Introduction

Brachytherapy has been revolutionised by modern imaging technology, computer dosimetry, and high dose rate (HDR) delivery systems. It is now possible to image the gross tumour, define a clinical target volume, and deliver radiation to this volume in a highly conformal manner.

Difficulty arises, however, when brachytherapy is delivered after the tumour has been excised. Typically, afterloading catheters are placed in the tumour bed, and the patient is imaged after the surgical wound is closed. As there is no longer a gross tumour volume (GTV), definition of a clinical target volume (CTV) is highly subjective. We sought to devise a more objective method to prescribe post-excision tumour bed brachytherapy.

Case report

A 69 year-old man related an eight month history of a slowly growing subcutaneous mass on the medial aspect of his right upper arm. Biopsy was consistent with malignant high grade sarcoma. Magnetic resonance imaging (MRI) of the extremity demonstrated an enhancing soft tissue mass between the biceps and the triceps muscles, adjacent to the neurovascular bundle; its dimensions were 6.5 x 3.5 x 7.8 cm³. Staging studies were negative for distant disease.

The patient underwent wide local excision of the mass in September 2005. Catheters were placed across the tumour bed (Figure 1a), and the wound closed with a myocutaneous flap (Figure 1b). Surgical pathology confirmed the tumour to be a 5.5 x 4.5 x 3.1 cm³ malignant fibrous histiocytoma. Although all margins were negative, the deep margin, which was contiguous with the neurovascular bundle, was less than 1 mm.

HDR dosimetry was calculated so that a dose of 450 cGy per fraction was delivered to a depth of 1 cm (Figure 2). Three fractions were delivered over 24 hours, spaced at least six hours apart, beginning seven days after surgery. The catheters were removed without complication following completion of brachytherapy. External beam irradiation to a total dose of 4500 Gy in 25 fractions was begun four weeks after surgery. A simple treatment plan utilised 6 MV photon beams of field size 6.4 cm x 16.3 cm. Treatment was delivered without incident, and there were no wound healing complications or evidence of neurological injury.

Implantation technique & treatment planning

The surgeon outlines the tumour bed with several clips at the time of resection. The radiation oncologist, who is on standby, is summoned to the operating theatre and confers with the surgeon. He/she then places parallel
afterloading catheters across the tumour bed, approximately 10 mm apart. The catheters are arrayed perpendicular to the axis of the limb; each entering and exiting through a separate skin puncture. The most proximal and most distal catheters are placed to bracket the tumour bed by 2 cm. The catheters are stiffened by a wire or plastic filament, to prevent kinking. Securing buttons are tightened after wound closure. Closing the wound with a musculocutaneous flap reduces concern that dwell locations will be too close to the dermis.

The limb undergoes CT scanning within three days of the implant. Wires or dummy ribbons facilitate catheter definition on the scan. The outermost dwell positions on each catheter are placed 1.5-2.0 cm beyond the tumour bed. No dwell position is placed within 1 cm of a skin entry point.

The physicist designs a plan with the intent of achieving a homogeneous dose at 1 cm depth from the implanted catheters, by geometrical optimisation and manual manipulation of the dwell times. This is achieved by the following adjustments of relative dwell times [1]. Dwell times are more heavily weighted at each catheter end [2]. All dwell times in the most proximal and distal catheters are more heavily weighted [3]. Weighting of dwell times is adjusted to compensate for regions of suboptimal catheter spacing.

The physicist confirms that the prescription isodose surface forms a slab of roughly 2 cm thickness by converting the cursor to a circle of 2 cm diameter, and placing the circle between the prescription isodose lines.

A simple calculation defines a standard treatment volume (STV). The transverse dimensions of the implanted area (average length of the dwell position train in each catheter, multiplied by the average distance between the most proximal and distant catheters) is multiplied by a standard thickness: 2 cm.

A dose-volume histogram (DVH) for the whole dose matrix is calculated, and the plan is normalized, by
adjusting the actual dwell times, so that the dose delivered to a volume equivalent to the STV equals the prescription dose.

Brachytherapy begins 4-6 days after surgery. Analysis of our experience indicates that 13.5 Gy in three equal fractions or 15.0 Gy in four equal fractions, are safe and effective regimens when brachytherapy is combined with 45–50 Gy external beam therapy [1].

Discussion

Current imaging capabilities are invaluable in defining a three-dimensional target volume when tumour can be visualised. However, post-resection therapy poses the challenge of defining a target volume, and consequently a delivered dose, when the target itself is nebulous. A prescription point, such as ‘to a depth of 10 mm’ is often used as a surrogate target volume. Nevertheless, the locus in the tumour bed from which the specified depth is to be measured is subjective. As rapid dose fall-off is the hallmark of brachytherapy and the isodose surface of an implant is undulating, small variations in ‘point’ selection may result in large differences in dose delivery.

The Paris system, devised to prescribe radiation in the face of new technology (small afterloaded sources such as 192Ir) has a built-in method of defining target volume. This is based upon the placement and spacing of the catheters. However, the Paris system’s rules specify that linear activity should be uniform among and along source lines [2]. This constraint negates the wonderful flexibility of HDR to manipulate dwell times.

Lowell Anderson recognised this problem decades ago. “If accurate registration of the dose distribution is available with respect to 3D images, it may be possible to determine the target region’s minimal peripheral dose, which is generally accepted as the dose of greatest clinical significance. In many instances, however, 3D images of the region ... fail to show clearly the target outline”. Anderson proposed a solution, the matched peripheral dose. First, he relied on the surgeon to correctly define the tumour bed intraoperatively, and the brachytherapist’s appropriate placement of afterloading catheters to adequately bracket the tumour bed. Then, “the matched peripheral dose is defined as the dose for which the contour volume is equal to the volume of an ellipsoid having the same dimensions as the measured, mutually perpendicular dimensions of the target region ... In such situations, the matched peripheral dose can serve as a useful approximation to the minimum peripheral dose” [3].

We resurrected Anderson’s concept to use with the DVHs generated by modern dosimetry programs. First, we agreed that the tumour bed was best defined by the surgeon at time of resection, and delineated by the placement of clips along the bed’s borders. The brachytherapist then determines the target volume by the intraoperative positioning of afterloading catheters. The physicist or dosimetrist then manipulates dwell times and source lines [2].
weighting of peripheral dwell positions more heavily, to
generate a homogenous dose distribution. Manipulation
of weighting is also used to partially compensate for
uneven catheter spacing.

A standard thickness of 2 cm (1 cm deep on either
side) is specified for all our planar implants. By
multiplying the average width by the average length of
the dwell positions, the area of the implant is calculated in
the plane of the catheters. The STV is defined by
multiplying this area by a standard target thickness which,
in our institution is taken to be 2 cm. We then adjust
dwell times so that the prescribed dose is delivered to
a volume equivalent to the STV.

Purists would argue that this technique delivers dose
to an artificially created volume that may have no bearing
to the true tumour volume. However, if the surgeon,
brachytherapist, and dosimetrist have performed well, an
ellipsoidal isodose will be delivered to the best possible
estimation of the target.

Jesse N. Aronowitz MD
Department of Radiation Oncology,
University of Massachusetts Medical School,
Worcester, MA 01605
USA
E-mail: jaronowitz@comcast.net

References

1. Aronowitz JN, Pohar SS, Liu L, Damron TA. Adjuvant high dose rate
brachytherapy in the management of soft tissue sarcoma: a dose-toxicity
2. Marinello G, Pierquin B. The Paris system, optimization of dose, and
calculation of treatment time. In: Pierquin B, Marinello G (eds.). *A
practical manual of brachytherapy*. Madison: Medical Physics Publishing,
1997; p. 53-68.

Paper received: 7 May 2006
Accepted: 17 May 2006