
Mathematical modelling is widely used and in terms of
health is, for example, associated with predictions of the
incidence of leukaemia and solid cancers in the surviving
Japanese population after the Hiroshima and Nagasaki
atomic bombs and in the exposed populations after the
Chernobyl accident. In addition, for Chernobyl, modelling
is used to predict the radiation risk of thyroid cancer inci-
dence among emergency accident workers, with BEIR
[1] for instance, quoting an excess absolute risk of 1.25 per
104 person.year.Gy.

The term model is also associated with multivariate
analysis, such as the Cox proportional hazards model and
the lognormal has also been used within the framework of
a regression model for multivariate analysis, to study, for
example, prognostic factors in breast cancer [2, 3, 4]. Ho-
wever, in the field of radiation oncology, mathematical
modelling seems seldom to be employed apart from mul-
tivariate analysis regression models and the obvious exam-
ple of radiobiological modelling for which oncologists
will be familiar with the linear-quadratic model and the
various attempts to use biological dose as distinct from
physical dose [5].

It is largely forgotten that some 50 years ago, well be-
fore any radiobiological modelling was proposed, the lo-
gnormal distribution was used as the underlying basis for
predicting long-term survival rates from short-term fol-
low-up data [6, 7]. However, this was never used extensi-
vely except for three studies. (a) In 1975 some 5,000 car-
cinoma cervix patients from university teaching hospitals
in London, the Christie Hospital in Manchester, the M.D.
Anderson Hospital in Houston and the Norwegian Ra-
dium Hospital in Oslo [8]. (b) In 1984 for 14,731 cases of
breast cancer in Norway [9]. (c) In 1985 for 8,750 cases of
breast cancer in Sweden [10]. The reasons for this lack of
use were threefold.

Firstly, the necessary computing power was not ge-
nerally available in the hospital environment until the la-
te 1970s and then the software programmes had to be
written by prospective users because unlike actuarial life-
table calculations, the so-called Kaplan-Meier method
[11], which could be purchased in commercial software
packages, lognormal survival rate prediction modelling
software has never been available commercially. Curren-
tly, commercial software is available for some aspects of

lognormal usage but still not for prediction modelling of
long-term survival rates.

This review will save prospective users of lognormal
survival rate prediction modelling the need to refer back
to the original papers such as that of Boag in the Journal
of the Royal Statistical Society in 1949 [6].

Secondly, for the validation of the lognormal model,
or indeed any other model such as the skew exponential
[8,12], a large body of data with long-term follow-up has
to be available in cancer registries and then retrieved,
stored in a study database and analysed into the format
required for the modelling. The data retrieval and stora-
ge was very labour intensive until the 1960s when compu-
ters were first used to any great extent in a hospital envi-
ronment, and also, not all cancer registries possessed go-
od enough quality data in sufficient numbers with
sufficient follow-up. Now in the 21st century computing
power is not a problem and neither is software writing
and even a few general flow diagrams are available [13].

Thirdly, the generalised lognormal formula has two
parameters, mean µ and standard deviation σ, which with
the proportion of cured patients C, makes a total of three
unknown parameters in the model described by Boag [6].
Three variable parameters often cause the model to be
unstable and the solution to this problem, fixing a priori
the value of σ is not always possible. Indeed when study-
ing cancer patient groups with all disease stages combi-
ned, and not separated for example into T stages from the
TNM classification, or even simply into early and late
stage groups (to ensure larger number of patients per
study group), then fixing σ a priori is impossible.

This review is written to inform oncologists and me-
dical statisticians about this prediction method which
when validated can be of great use in studying the re-
sults of cancer treatment, either in a planned prospective
study, or using a few years of retrospective records, and
then estimating the 15-year and 20-year survival rates. It
describes the possibilities of lognormal modelling and
the technique of validation which will have to be made for
defined cancer site groups, if possible subdivided by dise-
ase stage and histology, before the model can be used
prospectively as a predictive tool.

Finally, it is emphasised that one should differen-
tiate in the literature between (a) the lognormal model as
used for long-term survival rate prediction modelling and
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determination of a proportion C of cured survivors, and
(b) the lognormal which is part of a multivariate analysis
model. The lognormal is not the only parametric distribu-
tion which has been studied for (a) and (b). These have
been summarised [2] after Kalbfleisch and Prentice [14]
and are reproduced here. “The choice of model would be
dependent on the hazard (risk) pattern of an event (recur-
rence or death) for a particular cancer in the time pe-
riod for the study. An exponential model would be ap-
propriate if the risk remained constant across the time pe-
riod; a Weibull model if the risk was monotone decreasing
or increasing with time; a lognormal model if the risk is ze-
ro at the beginning of the study, increases to a maximum,
and then decreases approaching zero with long follow-
up; and a log-logistic if the risk either increases monotone-
ly like the Weibull or shows a similar pattern to the lo-
gnormal with heavier tails“.

Normal & lognormal formulae

Full details of the lognormal distribution can be found
in a Cambridge University Press monograph [15] and illu-
strated descriptions of the model and method of determi-
ning the predicted proportion of cured patients, C, can be
found in several references by Boag and Mould [6-8, 13,
16-18] between 1949 and 1998.

Before the model itself is discussed, relevant formu-
lae for the lognormal are presented, including its rela-
tionship to the normal, Gaussian distribution, Eq.6 is for
the standard normal distribution with mean µ = 0 and
standard deviation σ = 1 and the total area beneath this
curve = 1. The general normal curve, Eq. 7, is for any va-
lues of µ and σ and in it x is replaced from Eq.6 by

ξ= (x-µ)/σ........ Eq.1

which is termed the unit normal deviate.
Areas beneath the standard normal distribution cu-

rve, which has the well known symmetrical bell-shape,
are tabulated in almost all introductory statistics textbo-
oks. They are presented in terms of the unit normal devia-
te ξ usually in the range 0 ≤ ξ ≤ 4.0. Because of the sym-
metry property of the normal distribution the area be-
neath the curve is equal to 0.5 for both -� ≤ ξ ≤ 0 and
0 ≤ ξ ≤ +� . Such tables are applicable also for the lo-
gnormal distribution curve because the lognormal has
a unit normal deviate of

ξ= ({logex} – µ}/σ....... Eq.2

and is the logarithmic transformation of the normal curve
when x becomes logex, but from here on we will replace
x by t since we are interested in the lognormal as a distri-
bution curve for the survival time t of cancer patients
who die with their disease present. The equation of the
general lognormal is given in Eq.8 where µ is the mean
and σ the standard deviation of the lognormal. The pro-
perties of the lognormal are such that the value of t at
which the mean occurs is

tMean = µ.exp(-1
2
σ2)......... Eq.3

the value of t at which the mode occurs is

tMode = µ /exp(σ2)........ Eq.4

and the value of t at which the median occurs is

tMedian = µ ........ Eq.5

y = (1/√2π).exp(-1
2
x2).......Eq.6, Standard Normal

y = (1/{σ√2π}).exp(-1
2
[{x-µ}2/σ2]).......Eq.7, General

Normal

y = (1/{t.σ√2π}).exp(-1
2 

[{loge[t/µ]}2/σ2])........Eq.8,
Lognormal

In the above equations y is usually expressed as
a function of the variable on the right-hand side of the
equation and thus for Eq.6 and Eq.7 (see Fig. 1) we can
write f(x) instead of y and for Eq.8 write f(t) instead of y.

Polynomial approximation for the area beneath
a Normal curve

Several polynomial expressions exist to provide the area
beneath a Normal curve between defined limits [19]. A su-
itable polynomial for use with the lognormal model is gi-
ven in Eq.9 and is the integral of Eq.6 between the limits
-� and x which in Eq.9 is given the notation P(x).

P(x) = 1 – 1
2

[1+ d1x + d2x2 + d3x3 + d4x4 + d5x5 +
+ d6x6 ]-16 + ε(x)

.......... Eq.9
where

|ε(x)| < 1.5 x 10-7

d1 = 0.04986 73470 d4 = 0.00003 80036

Fig. 1. Equation 7 for the general Normal curve is seen on this 10 Deut-
schmark banknote, which will be history on 1 January 2002 when the
Euro is introduced. The picture is of the German mathematician Carl
Friedrich Gauss (1777-1855) whose name is often associated with the
Normal curve, so much so, that it is also called the Gaussian curve. In
fact, though, it was not discovered by Gauss, but by Abraham de Moivre
(1667-1754) in 1773, a refugee French mathematician living in London
He was solving problems for wealthy gamblers! The curve was apparen-
tly forgotten until later in the 18th century when it was rediscovered by
those investigating the theory of probability and the theory of errors [7].
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d2 = 0.02114 10061 d5 = 0.00004 88906

d3 = 0.00327 76263 d6 = 0.00000 53830

Tables of areas beneath the standard Normal curve, i.e.
the curve with µ = 0 and σ = 1, are to be found in most
statistics textbooks and can be used to verify Eq.9. As an
example, when x = 0.5 the area P(x) beneath the curve
from -� to +0.5 equals 0.69146.

Lognormally distributed variables

Table I lists examples of variables which have been shown
to be lognormally distributed. Some are obviously of mo-
re practical use than others! Table II lists examples of
cancer sites which have been studied in terms of the lo-
gnormality of survival times of patients who died with
their disease present. Figure 2 is a photograph of an ear-

ly 20th century analogue machine for generating a positi-
vely skewed frequency curve.

Tab. I. Selected examples of lognormally distributed variables

Induction time of tumours in mice [20]
Response times for different drugs [21]
Infant mortality rates [22]
Combination of elementary errors [23]
Size of foreheads of crabs [24]
Number of petals on a buttercup [25]
Number of words in a sentence by George Bernard Shaw [21]
Cancer patient symptom duration in the range 0-2 years [26]
Cytokinetics of human solid tumours [27]
Red blood cell volumes [28, 29]
Lung cancer incidence in smokers [30]
Carcinoma-free probability in rats exposed to carcinogens [31]

Tab. II. Cancer patients who die with their disease present 
and whose survival time distribution has been shown to be

lognormally distributed

Cancer site/histology

Cervix uteri [8, 32]
Head & neck [6, 16, 18, 33-35]
Breast [2, 3, 6, 9, 10, 36-38]
Malignant melanoma of skin [39, 40]
Non-Hodgkin's lymphoma [41]
Lung [42]
Bladder [43]

Transformation from t to log(t) and graphical
testing for lognormality

Figure 3(a) is a frequency histogram of the survival time
of 338 patients treated for cancer of the mouth and thro-
at and who subsequently died with their cancer present
[18]. If the number of cases were large enough and the ti-
me intervals chosen were small enough, the boundary of
the histogram would approach a smooth curve. This wo-
uld not be symmetrical but would be skewed. If this curve
in Figure 3(a) is redrawn, taking the logarithm of the su-
rvival time to base 2, i.e. log2t, as the variable, the histo-
gram shown in Figure 3(b) is obtained.

The graphical test in Figure 3(c) confirms that the
transformed distribution is now sufficiently normal to ju-
stify the use of significance testing to verify lognrmality,
P > 0.05. The logarithmic transformation can be to loget
as in Eq. 8, or to log10t or to any other base. The graphical
test for lognormality in Figure 3(c) is one of the first in
the literature which is related to radiation oncology. The
logarithm base chosen by Boag for this 1950 schematic
[18] is log2 and therefore the logarithmic scale on the ho-
rizontal axis in Figures 3(b) and 3(c) is 0.5, 1, 2, 4, 8, etc.
However, in later papers Boag, and other authors, used
log10t, see Figure 4.

Printed graph paper is commercially available for
testing for normality (arithmetic probability graph pa-
per) and for lognormality (logarithmic probability graph
paper, Figure 4), using log10. Figure 3(c) has the same

Fig. 2. With the intention of convincing sceptics that skew frequency curves
could arise from natural causes, J. C. Kapteyn had built at the end of
the 19th century an analogue machine for demonstrating skew frequency
curves. It consists of nine rows of wedges shaped like the cross-section of
a house in a game of Monopoly, attached to a wood and glass frame 104
cm high. The wedges are of varying width being proportional to the distan-
ce of the vertex of the wedge from the left-hand side of the frame. Sand is
poured into a funnel at the top of the frame directly above the middle we-
dge in the top row. The sand arriving at the bottom of the machine forms
a two-parameter lognormal distribution. The machine was in the 1950s to
be seen in the laboratory Huize de Wolf adjacent to the Genetics Labora-
tory of the University of Groningen, The Netherlands [15,19].
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graphical format as Figure 4 but convention is now usual-
ly to have survival time on the vertical axis and the Nor-
mal probability scale on the horizontal axis. Spelt out in
full, the Normal probability scale is for 'The cumulative
percentage of patients who died with cancer present and
had a survival time ≤ T months' whereas the vertical scale
is the survival time T months.

The mean logtime µ (as distinct from the log of the
mean time) of the lognormal distribution is given by the
value of the survival time which corresponds to a 50%
probability. Thus for example if, as in Figure 5, T50% =
27.4 months then the graphical estimate is µ = 1.44. The
graphical estimate of σ is given by

σ = (T95% – T50%)/1.645....... Eq. 10

because a property of the Normal curve is such that 5% of
the area beneath the normal curve lies outside the stan-
dard deviation limit +1.645σ and T50% is the mean [7,
13]. It should also be remembered that for Figure 4 we
are working with log10t and therefore µ is the mean
log10time.

Examples of graphical demonstrations of lognorma-
lity using data for eight sites within the head and neck
[13,33] are given in Figure 5 with the T50% indicated for

each straight line. The horizontal axis is termed a scale of
probits since a probit is defined as 'a unit for measuring
probability in relation to an average frequency distribu-
tion' [44]. However, it should be noted that if for a given
cancer site lognormality occurs P > 0.05, it would be
expected that if a total of 100 series for this site were stu-
died, then a subtotal of 5/100 the lognormality tests would
fail, P < 0.05.

Lognormal Prediction Model Description

Figure 6 shows schematically the theory underlying a pa-
rametric statistical prediction model [45], not only the
lognormal model, but also those models using as an alter-
native the negative exponential and the skew exponential
[8,12] distributions. It is also noted that other forms of

Fig. 3. (a) Frequency distribution of survival times of 338 patients with
mouth and throat cancer who died with their disease present. (b) Hi-
stogram drawn to a logarithmic time scale, log2t, for the same series of
338 cases. The superimposed dotted curve is symmetrical and bell-sha-
ped Normal distribution curve. (c) Graphical test for the Normal di-
stribution of the log2 of survival time [18].

Fig. 4. Logarithmic probability graph plot for testing for lognormality.
The data are 449 patients with cancer of the larynx who died with their di-
sease present [13].

Fig. 5. Log-probability graph plots for eight series of head & neck cancer
patients who died with their disease present. In order to illustrate these
eight series the horizontal 'Cumulative percentage who died with cancer
present and had a survival time ≤ T months' axis, which can also be ter-
med a scale of probits, has been compressed [13].
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prediction model exist, and for breast cancer, the extrapo-
lated actuarial model of Haybittle, see later Figure 13,
[46-50] has been shown to be successful.

C is an index of statistical cure but is effectively equ-
al to a long-term τ-year survival rates. Using the model,
the τ-year survival rate, see Figure 6, is given in Eq. 11
where Q is the integral of the lognormal distribution be-
tween the limits τ and +�, the shaded area beneath the
lognormal curve in Figure 6.

Determination of C by the method of maximum
likelihood

The determination of C and µ with the value of σ
assumed a priori enables the estimation to be made of
the τ-year survival rate, Figure 6, which is given in Eq. 10.

τ-year percentage survival rate
= 100 x {C + (1-C).Q}........ Eq. 11

The method of estimation used is the method of maxi-
mum likelihood and is taken from Appendix A on pages
138-141 in the Medical Research Council publication [18]
by Wood and Boag in 1950. It will be seen that the patient
data has to be subdivided into four groups and that Gro-
up (2) are those patients who die of an intercurrent dise-
ase. In practice, it is sometimes very difficult to determi-
ne if a death is a true intercurrent death and a good fol-
low-up database is essential. I have retained the Table
XXVIII numbering (see page 346) of Wood and Boag
for the derivatives of the log likelihood.

Table III gives examples of maximum likelihood esti-
mates of C, the proportion of cured patients, for cancer of

the cervix uteri [8, 45] and for cancer of the breast [9,
10]. These examples indicate for cancer of the cervix that
squamous cell carcinoma has a better prognosis than ade-
nocarcinoma. The better stage 1 results for surgery will re-
flect the bias of cases allocated for surgery alone being
early stage 1 cases. For breast cancer in Sweden there
has been an upward trend in survival between the two
periods 1961-63 and 1971-73 [10].

Tab. III. Examples of maximum likelihood estimates of C
with associated standard errors given in brackets

Cancer population & treatment period Estimate of C [±1SE] {%}

Cervix cancer, 1945-59 [8,45]
Stage 1 61.7 [1.9]
Stage 2 40.3 [1.4]
Stage 3 20.0 [1.5]
Squamous cell ca. Stage 1 64.6 [2.1]
Adenocarcinoma, Stage 1 52.6 [6.8]
Squamous cell ca. Stage 2 42.2 [1.6]
Adenocarcinoma, Stage 2 26.0 [5.9]
Surgery, Stage 1 78.1 [5.0]
Radiotherapy, Stage 1 59.6 [2.5]
Radiotherapy + Surgery, Stage 1 60.2 [3.7]

Breast cancer, Sweden 1961-73, age < 70 years [10]
1961-63 33 [2]
1971-73 40 [3]

Breast cancer, Norway, 1953-67 [9]
Stage 1 54 [3]
Stage 2 27 [1]

Lognormal Prediction Model Validation

To validate a mathematical model for predicting survival
rates in cancer patient populations, the procedure is divi-
ded into two phases when the model is of the type in Fi-
gure 6 which assumes an analytical form for the distri-
bution of survival times of the (1-C) patient group.

Phase I
Test of the analytical form of the survival time distribution
of those patients who died with their cancer present.

Phase II
Estimation of long-term survival rates when only relative-
ly short-term follow-up is available, and validation of the
predicted rates by comparison with the true long-term
results as calculated by an actuarial life table method,
such as that described by Kaplan & Meier [51].

Phase I can be achieved by using a minimum χ2 test
as a goodness of fit test to the data. For the lognormal
model the test will commence with the values of µ and σ
which have been estimated graphically, Figures 4 and 5,
and these values will then be varied by small amounts δµ
and δσ until the minimum value of χ2 is obtained. It can
then be determined whether the observations are not si-
gnificantly different, P > 0.05, from the theoretical lo-
gnormal expected distribution. If P > 0.05 then Phase II

Fig. 6. Schematic diagram of a parametric statistical prediction model in
which the cured proportion of cancer patients is denoted by C and three
possible distributions are shown for the representation of the (1-C) gro-
ups of patients who died with their cancer present: lognormal, negative
exponential and skew exponential [45].
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can proceed. This second phase is described schemati-
cally [13] in Figure 7 and subdivided into three parts.

Examples of validation results are shown in Figures
8 and 9 for carcinoma cervix [8] in which a comparison of
observed and predicted 10-year and 15-year survival rates
are given for minimum follow-up periods of only two,
three and four years. These results show that the lognor-
mal model with σ fixed at an appropriate value, Table IV,
is of wider validity than any other model tested, inclu-
ding the skew exponential and the extrapolated actuarial,
and gives reliable predictions of long-term survival rates
for separate disease stage groups of carcinoma cervix.

A simplified flow chart for Phase I validation is given
in Figure 10 and for Phase II validation in Figure 11.

Amount of information relative to C for the 
lognormal model

In planning for a clinical trial it is essential to consider
the number of patients required in order, from a statistical
point of view, to be able to provide an answer in a reasona-
ble period of time. If the lognormal prediction model is to
be used the length of the necessary follow-up observation
period can be studied in terms of reducing the standard er-
ror in the estimate of C to a desired value. In dealing with

Tab. IV. Summary of conditions for use of the lognormal model to predict long-term survival fractions for carcinoma cervix [8, 45]

Stage Values which may be assumed for Minimum waiting  period after a 5-year Number in the series
the lognormal parameter σ treatment period closes before use of the of cases tested

lognormal model
(n years)

1 0.35 ≤ σ ≤ 0.40 n=3 101-553
2 0.35 ≤ σ ≤ 0.40 n=3 68-152
3 0.35 ≤ σ ≤ 0.40 n=2 77-170

Fig. 7. Schematic diagram illustrating the procedure for validating a pa-
rametric statistical model where a specified analytical form such as the lo-
gnormal is used for the distribution of survival times for those patients
who die with cancer present [13]
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this question the concept of 'amount of information' in-
troduced in 1922 by Fisher [25] and used by Boag [6] and
Mould [45] specifically for the lognormal model. The amo-
unt of information contained in an estimate of any para-
meter is defined by the reciprocal of the sampling varian-
ce of that estimate. As the amount of information incre-
ases, so the precision of the estimate improves. The total
information relative to C varies as the duration of follow-
-up period increases. However, the ideal amount of in-

formation will never be reached because this is only atta-
ined after an infinitely long follow-up period. Because of
this Boag [6] proposed the use of the ratio i, Eq. 12.

i =          [Information utilised]          ........ Eq. 12
[Information ultimately available]

When µ and C are estimated simultaneously, as has been
described, this ratio i becomes

Fig. 8. Comparison of observed and predicted 10-year survival fractions
(100 x survival fraction = % survival rate) for stage I and stage II carcino-
ma cervix [8].

Fig. 9. Comparison of observed and predicted 15-year survival fractions
(100 x survival fraction = % survival rate) for stage I and stage II carcino-
ma cervix [8].

Fig. 10. Flow chart for Phase I validation procedure: minimum χ2 te-
sting. Test data for 338 cases of cancer of the mouth & throat, after
Boag [6].
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i = CΨ - ([Cφ2] / [(1 – C)2.{1 – Q + Z(φ-x)}]).......
Eq. 13

Thus for a series of N patients entering a trial at dif-
ferent points throughout the duration of the trial the in-
formation relative to C at the time of estimation of µ and
C is given by Eq. 14.

I = Σ
j=N

j=1
[{ij} / {C(1-C)}]..... Eq. 14

and the standard error in C is given by [1/√I]. However, ne-
ither of these quantities I and [1/√I] provides a satisfacto-
ry numerical scale by which the accuracy of any estimate of
C can be assessed prospectively for a specified patient se-
ries [45]. A more suitable parameter is the mean infor-
mation fraction per patient ξ where ξ is defined in Eq. 15.

ξ = i/N..... Eq. 15

which always lies in the range 0 < ξ < 1. A theoretical
example [45] of the variation of ξ as a function of µ [here
termed M] and C for an annual patient intake of 20 cases
per year for five years, for a lognormal model with σ=
0.30 [here termed S] for analyses at two and at three years
after trial closure, [in terms of the notation of Figure 7,
T1 → T2 = 5 years and the two analyses are made with fol-
low-up data available at T4 such that  T2 → T4= 2,3 years].

As stated earlier this is a theoretical exercise and in
practice a prospective study would seldom take place with
a C = 0.05 and log10meantime µ = 0.90 [equivalent to
a T50% = 8 months] but if it did, then from Table VI it is
seen that ξ = 0.953 for a minimum follow-up of three
years and 0.875 for a minimum follow-up of two years.
A more realistic situation is for a C = 0.50 and µ = 1.60
[equivalent to a T50% = 40 months] and for this set of
parameters. ξ = 0.416 for a minimum follow-up of three
years and 0.283 for a minimum follow-up of two years.
Such data for ξ can be calculated for any values of µ and
C and for any annual pattern of patient intake into the
study and can be helpful when deciding when a prospec-
tive study can be analysed.

Clinical trial planning decisions

It is emphasised that the use of a lognormal prediction
model in planning prospective clinical trials is only a part
of the overall spectrum [see 4.1 and 4.3 in Table VII]
which has to be considered at the design stage. It can,
though, be very useful if it can be shown that such a pre-
diction model will shorten the delay in waiting for the
definitive trial result.

The number of patients obviously affects the ove-
rall efficiency of a trial, as well as specifically affecting ξ
and Figure 12 illustrates [52] the numbers required as
a function of the differences in the proportions cured C1
and C2 for a P=0.05 level of significance [the α risk] and
for three different powers [1-β]. Data such as in Ta-

Fig. 11. Flow chart for Phase II validation procedure: maximum likeliho-
od estimation of µ and C when there is an assumed value a priori for σ.
Table V is included from Boag's 1948 paper in the British Journal of Ra-
diology [16] and gives a worked example for 58 patients with cancer of the
tonsil. Notation used in the flow chart is that used in Table V. The Obse-
rved Frequencies ¶ referred to in the first box in this flow chart, will,
when the validation procedure is taking place, be for time t=T4 and also
for t=T2 (see Figure 7) and the long-term T5 year survival rate (%) is cal-
culated using the formula 100.[C + {1-C}.Qt=T5]. Verification is achieved
by taking the observed frequencies known at t=T3 and using the life-ta-
ble (actuarial, Kaplan-Meier) method to calculate the T5 year survival ra-
te (%), as shown schematically in Figure 7. When the model has been va-
lidated and is to be used for further cancer patient series, the T5 year su-
rvival rate (%) is calculated from the latest available follow-up data, i.e.
that at T4.
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ble VI should be used in conjunction with data such as in
Figure 12.

Alternative prediction models to the  lognormal

It has already been mentioned that three other models
have been studied, as well as the lognormal. These are the

Tab. V. Calculation schedule, termed method B by Boag [16], to determine, using maximum likelihood,
the corrected estimates of the lognormal mean and of the cured proportion of patients

when a value of the lognormal standard deviation is fixed a priori

Fig. 12. Charts to determine the number of patients required in a clinical
trial for different combinations of variables: α risk [i.e. P = 0.05], power
[1-β] and the difference between the proportions cured in the two treat-
ment groups [C2 – C1]. N = number of cases in each treatment group.
(Left) Number of cases required in a clinical comparison of two treat-
ments in order that the observed difference [C2 – C1] should be statistical-
ly significant at the P = 0.05 level, [1-β] =0.50. (Centre) Number of cases
required in a clinical comparison of two treatments in order to stand
a 3 in 4 chance [i.e. [1-β] =0.75] of detecting at the P = 0.05 level a diffe-
rence [C2 – C1]. (Right) Number of cases required in a clinical compari-
son of two treatments in order to stand a 9 in 10 chance [i.e. [1-β] =0.90]
of detecting at the P = 0.05 level a difference [C2 – C1].

Tab. VII. Clinical trial design aims and objectives

1. The clinical questions, i.e. what treatment methods are being inve-
stigated.

2. The clinical material, i.e. what population is being studied.
3. The design of the study, e.g. phase I, II or III; randomised or non-

randomised.
4. Statistical analyses and quality assurance considerations.

4.1 How is the criterion of success to be defined and measured and
for what improvement in success is it considered worthwhile or-
ganising a clinical trial.

4.2 What level of statistical significance are we prepared to accept
when analysing the results.

4.3 Given the number of patients available for entry into the trial,
what is likely to be the duration of the trial.

4.4 Can historical controls be used.
5. Endpoints, i.e. what measure(s) of patient welfare.
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Tab. VI. Values of the mean information fraction per patient ξ for the lognormal model with an assumed value of σ = 0.30. 
The top half of the table is for an analysis three years after the five years of patient intake of 20 per year, and the bottom half 

of the table is for an analysis two years after the intake closed [45]
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negative exponential (Fig. 6), the skew exponential (Fig.
6) and the extrapolated actuarial (Fig. 13) and given
below are the derivatives of the log likelihood for these
three models using a presentation similar to that in Table
XXVIII on page 346 for the lognormal. None of them
have been as intensively studied as the lognormal and it is
therefore possible, particularly for the skew exponential,
that for certain cancer populations [certain tumour sites
and subgroups by stage, histology and age group, for
example] that the lognormal will not be the optimum
prediction model. To determine this, a validation procedu-
re will have to be undertaken, following the procedure in
Figure 7. This will include a knowledge of the derivatives
of the log likelihood for the other models.

Negative exponential model

The equation for the negative exponential which is analo-
gous to Eq. 8 [which is the probability density function]
for the lognormal, is Eq. 16, but whereas the lognormal
has two variables µ and σ the negative exponential has on-
ly one variable α.

y = N(t) = α. exp(-α.t)............... Eq. 16

For the estimation of the parameters of this model, α
and C, Haybittle [46] suggested combining Group 3 and
Group 4 patients and therefore only two columns of deri-
vatives are given in Table VIII. The corrections δα and
δC which must be applied to the first estimates α and C

are given by Eq. 17 and Eq. 18 where A, C, D, F and
H are defined in Table VI.

A – D. δα – H. δC = 0...... Eq. 17

C – H. δα – F. δC = 0...... Eq. 18

Tab. VIII. Derivatives of the log likelihood for the negative exponential
prediction model

Skew exponential model

A family of seven skew exponentials of the general form
in Eq. 19 were first considered by Mould [45] as alter-
native analytical forms to the lognormal for the specifica-
tion of the distribution of survival times of cancer pa-
tients who died with their disease present.

y = N(t) = N0.t.exp(-γ.tn)..... Eq. 19

The seven skew exponentials were defined by
m = 1,7, where m is given in Eq. 21 and Eq. 22. where
z = (-γ.tn), and (n-2) = -m.n and

t.dt = [(dz/[n.γ]). (z/γ)]-(n-2)/n......... Eq. 20

The integral of Eq. 19 can be written in the form of
a gamma function Γ(m+1) where m is an integer.

∫
�

0
N(t).dt = [1/[n.γm+1)]. ∫

�

0
z.exp(-z).dz = [1/[n.γm+1)].Γ(m+1)

........... Eq. 21

For the limits 0 to T the integral in Eq. 21 may be
evaluated using the expression in Eq. 22.

Fig. 13. Schematic diagram of the extrapolated actuarial model propo-
sed by Haybittle in 1959 [46].
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∫
T

0
N(t).dt = [- (1/m!). z[zm + m.zm-1 + 

+ m.(m-1).zm-2 +........ + m!]
T

0

....................... Eq. 22

For cancer of the cervix data the optimum skew
exponential was found to be that with m=3, Eq. 23, but it
is emphasised that this will not necessarily always be the
optimum curve for other cancer sites.

N(t) = [γ4/12].t.exp(-γ.t
1
2)...... Eq. 23

The corrections δγ and δC which must be applied
to the first estimates γ1 and C1 are given by Eq. 24 and Eq.
25 where A, C, D, F and H are defined in Table IX.

A – D. [δγ/δ] – H. δC = 0...... Eq. 24

C – H. [δγ/δ] – F. δC = 0...... Eq. 25

Tab. IX. Derivatives of the log likelihood for the skew exponential,
m=3, Eq. 23, prediction model

Extrapolated actuarial model

The extrapolated actuarial model differs from the lognor-
mal, skew exponential and negative exponential models by
assuming a certain time variation in the death rate from
cancer instead of postulating explicitly a fraction cured C,
Figure 13. This assumption, however, leads implicitly to
a fraction of long-term sruvivors which can be calcula-
ted from the model parameters.

The other models initially assume an analytical distri-
bution of survival times for the unsuccessful group of ca-
ses, the fraction (1-C), and solve directly for the para-
meter C and the location and scale parameters of the as-
sumed distribution of survival times.

The assumption in the extrapolated actuarial model
of Haybittle [46] is that the probability of dying from can-

cer per unit time is given by the expression K.exp[-β.t].
The number dying in the interval between t and (t+dt) is
then given by Eq. 26

-dn = K.exp[-β.t]. N. dt.................... Eq. 26

where N = the number of cases at risk at time t. If the to-
tal number of patients in a series is N0 the survival frac-
tion derived from Eq. 26 is given in Eq. 27.

[N/N0] = exp[{K/β}.[1 – exp(-βt)] ]......... Eq. 27

As t tends towards infinity [N/N0] tends towards
exp[-K/β] and this is the fraction which we can identify
with C, Eq. 28. The two parameters K and β are estimated
simultaneously for this model and the parameter C is ob-
tained from these estimates. The derivatives of the log
likelihood for this model are given in Table X.

C = exp[-K/β]...... Eq. 28

Tab. X. Derivatives of the log likelihood for the extrapolated actuarial
model
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