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Review article
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Abstract

The unique oncogenic duo of BRAF and TERT promoter (TERTp) variants was demonstrated 

to be associated with aggressiveness and poor prognosis in several different cancer types, 

including melanoma and thyroid cancer. It has been shown that the coexistence of BRAF and 

TERTp variants has a significantly more substantial impact on clinical outcomes than the 

presence of mutated BRAF or TERTp alone. At the same time, the co-occurrence of BRAF and

TERTp variants may also be the Achilles Heel of cancer cells in the context of targeted 

therapies’ effectiveness. This paper aims to summarize data from tumors in which clinically 

significant variants in BRAF and TERTp were documented as prognostic or predictive 

markers. 
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Introduction

Cutaneous melanoma (cuMM) represents only 4% of all skin cancers. However, it is 

responsible for 80% of all skin cancer deaths, which makes it the most lethal of all primary 

cutaneous neoplasm types. In the last few decades the cuMM incidence rate has risen steadily 

worldwide among light-skinned populations. The National Cancer Institute Surveillance, 

Epidemiology, and End Results Program (SEER) database ranked melanoma of the skin in 5th 

place of frequency for 2024, estimating it will account for 5% of all new cancer cases in the 



United States [1]. In Poland, in turn, according to the World Health Organization (WHO) 

statistics, cuMM was the 16th most common cancer type in men and women in 2022 [2]. 

While increase of cuMM incidence is still substantial in most European countries, in several 

high-risk countries, like Australia, a decrease/stabilization in melanoma incidence has been 

reported, thanks to effective public health campaigns and increased sunscreen accessibility 

[3]. 

Early cuMM detection is critical since it gives a better prognosis. According to the 

SEER database, the 5-year relative survival rate for melanoma skin cancer is 100% when it is 

localized. However, the 5-year relative survival drops to 74% and 35% in regional and distant 

cuMM, respectively [1]. Until recently, cuMM was considered a cancer that is highly resistant

to traditional treatment involving surgical resection of the lesion and adjuvant treatment 

(chemo- and radiotherapy). Nevertheless, a better understanding of the biology of melanoma 

and the introduction of targeted therapies and immunotherapy have significantly improved the

effectiveness of therapeutic approaches in recent years. That said, there is a strong need for 

biomarker identification that would enable the usage of personalized medicine that can be 

individually tailored to the patient and/or tumor. An ideal solution would be to identify unique

molecular markers that would improve patients’ diagnostics and/or risk stratification and 

treatment. However, published data show that many oncogenic drivers are common for 

different tumor types and do not segregate by organ of tumor origin. These observations 

provide new opportunities in therapies by classifying cancers based on genomic aberrations 

and using similar molecular therapeutic approaches regardless of tumor histology. This has 

allowed the development of so-called tumor-agnostic targeted therapies that use the same drug

to treat different cancer types with the same genetic variant detected [4]. To date, six 

molecular markers have achieved tissue-agnostic indications in patients with advanced solid 

tumors. Among them, there is a BRAF variant, NM_004333.6(BRAF):c.1799T>A 

(p.Val600Glu) (from now on referred to as the BRAF V600E variant), the presence of which is

related to the possibility of applying a combination of BRAF and MEK inhibitors. This 

therapy is used primarily in melanoma and anaplastic thyroid cancer. The presence of NTRK 

fusions in solid tumors, in turn, allows the use of larotrectinib or entrectinib that targets TRK 

(tyrosine kinase domain). The other biomarkers mentioned above include RET fusions, 

mismatch repair deficiency (dMMR), HER2 overexpression, and TMB-high (tumor mutation 

burden) [4, 5]. 

In the following review, we will focus on two molecular markers that co-occur in 

different cancer types, including melanoma, and are used as diagnostic, prognostic, and 



predictive markers: BRAF V600 pathogenic variants with emphasis on the BRAF V600E one 

and TERT promoter (TERTp) pathogenic variants. These two genes are mutated in a variety of

different cancer types and have been associated with aggressiveness and poor prognosis. 

However, even though their prognostic role in some cancers is beyond doubt, in others, it is 

still a matter of debate.

BRAF as an oncogene

BRAF is one of the most commonly mutated and best-known oncogenes in human 

tumorigenesis. BRAF kinase belongs to the RAF family of serine/threonine kinases, and is a 

part of the mitogen-activated kinase pathway (MAPK), altered in most cancers. Its activation 

results from a ligand binding to receptor tyrosine kinases (RTKs), followed by RTKs 

phosphorylation that leads to RAS GTPases activation and dimerization of RAF family 

members. Activated RAF kinases, including BRAF, trigger activation of MEK1/2 and 

ERK1/2 kinases, leading to direct and indirect regulation of transcription of genes involved in 

cell proliferation and survival [6]. 

Germline pathogenic variants in the BRAF gene are rarely observed and are associated 

with developmental syndromes termed RASopathies, like Noonan and LEOPARD syndromes,

but mainly the cardiovascular-cutaneous (CFC) syndrome. BRAF germline activating variants 

are present in 50–75% of patients with CFC syndrome [7, 8]. It is a rare autosomal 

dominantly inherited disorder characterized by several birth defects, including a distinctive 

facial appearance, short stature, ectodermal tissue abnormalities, congenital heart defects, 

gastrointestinal motility disorders, and intellectual disability. There are isolated reports in the 

literature indicating a germline mutation of the V600 variant in CFC syndrome. Most 

observed germline variants of the BRAF gene typically involve codons other than V600, and 

are characterized by milder ERK/MAPK pathway activation. Analyses performed on cell lines

show that germline BRAF variants present reduced transforming capability compared to the 

most frequent somatic BRAF V600E mutation, and have less potency in deregulating BRAF 

function [7]. In turn, somatic variants of the BRAF gene are strong oncogenic events reported 

in aggressive and indolent tumors — solid and liquid — in both children and adults. The 

frequency of BRAF oncogenic variants in human malignancies is reported at 6% [9]. These 

are the most prevalent molecular alterations in melanoma (40–60% of cases), hairy cell 

leukemia (circa 100% of patients), and papillary thyroid carcinoma (PTC; 29–83% of cases) 

[10–12]. BRAF V600 variants are reported to be present also in many other cancers, including

cholangiocarcinoma, colorectal cancer, chronic lymphocytic leukemia, glioblastoma, GIST 



(gastrointestinal stromal tumors), lung cancer adenocarcinoma, ovarian cancer, kidney cancer,

pancreatic cancers and others [13]. More than 200 BRAF-mutant alleles have been discovered,

with 30 variants functionally characterized [14]. BRAF V600E is the most common one 

(accounts for 70–90% of all BRAF variants) and has the highest oncogenic potential. This 

alteration and other variants within the 600 codon belong to class 1 BRAF variants, which are 

RAS-independent and enable BRAF kinase to function as an active monomer [15]. Although 

BRAF V600E presence is usually related to a more aggressive course of cancer, it is not only 

present in malignant tumors. It has been reported in some benign lesions and neoplasms of 

low malignant potential, like endosalpingiosis [16], metanephric adenoma [17], Erdheim-

Chester disease, and Langerhans cell histiocytosis [18] or papillary craniopharyngioma [19]. 

BRAF V600E is also present in about 80% of melanocytic nevi, suggesting that it is 

insufficient alone to drive oncogenesis [20]. It is well known that despite the mutated BRAF 

kinase activity, most melanocytic nevi remain harmless over the course of an individual’s 

lifetime. It has been indicated that oncogenic BRAF plays a dual role: induce 

hyperproliferation and subsequent cell cycle arrest. This intriguing duality in the role of 

oncogenic BRAF adds a layer of complexity to our understanding of cancer biology. The 

prevalent theory explaining this phenomenon is oncogene-induced senescence (OIS), with 

elevated expression of p16INK4a and other cyclin-dependent-kinase inhibitors. However, the 

term “senescence”, conventionally defined as permanent cell-cycle arrest, has been 

questioned for the proliferation arrest of melanocytic nevi because nevus recurrence and 

transformation to primary melanoma is associated with cell cycle re-entry. McNeal et al. 

identified that BRAF V600E induces a reversible arrest in human melanocytes directed by 

MIR211-5p/MIR328-3p regulation of AURKB (aurora kinase B) and conditional on the 

melanocyte differentiation state (differentiated melanocytes vs melanocyte progenitor or stem 

cells) [21]. The Aurora B kinase, as an enzymatic component of the Chromosomal Passenger 

Complex, plays a critical role in cell division, but also cell cycle checkpoint, DNA damage 

response by interaction with p53, and normal physiological processes. Overexpression and 

amplification of Aurora B have been observed in several human cancers, including melanoma,

and predict tumor recurrence and poor prognosis [22]. McNeal et al. suggested that acquiring 

the BRAF V600E variant permits melanocytes to switch between hyperproliferation and 

mitotic arrest. Moreover, many studies have shown that in most tumors with BRAF variants, 

inactivation of tumor suppressor genes is essential for malignant transformation [23–25].

TERT as an oncogene



The TERT gene encodes the telomerase’s catalytic subunit, which regulates telomeres’ 

length. The telomerase activity is silenced in most normal cells, which is related to the 

shortening of telomeres in each round of cell division until a critical length is reached and the 

cell enters replicative senescence. The number of cell divisions before the senescence is 

known as the Hayflick limit [26–28]. Telomerase expression is maintained in selected cells, 

like stem-like cells and germ cells. In cancer cells, telomerase reactivation is a known 

hallmark of tumorigenesis, as more than 90% of all human cancers express this enzyme [29]. 

TERT induction leads to telomerase activation, which, by stabilizing the length of telomeres, 

gives cancer cells unlimited proliferative potential. Recent studies indicated additional 

telomere-independent, oncogenic TERT functions. These include the impact on non-telomeric

DNA damage responses, promotion of cell growth and proliferation, control of mitochondrial 

integrity following oxidative stress, and participation in the transcriptional regulation of gene 

expression [30]. TERT was found to interact with β-catenin, which stimulates epithelial-

mesenchymal transformation (EMT), stemness of cancer cells, and thereby cancer metastasis 

and recurrence [31]. Moreover, via interaction with NF-kappaB p65, TERT is involved in the 

up-regulation of metalloproteinases (MMPs) expression, contributing to cancer progression 

[32]. Those mentioned above and many more TERT molecular linkages and mechanisms of 

action indicate its strong involvement in multiple cancer hallmarks.

The reactivation of TERT in most tumors is mainly a consequence of TERTp variants 

and focal amplification/rearrangements [33]. The most common TERTp variants are C>T 

transitions, located at hot spots -124 bp and -146 bp from the transcription start site, referred 

to as NM_198253.3(TERT):c.-124C>T (from now on referred to as C228T variant) and 

NM_198253.3(TERT):c.-146C>T (from now on referred to as C250T variant), respectively. 

These variants were initially found in 2013 and reported in 71% of melanoma cases [34, 35]. 

It has been indicated that C228T and C250T affect TERT expression, telomerase activity, and 

telomere length. Both these alterations generate an 11 bp nucleotide fragment, 

“CCCGGAAGGGG”, that provides a new binding site for E-twenty-six (ETS) family 

transcription factors [34, 36]. Not long after the discovery, TERTp variants were reported as 

frequent in several different tumor types, including 83% of glioblastoma [37], 66% of bladder

cancer [38], and 47% of hepatocellular carcinoma (HCC) [39]. There is a clear separation in 

the frequency of TERTp alterations between tumors with high and low proliferative potential 

[36]. TERTp variants are more prevalent in tumors with low proliferative potential, like the 

melanoma mentioned above, glioblastoma, bladder cancers, and HCC, and less frequent in 



tumors that have high proliferative potential like breast cancer (0.9%) [40], testicular germ 

cell tumors (~3%) [41], and myeloid malignancies [42]. So far, TERTp variants have been 

reported in more than 50 distinct cancer types. These two hot spot alterations are believed to 

be a secondary genetic event following the deregulation of MAPK or Wnt signaling pathways

[43]. Moreover, a recent study by Zarif et al. [44] demonstrated that the prevalence of TERTp 

variants varies among patients with different cancer types based on race and sex [44]. The 

authors observed a higher frequency of TERTp variants in melanomas of patients self-reported

as White compared to melanomas of patients self-reported as Asian and Black. However, 

Asian patients had more often TERTp-mutated head and neck cancer than White patients. 

Regarding the association with sex, in males, TERTp variants were more frequent in 

melanoma, hepatobiliary, and thyroid cancers compared to females. In contrast, females were 

more enriched for TERTp variants than males for head and neck cancer.

BRAF and TERTp variants separately and as a molecular duet in cutaneous melanoma

Most BRAF variants in melanoma are missense ones determining amino acid 

substitution at valine 600. BRAF V600E accounts for 70–88% of all BRAF variants in 

melanoma, followed by variants: NM_004333.6(BRAF):c.1798_1799delinsAA (p.Val600Lys)

(referred to V600K; 5-12%), and NM_004333.6(BRAF):c.1799_1800delinsAT (p.Val600Asp)

(referred to V600D), which, together with the NM_004333.6(BRAF):c.1798_1799delinsAG 

(p.Val600Arg) variant (referred to V600R) account for ≤ 5% [45]. Detection of BRAF 

mutational status — post-chemotherapy — plays a crucial role in determining prognosis, 

together with other factors like age, gender, metastases, Eastern Cooperative Oncology Group

(ECOG) scale, and lactate dehydrogenase (LDH) levels [46]. Shinozaki et al. [47] showed 

decreased overall survival (OS) in patients treated with bio-chemotherapy for melanoma when

the BRAF variant was detected in ctDNA compared to patients in whom the BRAF variant was

not found in serum (13 vs. 30.6 months). In a study by Ardekani et al. [48], higher BRAF 

expression was also associated with poor OS in primary melanoma patients, and a correlation 

between BRAF expression and both thickness and ulceration of the tumor was demonstrated 

[48]. Nevertheless, the presence of the BRAF V600 variant is a predictive marker determining

the targeted therapy choice. The first inhibitor of mutated BRAF approved by the U.S. Food 

& Drug Administration (FDA) was vemurafenib, and it showed objective response rates of 

~50% in patients with metastatic melanoma and tumors positive for BRAF V600E [49, 50]. 

Melanomas treated with BRAF inhibitors only, develop mechanisms to reactivate 

MAPK/PI3K/Akt/alternative pathways in a short time, and resistance occurs. These pathways 



may be activated through mutations, copy-number alterations, and other mechanisms. The 

most frequent are NRAS variants and MEK1/2 variants. Less frequently, PI3K/Akt pathway 

alterations are observed [51]. In order to overcome this resistance, a combination of BRAF 

and MEK inhibitors has been proposed. Compared to vemurafenib monotherapy, it provides 

improved OS and a more than 64% response rate [52]. At present, analysis of BRAF 

mutational status is recommended in tumors of cutaneous melanoma stage III or IV, and when

a BRAF V600 variant is detected, a combined BRAF/MEK inhibitors therapy is advised 

(dabrafenib/trametinib; vemurafenib/cobimetinib; encorafenib/binimetinib). This targeted 

therapy may be applied as the first-line or after progression on immunotherapy with PD-1 

inhibitors [53]. Nevertheless, the efficacy and effects of this combined therapy may be highly 

different. In some cases, it may result in tumor shrinkage or even complete tumor resolution; 

in others, drug resistance/tumor recurrence may be the effect [54, 55]. For this reason, new 

therapeutic strategies are being sought to combat resistance mechanisms, and attention has 

turned to other processes whose inhibition could aid in inhibiting cancer cell growth. 

Inhibition of mitotic cell division may be a goal. Targeting Aurora B, the kinase we mentioned

earlier, with inhibitors is a promising therapeutic strategy for cancer treatment [56]. 

Nevertheless, at present, there are no markers that would support clinicians in predicting 

therapeutic responses of BRAF-altered cancers to BRAF/MEK inhibitors. 

BRAF V600E was found to be associated with the presence of TERTp variants in 

human cancers, particularly in melanoma and thyroid cancers [57–59]. Moreover, this duet 

has also been reported in gliomas [60] and low-grade serous ovarian carcinoma [61]. Most 

TERTp variants in melanoma include two aforementioned hot spots — C228T and C250T — 

that have a UV signature with C>T nucleotide substitution [62]. TERTp variants were 

indicated as an independent marker of poor survival in patients with cutaneous melanoma 

[59]. Several studies have also demonstrated an association between TERTp variants and 

increased Breslow thickness, as well as tumor ulceration [59, 63, 64]. 

The frequency of BRAF V600 and TERTp variant co-occurrence in melanoma was 

reported at 20–25% [63, 65]. In a study concerning a selected BRAF-mutated melanoma 

cohort, 72% of cases were positive for TERTp alterations [66]. However, there are population-

dependent differences in the TERTp variant’s frequency. In the Asian population, for instance, 

the prevalence of TERTp C228T and C250T in melanoma was significantly lower compared 

to the Caucasian population, reported as 5.9% and 5.5%, respectively [67]. These differences 

may be due to the dominance of acral and mucosal melanomas in the Asian population. 

Similar to the Caucasian population, TERTp mutations were more commonly observed in 



BRAF-mutated tumors. The unique coexistence of these two genes’ hot spot alterations is an 

important discovery due to its biological and clinical consequences since BRAF V600 and 

TERTp variants as a duet are a robust driver for the aggressiveness of human cancer. In 

cutaneous melanoma, this mutational duet was reported to be strongly correlated with adverse

clinicopathological parameters, like thickness, high mitotic rate, sentinel node metastases, 

presence of ulceration, and absence of regression [63], and these correlations were not 

significant when each of these variants was analyzed alone (BRAF V600 and TERTp 

variants). This synergistic oncogenicity of BRAF V600E and TERTp alterations is associated 

with strong cooperation between these two oncogenes. The mechanism of BRAF 

V600E/MAPK pathway-dependent up-regulation of TERT expression is the following: the 

BRAF V600E/MAPK pathway promotes the expression of GABPB protein via FOS 

transcription factor phosphorylation and its binding to the GABPB promoter; increased 

GABPB expression leads to formation of the GABPA-GABPB complex, which selectively 

binds to the mutated TERT promoter and in consequence, strongly up-regulates its expression 

(Fig. 1) [65, 68]. Despite the strong negative impact of this molecular duo on the clinical 

course of melanoma, recent studies emphasize its simultaneous potential as a therapeutic 

target. Tan et al. showed that the genetic duet of BRAF V600E and TERTp variants is the 

Achilles Heel of cancer cells, the most vulnerable therapeutic target [69]. Using thyroid 

cancer, melanoma, and colon cancer cell models, the authors showed that dabrafenib and 

trametinib induced apoptosis of cancer cells harboring both variants. Yet, they displayed little 

proapoptotic effect in cells with only the BRAF variant. The same results were observed in 

vivo. What is more, after drug withdrawal, tumors harboring only the BRAF variant regrew 

rapidly in contrast to tumors with both alterations that remained hardly measurable. It has 

been hypothesized that cancer cells with these alterations evolve to rely on BRAF V600E-

dependent high TERT expression, which results in apoptosis suppression. Therefore, using 

BRAF/MEK inhibitors may lead to apoptosis of cancer cells and tumor elimination. In a 

clinical setting, Thielmann et al. also demonstrated better therapeutic responses in patients 

with melanoma harboring BRAF/TERTp variants with more prolonged progression-free 

survival (PFS) and OS compared to patients with only BRAF-positive melanoma [66]. 

However, the authors did not observe a plateau of durable responses, as reported by Tan et al. 

in an in vitro study.

BRAF and TERTp variants as a molecular duet in other cancers

Thyroid cancers



Thyroid cancers (TC) are at the forefront in terms of BRAF V600E frequency, which 

plays a fundamental role in tumorigenesis and progression of TC, and papillary thyroid 

carcinoma (PTC) in particular. TERTp variants — C228T and C250T — are most common in 

more aggressive TCs with a frequency as follows: 11.3% in PTC, 17.1% in follicular thyroid 

carcinoma (FTC), 14.6% in Hurthle cell carcinoma (HCC), 43.2% in poorly differentiated 

carcinoma (PDTC), and 40.1% in anaplastic thyroid carcinoma (ATC) [57]. No TERTp 

variants were found in medullary thyroid carcinoma or benign thyroid tumors. Regarding the 

clinical impact of BRAF V600E and TERTp variants in TCs, mutated BRAF alone 

demonstrated associations with poor prognosis factors. However, the coexistence of BRAF 

V600E/TERTp variants showed a much more substantial negative impact in terms of clinical 

outcome. Shen et al., in the analysis of the 388 PTC cohort (TCGA database), reported that 

BRAF/TERTp positive mutational status was associated with older patient age, extrathyroidal 

invasion, advanced disease stages III/IV, larger tumors, distant metastases, disease recurrence 

and patient mortality [70]. BRAF V600E alone, in turn, was only associated with 

extrathyroidal invasion. In our study, although a smaller PTC cohort was analyzed, similar 

data were obtained supporting the meaning of the BRAF V600E/TERTp duet in the 

progression of PTC [71]. We reported a strong association of BRAF and TERTp alteration 

coexistence with gender, advanced age of patients, T3 and T4 stage of disease, lymph node 

metastases, larger tumor size, and infiltration of the tumor capsule. It was also demonstrated 

that these two alterations might play a role in the dedifferentiation of thyroid cancer, leading 

to TC formation with a status known as RAI (radioactive iodine)-refractory DTC (RAIR-

DTC) [72]. Currently, multikinase inhibitors — sorafenib and lenvatinib — are recommended

for treating patients with RAIR-DTC. Yet, these drugs are associated with significant adverse 

effects that lead to dose reduction and temporary or permanent discontinuation in many 

patients. Because of the positive effects of BRAF/MEK inhibitors in BRAF-mutated 

melanoma patients, their use was also studied in RAIR-DTC patients with promising results 

in some cases [73, 74]. However, the mutational status of TERTp was not considered in these 

studies. Su et al. [75] were the first to report the effectiveness of anlotinib (a multitarget 

tyrosine kinase inhibitor) treatment in a patient with BRAF- and TERTp-mutated RAIR-DTC. 

The authors speculated that the presence of BRAF V600E/TERTp mutational duet might be a 

predictive marker for the beneficial effect of anlotinib therapy. More data is needed to confirm

this hypothesis. 

The interaction of mutated BRAF and TERTp on the molecular level in TCs may differ

from mechanisms observed in melanoma, as reported by Song et al. [76]. The Authors 



demonstrated that GABP and ETS1 expression, previously associated with BRAF 

V600E/MAPK-dependent up-regulation of TERT, was not significantly affected by mutated 

BRAF in PTCs. Instead, BRAF V600E/MAPK activation triggered ETV1, ETV4, and ETV5 

up-regulation in TCs. These ETS factors, induced by mutated BRAF, bind directly to the 

TERTp and activate it.

Gliomas

Gliomas represent the most common central nervous system (CNS) tumors. The 

prevalence of BRAF V600 variants in gliomas is reported as 15.4% in adults and 17.0% in 

pediatric patients [77]. TERTp variants, in turn, are present in 24.4%, 38.7%, and 44.9% of 

glioma cases with grades II, III, and IV (according to the WHO classification from 2016), 

respectively [78]. Discovery of BRAF alterations in CNS tumors opened new therapeutic 

possibilities for these patients [79]. Still, the efficacy of mutated BRAF inhibitors varies 

qualitatively by glioma histologic subtype. It has been demonstrated that additional molecular 

events, including loss of CDKN2A or telomerase reactivation, may significantly influence the 

clinical outcome in BRAF-mutated tumors [80, 81]. According to the latest WHO 

classification of CNS tumors, TERTp variants should be analyzed in patients with IDH-wild 

type diffuse glioma, and their presence is sufficient for diagnosing glioblastoma G4 [82]. The 

role of TERTp mutations in glioblastoma oncogenesis is beyond any doubt. Nevertheless, its 

prognostic impact remains controversial [83]. It has been indicated that the prognostic value 

of TERTp variants may depend on tumor grade and IDH mutational status [84]. The co-

occurrence of TERTp and IDH variants in low-grade gliomas (LGG) was shown to be 

associated with better overall survival, similar to gliomas with TERTp, IDH variants, and 

1p/19q co-deletion. However, patients without TERTp and IDH variants and those with 

1p/19q co-deletion showed poor survival. The presence of TERTp variants only, in turn, seems

to be associated with aggressive tumors and poor prognosis [85].

The coexistence of BRAF V600E and TERTp variants was observed to be enriched in 

more aggressive, high-grade tumors [81, 86]; still, it is not as common as in melanoma or 

PTC. The molecular mechanism of mutated BRAF and TERTp interaction in glioma is similar 

to that described in melanoma, and is based on the ETS1 up-regulation via the MAPK 

pathway and its binding to mutated TERTp, which leads to TERT activation [60].

Serous ovarian carcinoma



Serous carcinoma is a predominant type of epithelial ovarian cancer (EOC) and is 

classified into two main subtypes: high-grade serous carcinoma and less common low-grade 

serous carcinoma (LGSC). The frequency of the BRAF V600E variant varies from 2% to 38%

in LGSC [87–89]. It is also found in up to 48% of serous borderline tumors [90]. There are 

studies showing an association between the presence of the BRAF V600E and early-stage 

disease and improved prognosis in LGSC [89]. Moujaber et al. [91], in turn, reported that 

most women with BRAF-mutated LGSC were diagnosed at an advanced stage. Moreover, 

recurrent BRAF V600E-positive LGCS was not responsive to chemotherapy. However, the 

use of a BRAF inhibitor, dabrafenib, gave a sustained response. The data about BRAF/TERTp 

mutational duet in ovarian cancer are scarce. Tavallaee et al. [61] first reported a case study of

LGSC recurring as a carcinosarcoma in a lymph node with BRAF V600E and TERTp C228T 

alterations present in both primary and recurrent tumors. This case may support a hypothesis 

of the synergistic effect of this mutational duet in this patient’s LGSC that led to an aggressive

clinical course and high-grade transformation. 

Soft tissue sarcoma

BRAF alterations are rare in soft tissue sarcoma (STS) cases, with a frequency of 1.2%

and BRAF V600E presence between 0.3–0.6% [92]. Kobayashi et al. also showed that the 

most frequent variants accompanying BRAF V600E mutation in STS concerned the CDKN2A 

gene and TERTp. The percentage of BRAF/TERTp mutated STS is small, yet it should not be 

marginalized considering the clinical importance of these two molecular events’ co-

occurrence. Several case reports have documented the presence of the BRAF variant in 

various sarcoma subtypes, including malignant peripheral nerve sheath tumors (MPNST), 

clear cell sarcoma, synovial sarcoma GIST, undifferentiated pleomorphic sarcoma, and Ewing

sarcoma. However, these cases exhibit significant differences in treatment approaches, such as

the use of specific drugs and whether BRAF/MEK inhibition was combined or used as 

monotherapy [93–96].

Conclusions

There is no doubt that the BRAF/TERTp mutational duet plays an important role in 

tumorigenesis, progression, and the aggressiveness of cancer cells. It has also been 

demonstrated that the coexistence of these two alterations makes cancer cells more sensitive 

to BRAF and MEK inhibitors, as their survival becomes dependent on BRAF V600E-induced 



TERT up-regulation. Further studies are needed to elucidate the dual role of this molecular 

duet and its translation into targeted therapies that could be used in different types of cancer.
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Figure 1. BRAF and TERT oncogenic cooperation mechanisms. The main model of BRAF 
V600E and TERTp variants' oncogenic cooperation is through the BRAF V600E-activated 
MAPK pathway — FOS phosphorylation — acting as a transcription factor of the GABPB 
gene. The GABPB, in turn, is part of the GABP complex that recognizes the ETS binding 
motif within the TERT gene promoter, created de novo due to either C228T or C250T 
variants. The BRAF V600E-activated MAPK pathway may also promote TERT expression via
MYC. This model is TERTp variant independent
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