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ABSTRACT

Headache is one of the most prevalent, although often underreported, symptoms of coronavirus disease 2019 (COVID-19). 
It is generally accepted that this symptom is a form of secondary headache due to systemic viral infection. There are several 
hypotheses that try to explain its aetiopathogenesis. One of the most compelling is related to innate immune response to viral 
infection. This rationale is supported by similarities to other viral infections and the temporal overlap between immunological 
reactions and headache. Moreover, several key factors in innate immunity have been shown to facilitate headache e.g. interfer-
ons, interleukin (IL) –1-β, IL-6, and tumour necrosis factor. There is also a possibility that the virus causes headache by the direct 
activation of afferents through pattern recognition receptors (i.e. Toll-like receptor 7). Moreover, some data on post-COVID-19 
headache and after vaccination against SARS-CoV-2 infection suggests a similar cytokine-mediated pathomechanism in these 
clinical situations. Future research should look for evidence of causality between particular immune response factors and 
headache. Identifying key molecules responsible for headache during acute viral infection would be an important step towards 
managing one of the most prevalent secondary headache disorders.
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Introduction

The coronavirus disease 2019 (COVID-19) pandem-
ic precipitated great interest in the scientific community, 
prompting an unparalleled development of research data. In 
published studies, headache has often appeared as the most 
prevalent neurological complaint related to different aspects 
of the disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). It has been named as a symp-
tom of COVID-19 [1] or its direct and indirect sequelae [2]. 
Moreover, headache has been identified as a prognostic factor 
[3], as well as an adverse reaction to therapeutic interventions 
and preventive strategies [4]. 

However, SARS-CoV-2 is a new headache factor only to 
a limited degree, and the complaint had been studied decades 
before the current pandemic. Consequently, the purpose of 
this review was to critically appraise the dataset published 
over the last two years in this area. Furthermore, we examine 
the most likely explanations for phenomena described in 
headache-related literature during the COVID-19 pandemic 
in the context of evidence accumulated in the past.

Considerations for review methods

Current guidelines describe headache as one of the 
cardinal COVID-19 symptoms [5]. However, initial reports 
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indicated its low prevalence in infected subjects (11.3%) [6]. 
It should be underlined that this data was obtained mostly 
from hospital-based retrospective case series, which are prone 
to bias resulting from selective data collection by healthcare 
providers and discriminatory reporting by patients. Conse-
quently, even recently published meta-analyses based on these 
studies endorse the opinion that headache is not a prevalent 
acute COVID-19 symptom [7]. However, the above mentioned 
retrospective studies were followed by prospective research 
based on structured questionnaires. The latter placed headache 
among the most prevalent symptoms of COVID-19 (22–72%) 
[1, 8–11], although rarely an isolated one [12]. What is more, 
headache may be one of the most universal complaints in 
SARS-CoV-2 infection, occurring regardless of virus variant 
[13]. To conclude, the described underreporting has had 
a profound impact on evidence interpretation. Consequently, 
studies based on structured questionnaires specifically focused 
on headache are the ones with lowest bias risk for the purpose 
of this review.

The symptoms of COVID-19-related headache have been 
well characterised from the clinical point of view. However, 
little has been published on the subject of its pathogenesis. 
Consequently, only hypotheses have been proposed so far. 
In their comprehensive review, Caronna and Pozo-Rosich 
proposed several such concepts [14], e.g.:

 — Direct damage to peripheral and central nervous system 
(CNS) mediated via virus affinity to angiotensin-convert-
ing enzyme 2 (ACE2) and its ability to cross the blood- 
-brain barrier (BBB), especially when the latter is further 
damaged by inflammatory and coagulopathic processes.

 — Hyperinflammation and cytokine storm with the promi-
nent role of interleukin (IL)-6.

 — Trigeminal system activation resulting from overlapping 
pathways of COVID-19 and primary headache disorders.
To assess data supporting these theories, our review 

concentrates on two major concepts: time and reference to 
non-COVID-19 headache scenarios. In the first, our rationale 

is that headache should occur simultaneously or be slightly 
preceded by a causal factor. As to the second concept, SARS-
-CoV-2 pathology shares many, mostly immune, mechanisms 
with disorders that have troubled humankind for millennia [5].

Headache in COVID-19 vs other viral 
respiratory tract infections

As mentioned above, SARS-CoV-2 causes headache in 
22–72% of subjects, with the majority of prospective stud-
ies pointing to a 60–70% prevalence. These percentages are 
comparable to results from research on infections caused 
by common viruses, i.e. influenza, metapneumoviruses, res-
piratory syncytial viruses (RSV) and rhinoviruses (Tab. 1).  
However, most of these pathogens substantially differ in their 
biology e.g. the influenza virus can be both neurotropic and 
non-neurotropic [15]. It seems justified therefore to look for 
the source of infection-related headache in pathways that are 
common for all these pathogens, i.e. immune response.

SARS-CoV-2 tissue distribution

The upper respiratory tract, especially nasal ciliated cells, 
are the primary targets for SARS-CoV-2 in early COVID-19  
stages [16]. The sinonasal mucosa is innervated by the first 
and second branch of the trigeminal nerve. Nerve endings of 
C and A-delta fibres are immersed in whatever biochemical 
or inflammatory processes take place in this area. 

Viral sinonasal inflammation (acute rhinosinusitis) occurs 
in response to the replication of the virus in the nasal epithe-
lium. Virus-derived molecules recognised by innate immune 
cells are referred to as pathogen-associated molecular patterns 
(PAMP). These structures are highly specific for given types 
of microorganisms (e.g. there are observations suggesting 
that the SARS-CoV-2 spike protein may act as a PAMP and 
cause neuroinflammation [17]). PAMP binding receptors 
are known as pattern recognition receptors (PRR). It is not 

Table 1. Prevalence of headache in acute viral respiratory tract infections

Aetiology Study Number of  
participants

Headache 
prevalence

Viral upper respiratory infection (miscellaneous pathogens) Liu et al. 2013 [99] 4,755 25%

Influenza virus Yang et al. 2015 [100] 49 69%

Rhinovirus Zlateva et al. 2020 [101] 384 68%

Respiratory syncytial virus
Widmer et al. 2014 [102]

32 66%

Metapneumovirus 33 58%

Human coronaviruses Zeng et al. 2018 [36] 258 1%

SARS-CoV-2 Lechien et al. 2020 [1] 1,420 70%

Pullen et al. 2020 [11] 1,252 60%

O’Keefe et al. 2021 [9] 337 66%

García-Azorín et al. 2021 [10] 2,194 23%

Straburzyński et al. 2021 [8] 130 72%
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Figure 1. Schematic depiction of temporal changes in upper respiratory tract (URT) virus replication, innate immune response, and heada-
che in mild/moderate COVID-19. Based on Schultze & Aschenbrenner 2021 [22] and O’Keefe et al. [9]

fully understood which PRRs are activated by SARS-CoV-2. 
However, experts suggest that the most probable targets 
are Toll-like receptors 3 (TLR3) and TLR7, retinoic acid- 
-inducible gene 1 (RIG-I) and melanoma differentiation-asso-
ciated gene 5 (MDA5) [18]. These key sensors of viral infection 
are expressed intercellularly and respond to nucleic acids (RNA 
mostly), although in different ways. TLR3 and TLR7 recognise 
viral nucleic acid transported by the endosomal pathway (i.e. 
from outside the cell). RIG-1 and MDA-5 detect viruses that 
have entered the cell and started producing dsRNA during 
replication. The evidence for RIG-I and MDA5 expression in 
trigeminal afferents is lacking, and it seems likely that these 
neurons do not express TLR3 [19]. However, TLR7 is present 
on nasal mucosa nociceptors and, what is more, its stimulation 
in the nasal epithelium leads to brainstem activation [20]. 

It is worth noting that TLR3, TLR7, RIG-1 and MDA5 are 
expressed in nasal mucosa lymphoid tissue and nasal epithelial 
cells, leading to their activation and subsequent production 
of type I interferons and other pro-inflammatory cytokines 
[21–24]. Consequently, trigeminal afferents sustain exponen-
tial elevation of type I and III interferons (IFNs) followed by 
IL-1α, IL-1β, tumour necrosis factor (TNF), IL-6, C-X-C motif 
ligand (CXCL)-8, CXCL-10, CXCL-11, and C-C motif ligand 
(CCL)-5, followed by the next steps of immune response [25]. 
In a laboratory setting, this situation was simulated by exper-
iments on an animal model. In that study, sinonasal stimula-
tion with bradykinin caused the nociceptive activation of the 
trigeminal nucleus caudalis — a key region for headache [26]. 
This in turn may explain why patients with rhinosinusitis have 
headache and facial pain. In clinical settings, this was further 
supported by a study of COVID-19 patients that provided 
evidence for an association between acute inflammation of the 
sinonasal mucosa and headache/facial pain [8]. In other words, 

patients experiencing rhinosinusitis during COVID-19 had 
significantly higher odds of headache or facial pain. These 
correlations are multi-level and stretch beyond innate response 
and nasal cavity, e.g. a retrospective study found that patients 
experiencing headache and sinonasal symptoms have lower 
levels of anti-SARS-CoV2 IgG [27].

It has been confirmed that the coronavirus can penetrate 
different areas of the nervous system. Several mechanisms and 
routes to cross the BBB and spread within the CNS have been 
proposed, including virus affinity to ACE2 [14, 28, 29]. Some 
of these hypotheses assume that SARS-CoV-2 travels along 
the olfactory or trigeminal route [30], similarly to some neu-
rotropic variants of the influenza virus [31]. Activation of the 
trigeminal ganglion, trigeminal nucleus caudalis and hypothal-
amus (among other regions) is considered paramount for some 
primary headache disorders (e.g. migraine). Consequently, 
this could explain headache pathomechanism occurring via 
a direct viral action in the trigeminal system [14, 30]. However, 
evidence published so far indicates moderate virus presence in 
the trigeminal ganglion or cranial nerve nuclei in the medulla 
oblongata [32, 33], and neither meningitis nor encephalitis are 
prevalent in COVID-19 [7, 34]. It should also be underlined 
that sole virus presence in CNS does not necessarily cause pain. 
For example, the human coronavirus is clearly neurotropic 
[35], and yet very seldom causes headache [36].

Molecules involved in innate immune 
response to SARS-CoV-2

Viral infections trigger innate and adaptive immune re-
sponses. These two reactions, although intertwined, have their 
own timelines, with innate being swifter and less specific. In 
other words, an innate reaction occurs at the same time as the 
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first infection symptoms, i.e. headache [8, 9, 11, 18] (Fig. 1).  
Studies analysing COVID-19-related headache have shed 
some light on its associations with innate immune response. 

For example, in hospitalised patients, some infection 
symptoms (fever, myalgia,) have been associated with head-
ache [37]. Fever occurs in response to, among others, endoge-
nous pyrogens, such as IL-1, TNF or IL-6 [38]. These molecules 
are also part of the innate immune response in the upper 
respiratory tract mucosa in infections caused by the influenza 
virus, RSV or metapneumovirus [39, 40]. Moreover, IL-1, TNF 
or IL-6 contribute to calcitonin gene-related peptide (CGRP) 
release, although the latter phenomenon has been described 
only in animal cutaneous nociceptors [41].

IFNs are produced in response to SARS-CoV-2 most prob-
ably via the activation of toll-like receptors. When analysed in 
detail, innate immune response to SARS-CoV-2 infection is 
characterised by moderate levels of type I IFNs [42]. However, 
these molecules still play an important role in COVID-19. 
IFN-α (type I) and λ (type III) peak early in the disease course, 
especially in the nasal epithelium. A meta-analysis currently 
awaiting publication has shown that the application of type 
I IFN (β) is the cause of headache in multiple sclerosis patients 
[43]. IFN-α is also the cause of headache in many subjects 
treated with this molecule [44]. Moreover, earlier studies also 
pointed to possible migraine exacerbation by IFN-β therapy 
[45]. Type-I IFNs also activate mitogen-activated protein 
kinase – a pathway that is associated with pain processing in 
the trigeminovascular complex [46].

Type I IFNs initiate immune responses involving interleu-
kin IL-1β, IL-6, TNF and some chemokines (CCL20, CXCL1, 
CXCL2, CXCL3, CXCL5, CXCL6, CXCL16) [18]. Consequent-
ly, these factors are more likely to participate in the origin of 
COVID-19-related headache than molecules that gain promi-
nence later in COVID-19 course (CCL2, CCL3, CCL5, CXCL9, 
CXCL10, IL-1α, IL-17, IFN-β, IFN-γ, IL-10, IL-33) [18].

IL-6 plays an important role in the early phases of COVID-19  
[18], and consequently, this particle should be considered as 
a possible trigger for headache in this infection. There is how-
ever contradictory evidence in this regard. On the one hand, 
IL-6 levels show positive linear correlation with headache 
intensity in COVID-19 [47]. On the other hand, headache is 
associated with lower, although still elevated, IL-6 levels [3]. 
Moreover, IL-6 is considered a key player in severe COV-
ID-19 and cytokine storm [48] — a late complication occurring 
in a cohort with less prevalent headache. In reference to its 
nociceptive potential, it should be mentioned that patients 
with chronic and episodic tension-type headache (TTH) have 
elevated serum levels of IL-6 [49]. Moreover, this has been 
shown in animal migraine models to facilitate the excitability 
of dural afferents and allodynia [50]. It is therefore a molecule 
that may play an important role in triggering headache in 
systemic inflammation. Moreover, IL-6 receptor antagonist 
(tocilizumab) is a drug inducing clinical remission in giant-cell 
arteritis, a disease with headache as a prominent symptom [51].

TNF is an endogenous pyrogen and cytokine, playing an 
important role in early immune response to SARS-CoV-2 in-
fection [18]. Moreover, it has been speculated for decades that 
it is a headache facilitator [52]. Four-hour TNF infusion has 
been associated with headache occurring in 65% of subjects 
[53]. Several studies have indicated that TNF may play a role in 
migraine pathogenesis [54]. It has also been shown to provoke 
the sensitisation of meningeal nociceptors [55]. Moreover, 
out of other cytokines analysed in one study, TNF has been 
most consistently associated with headache in aneurysmal 
subarachnoid haemorrhage [56].

As described above, time seems to be of great importance 
in the development of COVID-19-related headache. Since 
headache occurs early in the disease course, it is in this peri-
od that we should look for initiating factors. When analyses 
involve patients in later stages of the disease, then associations 
between inflammatory factors and headache are hard to find. 
For example, one highly comprehensive study found little 
association between a wide panel of cytokines and chemokines 
and headache [57]. The only factor associated with headache 
was, after adjustments, the level of IL-10. This cytokine is an 
important anti-inflammatory molecule targeted at the mod-
erating effect of, among others, type I IFNs and TNF [58]. 
Higher levels of IL-10 may then support the hypothesis that 
IFNs and TNF play an important role in headache at early 
stages of the disease, and more IL-10 is secreted in later stages 
to alleviate this effect.

The above-described molecules form only a small fraction 
of innate immune response. Some elements have not been 
discussed due to little evidence allowing for their inclusion in 
this rationale (e.g. prostaglandins, galectins, innate immune 
cells including mast cells). However, other particles have been 
also implicated in early response to COVID-19 and associated 
headache. One study showed that headache in COVID-19 is 
associated with higher levels of NLR family pyrin domain 
containing 3 (NLRP3) inflammasome, and the high mobility 
group box 1 protein (HMGB1) [59]. The latter has been shown 
to be involved in trigeminal ganglion neuropathic pain [60]. 
Moreover, inflammasome is activated by SARS-CoV-2, which 
in turn leads to the activation of IL-1β and IL-18. IL-1β ac-
tivates and sensitises the trigeminal ganglion [61, 62], while 
IL-18 may play some role in migraine [63].

In light of the described rationale, it might be surprising 
that COVID-19-related headache is associated with lower 
C-reactive protein levels [64, 65] (although these levels were 
still higher than in healthy subjects). However, it must be 
remembered that C-reactive protein is an unspecific in-
flammation marker rising moderately in the early phases of 
infection, and reaching higher levels when severe disease or 
complications develop. Therefore, it has probably a weaker 
association with processes causing headache.

Currently it is hardly possible to touch upon headache 
without mentioning CGRP. This molecule not only plays a piv-
otal role in primary headache disorders, but also participates 
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in immune responses. TNF contributes to CGRP release 
in the trigeminal ganglion [66], while both TNF and IL-1β 
increase CGRP expression [67]. Moreover, nociceptive sen-
sitisation caused by IL-6 is blocked by olcegepant, a CGRP 
antagonist [68]. It seems therefore justified to assume that 
COVID-19-related inflammation may lead to CGRP release 
at different levels of the trigeminal system [30]. However, in 
COVID-19 patients, serum levels of CGRP are lower than  
in healthy controls [69], while another study found no dif-
ference in CGRP levels between subjects with and without 
headache [59]. Finally, anti-CGRP treatments seem to have 
no effect on COVID-19 course [70].

Clinical features of COVID-19-related 
headache

Any headache should be classified according to the Inter-
national Classification of Headache Disorders — 3 (ICHD-3). 
As regards COVID-19, it is currently diagnosed as “acute head-
ache attributed to systemic viral infection” (Tab. 2). In some 
disorders, headache phenotype can contribute to identifying 
the pathological mechanism underlying this symptom (e.g. 
thunderclap headache in subarachnoid haemorrhage, postural 
headache in spontaneous intracranial hypotension [71]). In 
COVID-19 headache has however little specificity — the 
majority of patients appear to present symptoms similar to 
TTH 43–68% [8, 10, 72–75]. That is, pain is mostly bilateral, 
pressing and dull, and mild to moderate in intensity. This 
phenotype has been associated with lower C-reactive protein 
levels than headache with more migraine features (i.e. unilat-
eral, pulsating, moderate to severe) [75]. Migraine phenotype 
is present in 25–50% of subjects [8, 73, 76], and is associated 
with a more severe COVID-19 course [14]. There is also some 
evidence that migraine-like headache in COVID-19 is associat-
ed with pre-existing migraine [74]. Accompanying autonomic 

symptoms (i.e. nausea or vomiting and hypersensitivity to light 
and sound) are not rare [64]. Non-nasal cranial autonomic 
symptoms (i.e. conjunctival injection and/or lacrimation, 
eyelid oedema, forehead and facial sweating, miosis and/or 
ptosis) occur rarely in the course of this infection. Naturally, 
nasal congestion and rhinorrhoea [8] are highly prevalent due 
to sinonasal inflammation. In conclusion, COVID-19-related 
headache may indicate a more effective and balanced immune 
response, especially when it resembles TTH.

Headache in COVID-19 has been associated with a better 
prognosis expressed as lower mortality and shorter disease 
duration [37, 65], although larger observations still await 
publication [77]. In COVID-19 α and λ IFNs peak early in 
a mild to moderate disease course. This might indicate that 
subjects able to develop this prompt immune response are 
apparently protected against severe COVID-19. This hy-
pothesis is supported by experiments with rodents, where 
the administration of interferon I protected against cytokine 
storm [78]. However, it must be remembered that headache 
in COVID-19 is merely a symptom, and may herald serious 
complications e.g. cerebral venous sinus thrombosis [79] 
or encephalitis [80]. These conditions might be difficult to 
recognise during COVID-19 if headache is initially the only 
complaint. There is also some evidence that COVID-19 may 
lead to unusual changes in pre-existing migraine, e.g. there 
have been several case-reports of patients developing pro-
longed or unusual migraine aura during COVID-19 [81]. 
Consequently, caution is recommended, especially because 
many patients with COVID-19 complain of apparent ‘red 
flags’, e.g. mentioning “positional headache” or “worst head-
ache ever” [10]. Moreover, comorbidities may have a strongly 
negative influence on prognosis [82].

Apart from a few case series, there is very little data 
on interventions effective in reducing COVID-19-related 
headache. In one study, paracetamol 1g iv or greater occipital 
nerve blocks were effective in reducing pain [47]. In another 
publication, indomethacin (50mg twice daily) was effective 
in a small case series of patients with acute (n = 21) and 
persistent COVID-19-related headache (n = 8) [83]. No data 
on preventive therapies is available, although several particles 
with potential simultaneously in viral infections and primary 
headache disorders have been proposed (e.g. low vitamin 
D3 levels are associated with more frequent headaches [74] 
and COVID-19 risk [75]).

Post-COVID-19 syndrome and headache

Headache is a common symptom of post-COVID-19 syn-
drome included in some diagnostic guidelines [84]. A study 
assessing data from 905 subjects with COVID-19-related 
headache showed that 31.1% of patients still had headache 
after one month, 16.8% after three months, and 16% after nine 
months [2]. These numbers were slightly lower in a recent 
meta-analysis: 47.1% during the acute phase, 10.6% at three 

Table 2. Diagnostic criteria of acute headache attributed to systemic viral 
infection

A. Headache of any duration (but lasting < 3 months) fulfilling criterion C

B. Both of the following:

1. systemic viral infection has been diagnosed

2. no evidence of meningitic or encephalitic involvement

C. Evidence of causation demonstrated by at least two of the following:

1. headache has developed in temporal relation to onset of 
systemic viral infection

2. headache has significantly worsened in parallel with worsening 
of systemic viral infection

3. headache has significantly improved or resolved in parallel with 
improvement in, or resolution of, systemic viral infection

4. headache has one or both of following characteristics:

a. diffuse pain

b. moderate or severe intensity

D. Not better accounted for by another ICHD-3 diagnosis
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months and 8.4% after six months [85]. Nevertheless, both 
of these studies indicate that headache in post-COVID-19  
syndrome has a poor prognosis. Approximately equal groups 
in post-COVID-19 headache have migraine and TTH phe-
notype-headache [2].

The pathomechanism of post-COVD-19 headache is 
unknown, although there is some evidence that patients with 
post-COVID may have increased IL-6 levels [86, 87]. Another 
study indicated elevated levels of IFN-α, TNF, G-CSF, IL-17A, 
IL-6, IL-1β, while IL-13 and CXCL-10 were decreased [88]. 
Although no clear association with pre-existing primary 
headache disorder has been confirmed, several scenarios are 
possible: 

 — persistent secondary headache due to COVID-19 
 — first manifestation of previous asymptomatic primary 

headache disorder 
 — exacerbation of previous low-grade primary headache 

disorder.

Post-vaccination headache

The COVID-19 pandemic has provided further data in the 
area of headache related to innate immune response, albeit 
not directly related to infection, but rather to vaccination. 
A recent meta-analysis including 83 studies of 1.57 million 
subjects revealed that headache occurs after the first and sec-
ond COVID-19-vaccination dose in 22% and 29% of patients 
respectively [4]. Patterns similar to COVID-19 can be observed 
in cases of vaccine-related headache. Headache occurs early 
after vaccination [89–92] and is often accompanied by other 
systemic symptoms (i.e. myalgia and fever [91]). Similarly to 
COVID-19, headache after vaccination has more often a TTH 
phenotype, with migraine-like features present in one third 
of cases. Post-vaccination headache is not vaccine- or even 
pathogen-specific, i.e. it is present after vector and mRNA 
vaccinations. Moreover, immunisation against other types of 
viruses (e.g. influenza [93], human papillomavirus [94], Ebola 
[95]) is also commonly associated with headache. The risk of 
headache after COVID-19 vaccination is doubled by a pre- 
-existing primary headache disorder (e.g. migraine) [91, 92]. 

The above observations may point to a common mecha-
nism of vaccination- and COVID-19-related headache, with 
the only common denominator being immune response. One 
study showed that SARS-CoV-2 spike protein, a major antigen 
in vaccines, may act as a PAMP and cause neuroinflammation 
[17]. However, pain should be less prevalent after a second 
vaccine dose, if this mechanism is responsible for headache 
(when humoral immunity leads to faster spike protein elim-
ination). Another study showed that after the first dose of 
SARS-CoV-2 mRNA vaccine (BNT162b2) a prompt release  
of IFN-γ, CXCL-10, IL-6, IL-8, IL-15, CCL-3, CCL-4 is ob-
served, with some changes lasting for more than one week [96]. 
After the second dose IFN-γ, CXCL-10, IL-15 and IL-6 were 
elevated to levels several times higher than after the first dose. 

This pattern is mirrored by headache, which usually occurs 
within the first 24 hours, remits after a couple of days after 
the first vaccination [89–92], and is more prevalent after the 
second dose [4]. As a side issue, it should be mentioned that 
CCL-2 and IL-3 were not significantly increased throughout 
the study, TNF concentrations were only slightly higher, and 
type I and III IFNs were not analysed at all in this study [96].

It is important to remember that headache might be 
a primary complaint in patients presenting with vaccination 
complications. Probably the most widely cited source of 
post-vaccination headache is vector-vaccine-induced immune 
thrombotic thrombocytopenia (VITT), [4] although even less 
prevalent complications have been described (e.g. Tolosa-Hunt 
syndrome [97]). The major difference between headache in 
VITT and after vaccination is time. Post-vaccination headache 
occurs in the first 24 hours, while in VITT it occurs after 
several (7–10) days [98]. 

Conclusions and future research

Probably the most important question about COVID-19- 
-related headache remains unanswered. It seems that the pan-
demic has run its primary course and will recur as a milder dis-
ease. Reduction in interest from the scientific community will 
follow. Meanwhile, the mechanism of headache in COVID-19  
and the common pathways for other viral infections and 
primary headache disorders remain unknown. 

Our rationale indicates that elements of innate immune 
response can trigger headache, peak early in COVID-19 along-
side headache, and play an important role in protecting against 
severe disease course, allowing for a better prognosis in subjects 
with COVID-19-related headache. Consequently, it seems likely 
that interactions between innate immune response (especially 
in the sinonasal area) and trigeminal system play a crucial role 
in the aetiopathogenesis of headache secondary to COVID-19. 

Moreover, if innate immune reaction to SARS-CoV-2 can 
trigger headache, then probably similar pathways are activated 
in other clinical situations (e.g. infections, immunisation, 
immunomodulatory treatment, autoimmune disorders). Fu-
ture research should look for evidence of causality between 
particular immune response factors and headache. If found, 
such a correlation could have important clinical consequences 
for diagnosis and treatment strategies in a wide variety of 
disorders with prominent immune response.
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