The activity of 5’deiodinase type I is remarkably increased in breast cancer

Marcin Dębski¹, Alicja Nauman², Edward Towpik³, Włodzimierz Olszewski⁴, Janusz Nauman¹

Introduction. The aim of the study was to compare the activity of type I 5’iodothyronine deiodinase (5’D1) in breast cancer tissue and in non-cancerous breast tissue taken from the opposite side to the location of the tumour.

Material. The material consisted of 36 samples of breast cancer tissues (grades G1 to G3) and non-cancerous control tissues, which were collected during radical mastectomy or local tumour resection.

Methods. Tissues were homogenized and protein concentration was estimated acc. to the Bradford method. 5’D1 activity was measured by quantification of the radioactive iodide released from 3’5’[125I]-rT3.

Results. The activity of 5’D1 in non-cancerous breast tissues was found to be very low or non-measurable. On the contrary, in cancer tissues from the same breasts – especially in G1 and G2 tumours, the enzyme activity was significantly increased. Also in small tumours (first and second grade clinical stage) 5’D1 activity was high.

Conclusions. Our data may suggest that increased activity of 5-deiodinase type I can lead to elevated de novo production of triiodothyronine in breast cancer tissues and that the thyroid hormone plays a part especially in early stage of carcinogenesis.

Słowa kluczowe: jodotyroninowa dejodynaza, gen hdio, rak sutka

1 Department of Internal Medicine and Endocrinology
Medical University of Warsaw, Poland
2 Department of Biochemistry
Medical Centre of Postgraduate Education, Warsaw, Poland
3 Department of Breast Cancer and Reconstructive Surgery
The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland

Introduction
A possible relationship between the thyroid gland and its hormones and human breast cancer has been suggested for many years, although published data is still confusing.

In the past it has been reported [1-3] that Japanese women suffering from Hashimoto’s thyroiditis have a five times higher risk of developing breast cancer than women without thyroid disorders. The authors of this report suggested [4] that mild hypothyroidism present in
Hashimoto's patients might predispose to breast cancer. However, in another retrospective study Goldman et al. found that patients with Hashimoto's thyroiditis have had the lowest percent of deaths due to breast cancer. The possible link between development of breast cancer and hypothyroidism was also neglected.

In a prospective, 18-year long study of 10,000 women residing on Guernsey, all those who developed breast cancer had a negative history of thyroid pathologies and presented no abnormalities of the serum level of triiodothyronine (T3), thyroxine (T4) and pituitary TSH in the decade before their malignancy was diagnosed [4]).

Most recently, due to the molecular findings the possible relationship between breast carcinogenesis and thyroid hormones was again brought to attention [Puzianowska et al. 2001 – 5]. Firstly, high expression of Na/I symporter (the membrane iodide transporter present in thyroid cell membranes) was discovered both in healthy and cancerous breast tissues [6-8]. The possibility that the expression of thyroid hormone and function of its nuclear receptors [TRs] in cancer tissues can be disturbed was supported by studies on liver cancer [Lin KH et al. – 9], renal clear cell cancer [Puzianowska et al. – 10, Kamiya et al. – 11], thyroid cancers [Puzianowska et al. – 12] and other tumours. The possibilities that triiodothyronine receptor function is changed in breast cancer was also confirmed by Ali et al. [13] and Futreal et al. [14], who discovered the loss of heterozygosity on chromosome 3 and on chromosome 17 i.e. in regions of chromosomes where genes for TRβ and TRα are present.

In addition it is well known that biologically active thyroid hormone – T3, is a product of local thyroxine monodeiodination – the reaction which is catalyzed by 5'-deiodinase type I, the enzyme present in almost all human cells [15, 16]. Enzymatic activity and its gene expression have been examined in some cancers and a significant decrease of gene expression and enzyme activity was found in renal clear cell cancer and thyroid cancer [Pachucki et al. 17 Ambrodziak et al. 17]. As there exists no data on local triiodothyronine formation in human breast tissues we decided to investigate the 5'-deiodinase type I activity both in human non-cancerous breast tissue and in breast cancer of different grades of differentiation.

Material

Tissues were obtained from patients with breast cancer, who underwent surgery as the first step of oncological treatment. Samples from post-chemotherapy patients were not included. The patients had no history of thyroid disease in the past; therefore we could be certain that breast cancer cell metabolism was not disturbed by cytostatic drugs or thyroid disorders.

During radical mastectomy or tumour resection 36 tissue samples were obtained. All patients had samples taken from the tumour, as well as from the side opposite to the tumour – i.e. macroscopically normal tissue. These non-cancerous tissues were treated as controls. Immediately after surgery the samples were frozen in liquid nitrogen and kept at -70° C until needed. Morphologically different types of cancers were present including intraductal, lobular, tubulo-lobular, tubular, medular, mucinous and apocrine carcinoma.

According to the histopathological classification three differentiation grades were represented in the study group (G1 – 14 samples, G2 – 13 samples and G3 – 9 samples). According to TNM classification there were 13 stage 1, 21 stage 2 and 2 stage 3 tumours.

At hospital admission each patient had blood sample taken in order to measure the levels of thyroid hormones. After the clot was formed, the blood sample was centrifuged. Obtained plasma was collected and stored at -70° C until needed. All patients were clinically euthyroid and remained in good health prior to the operation. There was no postoperative mortality. The study was approved by the Ethical Committee of the Medical University of Warsaw (KB/210/2001).

Methods

Sample preparation

Tissue samples were defrozen and then homogenized in ice bath. Homogenization was performed in ice-old homogenisation buffer (0.02 M TRIS-HCl, 1mmEDTA, 10mMDTT-dithiothreitol and 0.25 M glucose, pH 7.0). Protein concentration was estimated by Bradford's method, using bovine albumin as a standard.

Deiodinase assay

5'D1 activity was measured by quantification of the radioactive iodide released from 3'5'125I-rT3. Before each assay, water diluted 3'5'125I-rT3 was purified by Sephadex LH 20 mini-column chromatography by successive washing with 20 ml of H2O followed by elution with 2 ml of 75% ethanol in 0.5 ml fractions. From the fraction with the highest activity (30 000 CPM to 40 000 CPM per 60 µl), 60 µl were added to each reaction tube. This amount of 75% alcohol did not affect the reaction. Incubations were done at 37° C in 0.1 M phosphate buffer, pH=7.0 (0.1 M KPO4 and 1 mM EDTA) with 1 µM unlabeled rT3 and 20 mM DTT. Incubation time was 45 minutes. Reactions were stopped by placing the samples in the ice bath. Iodothyronines were then precipitated by adding 2 volumes of 75% alcohol. Protein concentration was estimated by Bradford's method, using bovine albumin as a standard.

fT3, fT4, TSH assays

To measure plasma thyroid hormone concentration we used fT3, fT4, TSH electrochemiluminescence immunoassays "ECLIA" (Roche). All sera were measured in one series and in identical conditions.

Statistical analysis

Statistical analysis was performed with STATISTICA software. All data is reported as median and minimal and maximal value. fT3, fT4, TSH electrochemiluminescence immunoassays were measured in one series and in identical conditions.

Assays were frozen in liquid nitrogen and kept at -70° C until needed.
Results

5'D1 activity in normal, non-cancerous breast tissue was low in 32 samples – 89% and below detectable values in 4 samples – 11%. Non-cancerous tissues with measurable levels of enzyme activity were treated as controls. Contrary to the non-cancerous tissues we found high 5'D1 activity in 80% tumours, which according to histopathological grading included: 79% of G1 tumours, 100% of G2 tumours and 56% of G3 tumours. 5'D1 activity in group G1 was 22 times higher than in controls. The difference was statistically significant (p=0.003). 5'D1 activity in group G2 was 3 times higher than in controls, and the result was also statistically significant (p=0.0003). We also observed slightly increased activities of the enzymes in group G3 but it was not statistically significant (Figure 1). The median value for G1 was 12.75 fmol/mg*min compared with 0.57 fmol/mg*min in non-cancerous tissues. The median value for G2 was 2.36 fmol/mg*min compared with 0.72 fmol/mg*min in non-cancerous tissues. The median value for G3 was 0.7 fmol/mg*min compared with 0.59 fmol/mg*min in non-cancerous tissues.

We found that in 85% of small tumours (up to 2 cm in diameter) median 5'D1 activity was 10 times higher than in control tissues. The difference is statistically significant (p=0.004). In 76% of medium-sized tumours (2 cm to 5 cm in diameter) 5'D1 activity was 4 times higher than in control tissues. The difference is statistically significant (p=0.002) (Figure 2). There were only 2 large tumours (over 5 cm in diameter) and they were discarded from further analysis. The median value for small tumours was 5.53 fmol/mg*min compared with 0.57 fmol/mg*min in control tissues. The median value for medium-sized tumours was 2.99 fmol/mg*min compared with 0.71 fmol/mg*min in control tissues.

To check if these findings implicate changes in blood thyroid hormones levels we performed FT3, FT4, TSH immunoassays. FT3 levels were normal in all patients (Figure 3). Only one patient had a little lower FT4 level (Figure 4). In 4 cases TSH was elevated and in two decreased in comparison with normal range (Figure 5).

Discussion and conclusions

5'D1 is present in many different organs and the highest 5'D1 activity was found in the thyroid, kidneys and liver [15-18]. There is no data available on 5'D1 activity in human healthy breast tissue. There is only one report proving the presence of 5'D1 in rat breast tissue [19]. The results of our study identifying the activity of 5'D1 in...
human breast tissue are the first published in literature. We have found that in non-cancerous tissue the activity of the enzyme is very low and in some cases below the limit of detection. Values remained low even though different protein concentration, incubation time, reagents concentrations were used. Decreased 5'D1 activity was described in thyroid cancer, renal clear cell carcinoma [17, 20] and primary liver cancer [unpublished own data] but in healthy tissues of these organs 5'D1 activity remains relatively high [20]. On the contrary, we report increased 5'D1 activity in breast cancer. It is of interest that significantly elevated values have been found in highly differentiated tumours of G1 and G2.

The 5'D1 expression is strongly stimulated by thyroid hormone and the promoter of human 5'D1 gene has two thyroid hormone responsive elements – TRE [21, 22]. Overexpression of hdio gene may be a simple explanation of increased 5'D1 activity, but it needs further studies on mRNA level. We may suspect high promoter activity via TRES or some mutations which may activate the promoter of hdio gene. Moreover, mutated TR (thyroid receptors) in breast cancer may activate TRES. Many other factors such as cytokines, glucocorticoids, retinoids, cAMP are known to regulate, directly or indirectly, 5'D1 activity in various rat organs [16, 18, 19, 23] and probably in humans. They possibly play role in stimulating or inhibiting human deiodinase. We do not have an immediate explanation for our findings show a higher activity of the enzyme than those reported in other tissues. High 5'D1 activity in most breast cancers may be one of the signals that intracellular metabolism is changed by neoplastic process.

In many neoplastic conditions changed values of fT3, fT4 and TSH are described and referred to as the "sick euthyroid syndrome" [24]. As abnormal thyroid hormones levels were also reported in patients with breast cancer but published data were controversial [3, 24, 25] we decided to measure thyroid hormones levels in the entire group of patients from whom samples had been obtained.

All our patients remained hormonally euthyroid. We conclude that monodeiodination of tertiaryiodothyronine by increased 5'D1 activity in breast cancer tissue is not sufficient to influence systemic fT3, fT4 and TSH levels.

In conclusion, the present study shows high enzymatic activity of 5'D1 in human breast cancer tissue but further research on mRNA level is necessary to assess the expression of the hdio gene.

Acknowledgements:
Study was partly supported by Medical Centre of Postgraduate Education
Grant No 501-2-1-01-69/02

Marcin Dębksi MD
Department of Internal Medicine and Endocrinology
Medical University of Warsaw
Banacha 1a, 02-097 Warsaw, Poland

References

*Paper received: 16 April 2003
Accepted: 19 May 2003*