional lymph nodes are assessed by histopathological examination according to the pN parameter grades, whilst metastases located in lymph nodes beyond the regional lymphatic drainage by the M1a parameter [7].

Melanoma metastases to lymph nodes are qualified as a pN being above 0 (pN > 0) in each case when cells are detected after staining with haematoxylin and eosin or if based on an immunohistochemical reaction. Table II defines microscopic categories of metastases found in lymph nodes according to the 8th edition of the pTNM/AJCC/UICC classification from 2017 [8]; changes having been made to the the 7th edition of the AJCC/UICC classification. The term ‘micrometastases’ has now replaced ‘clinically occult’ and instead of ‘gross metastases’, the term ‘clinically evident’ has been introduced.

The 8th revision of the TNM/AJCC classification of 2017, uses the pN parameter to describe melanoma metastases in lymph nodes regardless of their size and number of mal-

Table I. Adapted guidelines for sentinel lymph node biopsy according to the American Society of Clinical Oncology (ASCO) and Society of Surgical Oncology (SSO)

<table>
<thead>
<tr>
<th>Thickness according to Breslow (mm)</th>
<th>Mitotic index</th>
<th>Ulceration</th>
<th>Additionally unfavourable factors*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 1/mm²</td>
<td>≥ 1/mm²</td>
<td>No**</td>
</tr>
<tr>
<td>≤ 0.5</td>
<td>No**</td>
<td>Yes</td>
<td>No**</td>
</tr>
<tr>
<td>0.51–0.75</td>
<td>No**</td>
<td>Yes</td>
<td>No**</td>
</tr>
<tr>
<td>0.76–1.0</td>
<td>To be considered</td>
<td>Recommended</td>
<td>To be considered</td>
</tr>
<tr>
<td>> 1.0–4.0</td>
<td>Recommended</td>
<td>Recommended</td>
<td>To be considered</td>
</tr>
<tr>
<td>> 4.0</td>
<td>Recommended</td>
<td>Recommended</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

*Unfavourable factors include positive margin, involvement of lymphatic vessels, infiltration grade IV according to Clark** excepting ulceration of the primary focus.

Table II. Microscopic classification of melanoma metastases in lymph nodes according to the 8th edition of the pTNM AJCC/UICC classification of 2017 [8]

<table>
<thead>
<tr>
<th>Type of metastasis to lymph node</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically occult</td>
<td>Clinically and radiologically undetectable, but detected on histopathological examination after sentinel lymph node biopsy, in the preparation stained with haematoxylin and eosin or based on immunohistochemical reaction</td>
</tr>
<tr>
<td></td>
<td>In the 7th edition of the AJCC/UICC classification, these were described as micrometastases</td>
</tr>
<tr>
<td></td>
<td>Their size does not affect assessment of the N parameter but is accounted for in Additional Factors</td>
</tr>
<tr>
<td></td>
<td>Recommended for Clinical Care according to the 8th edition of TNM/AJCC</td>
</tr>
<tr>
<td>Clinically evident</td>
<td>Is clinically detectable and consists of cells greater than 2 mm in size</td>
</tr>
<tr>
<td></td>
<td>In the 7th edition of the AJCC/UICC classification they were described as gross metastases</td>
</tr>
</tbody>
</table>
gnant cells, nor of microsatellite or satellite foci or in-transit metastases in the lymph node(s) in numbers greater than 0 (pN > 0). Patients with clinically occult metastases are classified as N1a, N2a, N3a, depending on the number of lymph nodes whenever microsatellite or satellite foci or in-transit metastases are not found, however if the afore mentioned satellite or in-transit foci are present but without metastases found in the lymph nodes, the N parameter is classified as N1c, N2c, N3c, respectively. In contrast, whenever there are clinically evident metastases in the lymph nodes but without microsatellite or satellite foci or in-transit metastases, the N parameter is then described as N1b, N2b, N3b, depending on the number of lymph nodes involved. The afore mentioned classification of the N parameter is significantly different between the 8th and 7th editions of the TNM AJCC/UICC classification (Tab. II) [7, 8].

Pathological examination procedure

For each cancer case the basic question is whether dissemination has occurred or if the cancer remains at the stage of local advancement. Metastases of melanoma can occur in the form of microsatellite or satellite foci, in transit metastases, metastases to lymph node(s) or distant metastases. If sentinel lymph node(s) are involved, metastases to one or more lymph nodes occupied as the first along the lymphatic drainage route are most likely. Detecting even single melanoma cells in the sentinel lymph node usually provides the first evidence as to dissemination stage and radically changes any prognoses and ensuing therapeutic decisions. Therefore, it is vital that a full sentinel lymph node procedure/investigation is undertaken, in spite of the cost and extra effort required.

Examining SLNs requires a more detailed diagnostic procedure than that routinely used for assessing lymph node groups by the pathologist. Pathological examination of the sentinel lymph node in melanomas consist of three stages:

- histological examination of serially cut SLN cross-sections stained with haematoxylin and eosin;
- complementary application of immunohistochemical methods using a specific panel of antibodies;
- possible assessment of mRNA expression specific to a given malignancy, performed mainly for research purposes [10, 11].

This examination is based on commonly accepted standards. The diagnosis of SLN is included in the pathomorphological report. Guidelines concerning lymph nodes examined in the course of melanoma have been developed by the College of American Pathologists (CAP) [7], the European Society of Pathology (ESP) [11] and in the Polish principles of diagnostic-therapeutic management; recently issued by the Polish Society of Pathologists [10, 21].

The basic recommendations of the afore mentioned societies concern the mode for preparing tissue material, methods of its examination and its clinical interpretation. They can be summarised as in the sections below.

A. Preparation of SLN tissue material

Surgical procedure

Sentinel lymph nodes should be sent to the pathology laboratory either fixed in 10% buffered formalin or non-
fixed, upon which they are ready to undergo specialised PCR methods testing (polymerase chain reaction). It is recommended that the lymph node is denoted by means of threads or metal clips at the site where the greatest amount of the marker has accumulated. Intraoperative examination of a SLN is not indicated in melanoma. Preparing frozen tissue sections and cutting in a cryostat can however damage or destroy the malignant cells [5, 13]. It is therefore considered that the gold standard in melanoma is when examining sentinel lymph nodes that have been fixed in formalin and embedded in paraffin. Cytological examination is not recommended since macrophages filled with brown pigment cannot be unequivocally distinguished from melanocytes nor can the location of melanoma cells be found in the lymph node. Cytological material is also of no use in performing immunohistochemical tests for confirming or ruling out the diagnosis of a metastasis [22].

Gross examination when preparing sections

Each lymph node should be cut along its lengthwise axis. The recommended thickness of the lymph node cross-sections are 3 to 5 mm. The cross-section should contain adipose tissue adjacent to the lymph node. Each lymph node should be taken whole and placed into separate containers; two or more lymph nodes are not allowed to be together. If a single lymph node cannot be fitted into one container it should be divided into several separate containers and marked appropriately that this is so the case.

European guidelines recommend cutting a sentinel lymph node, according to Cochrane's original protocol, into two lobes cutting through the lymph node's hilum [23]. CAP guidelines recommend taking a small and whole lymph node (of diameter below 5 mm) or for larger ones they allow serial layer cutting into 2-mm slices perpendicular to the node lengthwise axis, termed ‘breadloafing’ [7]. Figure 1 depicts how cross-sections through the hilum of a sentinel lymph node are made and then placed into a container with the cross-sectional surface facing down. Figure 2 shows both methods of taking sections according to CAP guidelines. The British proposal, accepted as the European Guidelines, recommends cutting six pairs of HE-stained tissue sections at 50 µm intervals. That method has now been accepted by EORTC.

B. Microscopic examination of SLN

These depend on determining the presence of, the size and location of metastases in the lymph node (Fig. 3). Melanoma cells lying singly or in small clusters are most frequently located in nodal sinuses under the capsule (58% cases). They are less frequently found in the lymph node parenchyma, in the fibrous capsule or in perinodal tissues (less than 5% cases). Melanoma metastases are found in about 20% of sentinel lymph nodes [24]. In 16% cases, they can be already detected by routine staining with haematoxylin and eosin, whilst in 4% they require detection and confirmation by immunohistochemical tests [24]. Out of the recommended tests of melanoma markers S100, HMB-45 (Fig. 4), MART-1 and tyrosinase, at least one of these should be carried out. The MITF antibody is not recommended because of its positive reaction with macrophages [25]. A differential diagnosis requires distinguishing melanocytes from macrophages, dendritic cells and naevus cells located subcapsularly. In cases of spindle cell melanoma, the S100 marker is recommended, since this rare melanoma type may not express HMB-45 nor MART-1 [10, 11, 21].

If melanoma metastases are found in sentinel lymph node(s), then the following should apply:

1. the number of lymph nodes found and number of nodes with metastases should be reported;
2. the following microscopic features of metastases in sentinel lymph node(s) should be determined:
 - the greatest dimensions of the metastasis/metastases,
 - their location (subcapsular, intramedullary, mixed or diffuse),
Figure 3. Location of melanoma metastases in sentinel lymph node: A — subcapsular, B — mixed, subcapsular and intramedullary, C — multifocal, D — extending to perinodal tissues acc. to [4]

Figure 4. Location of melanoma metastases in subcapsular region. Immunohistochemical staining HMB45
• penetration into perinodal adipose tissue,
• penetration into adipose tissue,
• vasculature involvement.

In summary it should be said that due to a lack of consensus whenever sentinel lymph node are studied, the aforementioned guidelines constitute an optimal algorithm of management thereby making it possible that the highest sensitivity and specificity of an examination is maintained.

Conflict of interest: none declared

Prof Anna Nasierowska-Guttmejer, MD, PhD
Pathology Department, Central Teaching Hospital,
Ministry of Internal Affairs
Wołoska 137, 02–507 Warszawa, Poland
e-mail: anna-guttmejer@gmail.com

Received and accepted: 20 Mar 2017

References
19. Nowecki ZI, Rutkowski P, Micheli W. The survival benefit to patients with positive sentinel node melanoma after completion lymph node dissection may be limited to the subgroup with a primary lesion breslow thickness greater than 1.0 and less than or equal to 4 mm (pT2–pT3).