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�The Wnt pathway has a pivotal function in tissue development and homeostasis, overseeing cell growth or differentiation. 
Aberrant Wnt signalling pathways have been associated with the pathogenesis of diverse malignancies, influencing 
cell proliferation, differentiation, cancer stem cell renewal, the tumour microenvironment and thereby significantly im-
pacting tumour development and therapeutic responsiveness. Promisingly, current research underscores the potential 
therapeutic value of targeting Wnt pathways, particularly canonical Wnt/β-catenin signalling, in the context of numerous 
cancer types. �Key constituents of the Wnt pathway, such as the Wnt/receptor, β-catenin degradation or transcription 
complexes, have been focal points for interventions in preclinical studies. To comprehend potential therapeutic strate-
gies, we conduct an analysis of ongoing clinical trials that specifically aim to target components of the Wnt pathways 
across a diverse spectrum of cancer types. By scrutinizing these trials, including their respective phases, targeted pa-
tient populations ,and observed outcomes, this review provides a consolidated overview of the current translational 
landscape of Wnt-targeted therapies, thus offering a roadmap for future research endeavours. 
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Introduction 
Cancer is one of the main causes of death worldwide [1]. While 
chemotherapy remains the backbone of systemic treatment for 
both the radically and palliatively treated cancer patient popu-
lation, new options including a growing number of molecularly 
targeted drugs have entered the market with new and new 
indications [2]. The journey from the initial discovery of a compo-
und to its approval by regulatory bodies like the Food and Drug 
Administration (FDA) or the European Medicines Agency (EMA) 
is an extensive process. It initiates with preclinical evaluations 

and advances through a multi-stage series of clinical trials invo-
lving human subjects. A significant proportion of compounds 
displaying promise in the preclinical phase ultimately do not 
achieve the specified endpoints during the clinical trial phases 
[3–6]. Figure 1 succinctly outlines this intricate progression.

There are numerous signaling pathways abrupted in can-
cer cells that have been already used as targets for different 
therapeutic strategies including kinase inhibitors (Kis), monoc-
lonal antibodies (mAbs), antibody-drug conjugates (ADCs), 
drugs’ nanoforms [2]. Activation of these pathways can induce 

NOWOTWORY Journal of Oncology 
2023, volume 73, number 6, 370–380

DOI: 10.5603/njo.97607
© Polskie Towarzystwo Onkologiczne

ISSN: 0029–540X, e-ISSN: 2300-2115
www.nowotwory.edu.pl

https://orcid.org/0000-0002-6535-4841
https://orcid.org/0000-0002-7401-8268
https://orcid.org/0000-0002-3997-924X
https://orcid.org/0000-0002-2647-9625


371

alterations in cell survival capabilities, metabolic processes, cel-
lular proliferation, differentiation, thereby impacting the tumor 
microenvironment. Moreover, it plays a role in angiogenesis, 
epithelial to mesenchymal transition, and the formation of me-
tastases [7–10]. Among the numerous pathways with key com-
ponents that are established targets for treatment, prominent 
examples comprise epidermal growth factor receptor/RAS/
rapidly accelerated fibrosarcoma/mitogen-activated protein 
kinase (EGFR/RAS/RAF), human epidermal growth factor re-
ceptor 2 (HER2), sonic hedgehog (SHH), vascular endothelial 
growth factor receptor (VEGFR), platelet-derived growth factor 
receptor (PDGFR), and protein kinase B/mammalian target 
of rapamycin (AKT/mTOR). It is noteworthy that the elements 
of these pathways often intersect during signal transduction 
[7–10]. Wnt represents a fundamental pathway crucial in both 
embryonic development and the onset of tumorigenesis [11]. 
Presently, there are no registered drugs specifically targeting 
the elements of this pathway, despite it presenting an apparent 
target for innovative anticancer agents. The objective of this 
review is to delve into the prospects of translating elements 
of the Wnt pathway from preclinical research to clinical appli-
cations. Through meticulous examination of these trials, en-
compassing their phases, targeted population, and the active 
drug studied, the review furnishes a comprehensive summary 
of the present translational panorama concerning therapies 
directed at the Wnt pathways.

Canonical and non-canonical Wnt signalling
The Wnt pathway plays a pivotal role in numerous develop-
mental and homeostatic processes. Aberrations within this 
pathway have been implicated in a spectrum of pathological 
conditions, including cancers. The intricate balance and regu-
lation of the Wnt pathway underscore its paramount impor-
tance in cellular homeostasis, presenting a potential target for 
therapeutic interventions in malignancies and other diseases.

There are in fact several signaling pathways that can be 
activated with the elements of Wnt. The canonical pathway is 
the most well-known (fig. 2). At the core of this pathway lies 
β-catenin, a key protein acting as a linchpin orchestrating 
downstream signaling events. Two other pathways are planar 
cell polarity (PCP) and calcium-related pathways [11–16].

Wnt proteins are categorized into canonical and noncano-
nical types, instigating both respective pathways by engaging 
Frizzled (FZD) receptors (tab. I). Frizzled receptors require a co-
-receptor, low-density lipoprotein receptor-related protein 
5/6 (LRP5/6) for canonical signaling, and receptor tyrosine 
kinase-like orphan receptor 1/2 (ROR1/2) for non-canonical 
signaling, to transmit signals effectively [11–17].

Within the canonical pathway, upon activation, Wnt bin-
ding disrupts the β-catenin destruction complex, preventing 
the phosphorylation of β-catenin by GSK-3β, thereby averting 
its proteasomal degradation. Key components of the destruc-
tion complex include:

therapeutic need

identi�cation of potential therapeutics: 
drug discovery and repurposing (experimental, serendipitous, in silico); 

identi�cation of target, screening, 
lead compound generation, optimization;  

 candidate drug indication

preclinical studies:
 in vitro on cancer cells; in vivo or ex vivo on animal models; in silico; 

pharmacokinetic and pharmacodynamic analyses; toxicology testing; 
determining a safe dose for �rst-in-human studies 

clinical trials: 
experiments on humans regulated by strict legislation;

traditional phases I- safety, II- e�cacy, III- comparison to standard of care in order to de�ne the bene�ts 
in comparison to current options in di�erent indications

updates/ changes in registration and reimbursement
further guidelines modi�cations

registration and reimbursement:
regulatory approval and drug introduction to the market

Treatment guidelines

continuation of clinical trials:
further con�rmation of data
phase IV: safety and e�cacy

Figure 1. Sequential stages of drug discovery and registration [3–6]
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•	 adenomatous polyposis coli (APC), 
•	 glycogen synthase kinase 3-beta (GSK-3β), 
•	 axin, casein kinase 1-alpha (CK1-α). 

The accumulation of β-catenin in the cytoplasm enables 
its translocation into the nucleus, where it forms complexes 
with various transcription factors, primarily lymphoid enhan-
cer factor/T-cell factor (LEF/TCF), initiating the transcription 
of vital Wnt/β-catenin target genes such as: cMyc, cyclin D1 
(CCND1), and VEGF or programmed death-ligand 1 (PD-L1) 
[11–16]. 

Non-canonical Wnt pathways are Wnt / PCP and Wnt-cyclic 
guanosine monophosphate / calcium ion (Wnt-cGMP/Ca2+) 
signaling. The targets for these non-canonical pathways can 
include matrix metalloproteinases (MMPs) or AKT/mTOR. These 
pathways are believed to exert an influence on processes such 
as epithelial-mesenchymal transition (EMT), cell migration, cell 
metabolism, chemo-resistance, or the formation of metastases 
[11, 16, 17].

Preclinical and clinical cancer studies regarding 
Wnt elements 	
Inhibition of the Wnt pathway represents an interesting 
and promising molecular target for novel anticancer thera-
pies in various malignancies. Many new molecules have been 
investigated in preclinical studies or in clinical trials – mainly 
phase 1 (tab. II). Some of them have reached phase 2 clinical 
trials in the treatment of solid malignancies, as well as hema-
tologic, but recruitment is ongoing or the results of those trials 
are expected to be soon published. An interesting approach 
represents the combination of Wnt inhibitors with chemothe-
rapy of targeted therapies – PD-1/PD-L1 inhibitors (nivolumab 
/ pembrolizumab) or EGFR inhibitors (cetuximab). 

 Katoh and Katoh divided Wnt-targeted agents into pan-
-Wnt inhibitors (like porcupine inhibitors), canonical  (like 
β-catenin protein-protein inhibitor) and non-canonical 
(like ROR1 inhibitors) [12]. However, there is a significant group 
of compounds that modulate the signal indirectly or influence 

Figure 2. Canonical Wnt pathway inactive (on the left-hand side) and active (on the right-hand side) (created with BioRender) [11–16] APC – adenomatous 
polyposis coli; CBP – CREB-binding protein; CK1-α  – casein kinase 1-alpha; GSK-3β – glycogen synthase kinase 3-beta; LEF – lymphoid enhancer factor; 
LRP – low-density lipoprotein receptor-related protein; TCF – T cell factor

Table I. Canonical and non-canonical elements of the Wnt family [11, 16]

Pathway Proteins

canonical Wnt / β-catenin Wnt1, Wnt2, Wnt3, Wnt3a, Wnt8a, Wnt8b, Wnt10a, Wnt10b

non canonical PCP, Wnt / Ca2+ Wnt3, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt11

PCP – planar-cell polarity
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Table II. Agents inhibiting the Wnt pathway which are under investigation. Complied on the basis of clinicaltrials.gov as of April 2023, unless otherwise specified 

Name of agent Mechanism of action Development stage Indications Reference 

PKF115–584, 
CGP049090, PKF222–
815, PKF118–310, 
PKF118–744, 
ZTM000990

β-catenin – TCF antagonists preclinical colorectal cancer, breast cancer [18, 19]

iCRT3, iCRT5, iCRT14 β-catenin – TCF antagonists preclinical colorectal cancer, triple negative breast 
cancer

[20, 21]

BC21 β-catenin – TCF antagonists preclinical colorectal cancer [22]

FH535 β-catenin – TCF antagonists preclinical triple negative breast cancer, colorectal 
cancer, lung cancer, hepatocellular 
carcinoma

[23, 24]

CWP232228 β-catenin – TCF antagonists preclinical breast cancer [25]

ICG-001 β-catenin / CBP inhibitor preclinical triple negative breast cancer [26]

CG0009 glycogen synthase kinase 3α/β 
inhibitor

preclinical breast cancer [27]

niclosamide inhibition the binding 
of a WNT ligand to LRP5/6 
receptors

preclinical breast cancer [28]

salinomycin inhibition the binding 
of a WNT ligand to LRP5/6 
receptors

preclinical breast cancer, prostate cancer, chronic 
lymphocytic leukemia

[29, 30]

LGK974 (WNT974) inhibitor of the WNT-receptor 
complex (porcupine inhibitor)

phase 1 clinical trial, recruiting pancreatic cancer, BRAF-mutant colorectal 
cancer, melanoma, triple negative breast 
cancer, head and neck squamous-cell 
cancer, cervical squamous-cell cancer, 
esophageal squamous-cell cancer, lung 
squamous-cell cancer

[31]

phase 1 and 2 clinical trial + 
cetuximab, completed

BRAF-mutant metastatic colorectal cancer [32]

preclinical Ewing sarcoma [33]

preclinical clear cell, renal cell carcinoma [34]

ETC-1922159 inhibitor of the WNT-receptor 
complex (porcupine inhibitor)

phase I clinical trial
+/– pembrolizumab, recruiting 

advanced solid tumors [35]

CGX1321 Inhibitor of the WNT-receptor 
complex (porcupine inhibitor)

phase I clinical trial
+/– pembrolizumab or 
encorafenib + cetuximab,
recruiting

advanced gastrointestinal tumors [36]

phase 1 clinical trial,  recruiting advanced gastrointestinal tumors [37]

RXC004 inhibitor of the WNT-receptor 
complex (porcupine inhibitor)

phase 1 clinical trial
+/– nivolumab,
recruiting 

advanced solid tumors [38]

phase 2 clinical trial,
recruiting

advanced solid tumors [39]

phase 2 clinical trial +/–
nivolumab, recruiting

colorectal cancer [40]

XNW7201 inhibitor of the WNT-receptor 
complex (porcupine inhibitor)

phase 1 clinical trial, active, not 
recruiting

advanced solid tumors [41]

OMP-18R5 
(vantictumab)

inhibitor of the WNT-receptor 
complex 
(antibody against WNT family 
proteins – namely FZD1, FZD2, 
FZD5, FZD7 and FZD8)

phase 1 clinical trial, completed advanced solid tumors [42]

phase 1 clinical trial +/– nab-
paklitaxel and gemcitabine, 
completed

advanced pancreatic cancer [43, 44]

phase 1b clinical trial + docetaxel, 
completed

non-small cell lung cancer [45]

phase 1b clinical trial, completed metastatic breast cancer [46]
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Name of agent Mechanism of action Development stage Indications Reference 

OMP-54F28
(ipafricept)

inhibitor of the WNT-receptor 
complex 
(antibody against WNT family 
proteins – namely FZD 8 
receptor)

phase 1 clinical trial, completed advanced solid tumors [47, 48] 

phase 1 clinical trial + sorafenib, 
completed

hepatocellular cancer [49]

phase 1 clinical trial + paclitaxel 
and carboplatin, completed

ovarian cancer [50, 51]

phase 1 clinical trial + nab-
paclitaxel and gemcitabine, 
completed

pancreatic cancer [52]

OTSA101 inhibitor of the WNT-receptor 
complex 
(antibody against Wnt family 
proteins – namely FZD 10 
receptor)

phase 1 clinical trial, recruiting synovial sarcoma [53]

NVP-TNKS656 β-catenin-destruction complex 
inhibitors, namely 
tankyrase inhibitors (PARPs 
family)

preclinical colorectal cancer  [54]

XAV939 β-catenin-destruction complex 
inhibitors, namely tankyrase 
inhibitors (PARPs family)

preclinical breast cancer [55]

PRI-724 inhibition of the CBP 
and β-catenin interaction

phase 1a/1b clinical trial, 
terminated

advanced solid tumors [56, 57]

phase 1 clinical trial + 
gemcitabine, completed

pancreatic cancer [58, 59]

phase 1 and 2 clinical trial, 
completed

acute myeloid leukemia, chronic myeloid 
leukemia

[60] 

CWP232291 inhibitor of the Wnt pathway, 
induction of apoptosis via 
activation of caspases

phase 1 clinical trial, completed refractory acute myeloid leukemia, 
chronic myelomonocytic leukemia, 
myelodysplastic syndrome, myelofibrosis

[61, 62]

phase 1 clinical trial 
+/–  lenalidomide, 
dexamethasone, completed

multiple myeloma [63, 64]

phase 1 and 2 clinical trial, active, 
not recruiting

acute myeloid leukemia [65]

DKN-01 monoclonal antibody, 
inhibitor of the DKK1 activity, 
a modulator of Wnt / β-catenin 
signaling

phase 1 clinical trial +/– paclitaxel 
or pembrolizumab, completed

esophageal cancer gastroesophageal 
junction cancer, gastric adenocarcinoma 
with Wnt signaling alterations

[66, 67]

phase 1 clinical trial + 
gemcitabine/cisplatine, 
completed

carcinoma primary to the intra- or exta-
hepatic biliary system or gallbladder

[68, 69]

phase 1b/2a clinical trial +/– 
docetaxel, recruiting

prostate cancer [70, 71]

phase 1 and 2 clinical trial +/– 
sorafenib, recruiting

advanced liver cancer [72]

phase 2 clinical trial + nivolumab, 
recruiting

advanced biliary tract cancer [73]

phase 2 clinical trial +/– paclitaxel, 
completed

endometrial cancer, uterine cancer, 
ovarian cancer, carcinosarcoma

[74]

phase 2 clinical trial + tiselizumab 
+/– chemotherapy, recruiting

gastric cancer, gastroesophageal cancer [75]

phase 1 clinical trial, completed multiple myeloma, solid tumors,  
non-small-cell lung cancer

[76, 77]

phase 1 clinical trial + 
lenalidomide/dexamethasone, 
completed

relapsed or refractory multiple myeloma [77]

phase 1 and 2 clinical trial
+ atezolizumab, recruiting

metastatic esophageal cancer, metastatic 
gastric cancer

[78]

Table II cont. Agents inhibiting the Wnt pathway which are under investigation. Complied on the basis of clinicaltrials.gov as of April 2023, unless otherwise 
specified 
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Name of agent Mechanism of action Development stage Indications Reference 

Foxy-5 WNT5A-mimicking peptide phase 1 clinical trials, completed breast cancer, colon cancer, prostate 
cancer

[79, 80]

phase 2 clinical trial, recruiting colon cancer (neoadjuvant setting) [81]

UC-961
(cirmtuzumab)

monoclonal antibody 
against ROR1 of the non-
canonical Wnt pathway

phase 2 clinical trial + docetaxel, 
not yet recruiting

metastatic castration resistant prostate 
cancer

[82]

phase 1 clinical trial, completed relapsed or refractory chronic lymphocytic 
leukemia

[83, 84] 

phase 1 and 2 clinical trial + 
ibrutinib, active, not recruiting

B-cell lymphoid malignancies [85, 86]

phase 2 clinical trial, recruiting chronic lymphocytic leukemia, 
consolidation after venetoclaxs

[87]

phase 1 clinical trial
+ paclitaxel, active, not recruiting

breast cancer [88]

PRI-724  CBP / β-catenin antagonist phase 2 clinical trial
+ FOLFOX and bevacizumab, 
withdrawn

metastatic colorectal cancer [89]

phase 1 clinical trial
+ gemcitabine, completed

advanced pancreatic cancer [90, 91]

phase 1 and 2 clinical trial, 
completed

acute myeloid leukemia, chronic myeloid 
leukemia

[92] 

phase 1 clinical trial, terminated advanced solid tumors [93]

PF-06647020 
(cofetuzumab 
pelidotin)

monoclonal antibody against 
PTK7 – inhibition of non-
canonical Wnt pathway

phase 1 clinical trial + 
gedatolisib,  completed

triple negative breast cancer [94–96]

phase 1 clinical trial, completed non-small cell lung cancer [97, 98]

phase 1 clinical trial, completed advanced solid tumors [99, 100]

GDC-0449 
(vismodegib) 

inhibitor of the hedgehog 
pathway

FDA and EMA registered metastatic/locally advanced basal cell 
carcinoma

[101, 102]

numerous clinical trials phase 1–3 advanced solid tumors (also advanced 
breast cancer) hematologic malignancies

#

LDE225
(sonidegib)

inhibitor of the hedgehog 
pathway

FDA and EMA registered	 metastatic/locally advanced basal cell 
carcinoma 

[103, 104]

numerous clinical trials phase 1–3 advanced solid tumors (also advanced 
breast cancer) 
hematologic malignancies

#

itraconazole antifungal medication, 
inhibitor of the hedgehog 
pathway

numerous clinical trials phase 1–3 prostate cancer, lung cancer, ovarian 
cancer, esophageal cancer, multiple 
myeloma, solid malignancies

#

PF-04449913
(glasdegib)

inhibitor of the hedgehog 
pathway

phase 1 and 2 clinical trials hematologic malignancies #

phase 1 clinical trial, completed solid tumors [105, 106]

phase 1 and 2 clinical trial
+ temozolomide, active, not 
recruiting

glioblastoma [107]

IPI-926
(patidegib)

inhibitor of the hedgehog 
pathway

phase 1 clinical trial, completed basal cell carcinoma [108]

phase 1 and 2 clinical trial + 
gemcitabine, completed

pancreatic cancer [109, 110]

phase 1 + FOLIFIRINOX, completed pancreatic cancer [111, 112]

phase 1 clinical trial, completed solid tumor malignancies [113, 114]

phase 1 clinical trial + cetuximab, 
completed

head and neck cancer [115, 116]

phase 2 clinical trial, completed unresectable chondrosarcoma [117]

LY2940680  inhibitor of the hedgehog 
pathway

phase 2 clinical trial, completed solid tumor malignancies [118]

Table II cont. Agents inhibiting the Wnt pathway which are under investigation. Complied on the basis of clinicaltrials.gov as of April 2023, unless otherwise 
specified 
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•	 In the cytoplasm: dikkopf-1 (DKK1) modulators (DKN-01) 
[66–71]. Functioning as an extracellular antagonist, DKK1 
binds to LRP5/6 co-receptors, interrupting their engage-
ment with Wnt ligands and obstructing the activation 
of the canonical Wnt pathway. This impediment leads 
to a halt in the accumulation and nuclear movement 
of β-catenin [140].

•	 Within the nucleus e.g. inhibiting the target canonical 
pathway genes [125, 126] or CREB-binding protein (CBP) 
/ β-catenin inhibitors (ICG-001, PRI-724, PRI-724 [26, 56–60, 
89–96). CBP serves as a coactivator for transcription within 
the canonical Wnt pathway, collaborating with transcrip-
tion factors such as β-catenin. It amplifies the transcription 
of Wnt target genes by modifying chromatin structure 
through the acetylation of histones [141].

•	 Within other signaling pathways that interact with Wnt 
including SHH (vismodegib, sonidegib, itraconazole, glas-
degib, patidegib, LY2940680, ENV-101) as the most visible 
example [101–121].
While compounds acting on β-catenin degradation com-

plex show activity in preclinical studies, their clinical activity 

Wnt signalling by interfering with other pathways (like SHH). 
β-catenin itself plays an important role as a signal transducer 
in other pathways including trophoblast cell surface antigen 
2 (TROP-2) [138].

Current trials, as shown in table II, involve drugs acting on 
numerous levels of these signaling pathways:
•	 Outside the cancer cell / on the cell membrane level: Wnt-

-mimicking agents [79, 80]; monoclonal antibody against 
ROR1 (cirmtuzumab) [82–86]; Wnt proteins / receptors 
inhibitors like: porcupine inhibitors LGK974, ETC-1922159, 
CGX1321, RXC004, XNW7201 [31–41] or FZD inhibitors 
(vantictumab, ipafricept, OTSA101) [42–53]. Porcupine 
serves as a vital enzyme within the Wnt signaling path-
way, aiding in the palmitoylation of Wnt proteins. This 
alteration is pivotal for the appropriate secretion of Wnt 
proteins and the initiation of the Wnt signaling pathway 
[139]. Monoclonal antibodies against protein tyrosine ki-
nase 7 (PTK7) can also be included into that group. PTK-7 
is a transmembrane receptor protein that has been im-
plicated in the regulation of the Wnt signaling pathway 
(cofetuzumab pelidotin) [94–102].

Name of agent Mechanism of action Development stage Indications Reference 

ENV-101 inhibitor of the hedgehog 
pathway

phase 2 clinical trial, recruiting advanced solid tumors harboring PTCH1 
loss of function mutations

[119]

phase 1 clinical trial, completed breast cancer, colon cancer, 
cholangiocarcinoma, soft tissue sarcoma

[120] 

phase 1 and 2 clinical trial, 
completed

esophageal or gastroesophageal junction 
cancer

 [121]

lycopene naturally synthesized 
carotenoid (an active 
component of red fruits 
and vegetables) – suppression 
of β-catenin nuclear 
expression

phase 2 clinical trial,
active, not recruiting

skin toxicity in patients with colorectal 
carcinoma treated with panitumumab

[122]

preclinical gastric cancer, breast cancer [123, 124]

artesunate antimalarial drug – 
suppression of Wnt pathway 
by downregulation of c-Myc 
and cyclin D1

phase 2 clinical trial, active, not 
recruiting

stage II/III colorectal cancer (pre-operative 
treatment)

[125, 126]

phase 1 clinical trial, completed advanced solid tumors [127, 128]

phase 1 clinical trial, completed metastatic breast cancer [129, 130]

resveratol non-flavonoid polyphenol – 
suppression of Wnt pathway 
by decreasing the expression 
of β-catenin and cyclin D1

phase 1 clinical trial, completed colon cancer [131, 132]

preclinical breast cancer, gastric cancer	 [133, 134]

quercetin flavonoid (component 
of onion, red grapes, 
lettuce, tomato). Inhibition 
of the Notch1, PI3K/AKT 
and β-catenin signaling 
pathways

preclinical breast cancer, ovarian cancer, B-cell 
lymphomas

[135–137]

CBP – CREB-binding protein; BRAF – B-Raf proto-oncogene, serine/threonine kinase; DKK1 – dickkopf-1 protein; EMA – European Medical Agency; FDA – Food and Drug 
Administration; FOLFOX – folinic acid, 5-fluorouracil and oxaliplatin; FOLFIRINOX – folinic acid, 5-fluorouracil, irinotecan and oxaliplatin; FZD – frizzled receptor; LRP5/6 – low-
density lipoprotein receptor-related protein 5/6; PARPs – poly (ADP-ribose) polymerases; PI3K/AKT – phosphoinositide 3-kinase/protein kinase B; PTK7 – protein tyrosine kinase 7; 
TCF – T cell factor; # – for details see clinicaltrials.gov

Table II cont. Agents inhibiting the Wnt pathway which are under investigation. Complied on the basis of clinicaltrials.gov as of April 2023, unless otherwise 
specified 
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has not been confirmed yet (NVP-TNKS656, XAV939) [54, 55]. 
Numerous limitations accompany the development of Wnt 
pathway inhibitors. They include: the non-obvious role 
of Wnt elements in cancer development and progression, its 
role in physiological processes, its complexity. Notably, WNT 
inhibitors have the potential to serve not only in cancer the-
rapy but also in a supportive capacity to mitigate treatment-
-related toxicity [11–17, 142].

Numerous novel molecules have undergone scrutiny in either 
preclinical investigations or clinical trials. A portion of these com-
pounds has progressed to phase 2 clinical trials, marking the mid-
-point in the translational process depicted in figure 1.

Conclusions
The precise equilibrium and meticulous regulation obse-
rved in the Wnt pathway underline its paramount importan-
ce  in maintaining cellular homeostasis, thereby delineating 
it as a promising focal point for therapeutic interventions 
directed at malignancies. The Wnt pathway branches into 
canonical and noncanonical categories, each instigating di-
stinctive signaling cascades through specific receptor enga-
gement. A comprehensive understanding of these pathways 
and their constituent elements is imperative for discerning 
their potential therapeutic ramifications. Presently, preclinical 
and clinical inquiries into Wnt elements are progressing, pre-
senting an enticing trajectory for the development of novel 
anticancer therapies. However, the intricate nature of Wnt 
signaling, its dual role in both disease and physiological ho-
meostasis, and the complexities surrounding its inhibitors do 
pose formidable challenges. The number of trials and the va-
riety of molecular targets related to Wnt pathways, as well as 
different cancer indications within the patient population (tab. 
II) provide grounds for optimism regarding the possibility of ad-
vancing beyond the early phases of clinical trials in the journey 
from bench to bedside (fig. 1).
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