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ABSTRACT

Multiple sclerosis (MS) is by far the most common central nervous system inflammatory demyelinating disease (CNS-IDD). It 
is diagnosed according to detailed criteria based on clinical definitions, magnetic resonance imaging (MRI) and cerebrospinal 
fluid findings. However, in rare instances, atypical syndromes associated with CNS demyelination, such as unusual MRI findings 
or poor response to standard treatment, may eventually necessitate a CNS biopsy with neuropathological examination. 

Pathology remains the gold standard in the differentiation of atypical CNS-IDDs, the recognition of which is essential for estab-
lishing the correct prognosis and optimal therapy. However, one must bear in mind that between different CNS-IDDs there are 
still overlapping features, even in the pathology.

In this review, we compare and highlight contrasts within a spectrum of CNS-IDDs from the neuropathological perspective. We 
characterise pathological hallmarks of active vs. chronic multiple sclerosis. Also, we define differences in the pathology of MS, 
acute disseminated encephalomyelitis (ADEM), aquaporin 4-IgG positive (AQP4-IgG+) neuromyelitis optica spectrum disorder 
(NMOsd), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). 

Detailed description of the particular CNS-IDD pathology is crucial on an individual patient level (when clinically justified in 
atypical cases) but also from a broader perspective i.e. to advance our understanding of the complex disease mechanisms. 
Recent immunobiological and pathological discoveries have led to the description of novel inflammatory CNS disorders that 
were previously classified as rare MS variants, such as NMOsd and MOGAD. Multiple sclerosis remains an umbrella diagnosis, as 
there is profound heterogeneity between patients. Advances in neuropathology research are likely to disentangle and define 
further CNS-IDDs that used to be categorised as multiple sclerosis. 
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Introduction

Although rarely required in multiple sclerosis (MS) 
patients, neuropathological studies have been crucial in 
progressing the understanding, differentiation, and therapy 
of central nervous system inflammatory demyelinating dis-
eases (CNS-IDDs) [1]. MS is an umbrella diagnosis applied 
to patients with clinical symptoms suggestive of inflammatory 

demyelinating disease AND typical magnetic resonance 
imaging (MRI) and cerebrospinal fluid (CSF) findings, all of 
which allow it to be established that the pathological process 
is indeed disseminated in time and space [2, 3]. 

The profound heterogeneity of MS in its clinical course, 
radiographic presentation and response to therapy has led to 
the distinction of several MS variants (i.e. Marburg variant or 
Baló concentric sclerosis alongside tumefactive demyelination) 
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and neuromyelitis optica spectrum disorders (NMOsd), with 
the latter turning out to be an antibody-mediated astrocyto-
pathy [4], and not in fact a primarily demyelinating disorder. 
Although anti-aquaporin 4 antibodies (AQP4-IgG, NMO-
IgG), directed against an astrocytic water channel protein 
have been found to be pathogenic in NMOsd and became 
a useful biomarker, subsequently a subset of seronegative 
patients has emerged. 

Some of these patients were found to be positive for 
antibodies against myelin oligodendrocyte glycoprotein 
(anti-MOG IgG) [5, 6]. In fact, anti-MOG antibodies are not 
specific for NMOsd but have also been identified in up to 64% 
of paediatric patients with acute disseminated encephalomy-
elopathy (ADEM) [7]. Despite several clinical, radiographic, 
and pathogenic overlaps with MS and NMOsd, MOG anti-
body-associated disease (MOGAD) has been distinguished as 
a separate diagnosis [8, 9], presenting with a different frequency 
among adults and children as optic neuritis, transverse mye-
litis, brainstem demyelination or ADEM, the latter much less 
common in adults (< 8%) [10]. Importantly, it has been shown 
that patients initially diagnosed as having ADEM, estimated 
to be 8.5% of children [11, 12] and 35% of adults [13] within 
a one year observation, were eventually given the diagnosis of 

MS. The apparent clinical and radiological overlap between 
different CNS-IDDs is verified and challenged by the patho-
logical studies which demonstrate clear discriminating features 
between the overlapping phenotypes.

The pathological heterogeneity is further underlined by the 
fact that four different immunopatterns of early active plaques 
have been described among MS patients [14] (see Fig. 1). These 
immunopatterns have been shown to differentially respond 
to acute treatment, with relapses in patients with humoral pa-
thology-dependent type II lesions responding better to plasma 
exchange than other immunopatterns [15]. On the other hand, 
relapse-related disability seems higher in patients with immuno-
pattern III lesions [16]. However, in the long term, patients with 
biopsy-established immunopathology appear to have similar 
outcomes, regardless of their immunopattern [16]. The heteroge-
neity of the active disease, with differences in immunopathology, 
clinical (relapse severity and frequency, relapse-related residual 
disability) and radiographic (MRI-obtained total lesion count, 
individual and total lesion volume, spinal cord involvement, 
measures of global and localized CNS atrophy) features, are in 
opposition to a relatively unified progressive MS phenotype, 
which suggests convergence into a final common pathway related 
to the chronically denuded axon [16].

Figure 1. Pathological features in different immunopatterns of MS. IP-I shows typical macrophages enriched (A, CD68) lesions with 
equal loss of major myelin protein (B, PLP) and minor myelin protein components (C and D, MAG and MOG), no complement deposition 
(E). IP-II (F–J) MS shows similar findings, but is characterised by complement activation products within macrophages in active demyeli-
nating lesion (J). IP-III MS (K–O) shows preferential MAG loss (M) compared to MOG (N). No complement activation products are present 
in macrophages in IP-III lesion (O). Scale bars: 200 µm (A-E), 20 µm (F–J), and 100 µm (K–O)
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In this review, we present the current perspective on 
pathological hallmarks of active and chronic MS and patho-
logical differences between MS, ADEM, AQP4-IgG positive 
NMOsd, and MOGAD.

Multiple sclerosis

Multiple sclerosis is an inflammatory CNS disease char-
acterised pathologically by macrophage-enriched demyeli-
nating white matter lesions with relative axonal sparing and 
reactive glial scar formation [17–19]. Importantly, the pattern 
of MS-related demyelination is confluent, as opposed to the 
perivascular (and sometimes coalescing) pattern seen in 
ADEM or AQP4-IgG positive NMOsd. 

The classic neuropathological features of active mac-
rophage-driven demyelination with relative axon sparing 
and astrogliosis, as described by Charcot, relate to the active 
MS lesion which is equivalent to a clinical relapse. However, 
MS lesion formation and repair are part of a dynamic pro-
cess. While most plaques in early MS are marked by active 
inflammatory demyelination, inactive plaques predominate 
in chronic MS [20]. MS plaques are categorised based on 
the density of the inflammatory infiltrate and the degree of 
microglia activation into active vs. inactive plaques, the latter 
containing few if any activated microglia cells. Active lesions 
also contain major histocompatibility complex (MHC) class 
I restricted CD8 T lymphocytes, which dominate over CD4 T 
cells [21], with only sparse B lymphocytes and plasma cells 
within the infiltrate [22]. 

Active plaques can be further staged into early active 
vs. late active plaques based on the composition of myelin 
debris identified within macrophages. Specifically, in the 
early stages of lesion formation, all myelin components can 
be identified within myelin-laden macrophages, including 
minor myelin proteins such as myelin oligodendrocyte gly-
coprotein (MOG), myelin-associated glycoprotein (MAG), 
and 2’,3’-cyclic nucleotide 3’-phosphodiesterase (CNP) [23]. 
The plaques containing these proteins within macrophages, 
which can be seen on pathology with immunohistochemistry 
staining, are defined as early active (EA) lesions. On the other 
hand, in late active lesions, minor myelin proteins are already 
fully degraded (and hence absent) and only major myelin 
proteins can be identified, namely myelin basic protein 
(MBP) and proteolipid protein (PLP) [23]. When all myelin 
proteins are fully degraded, macrophages will remain positive 
for lipids and Periodic Acid-Schiff (PAS). 

Early active plaques have been further categorised ac-
cording to the effector mechanism of demyelination, which 
is patient-specific (but differs between patients), into four 
basic immunopatterns: immunopattern I, which is associated 
with T lymphocyte and macrophage infiltration; antibody/ 
/complement-associated immunopattern II (the most com-
monly encountered EA lesions in biopsy specimens); immu-
nopattern III characterised by preferential MAG loss; and 

immunopattern IV (found in fewer than 1% of patients), which 
is defined by primary oligodendrocyte degeneration [14, 24]. 

Although frequent in early relapsing-remitting MS and 
active secondary progressive MS, active plaques are much 
less frequent in primary progressive and secondary progres-
sive MS without clinical attacks. They are rare in established 
MS; with less than 13% probability a lesion will be active at 
20 years of disease duration [20]. In fact, as shown in a large 
sample of MS autopsies the distribution of active and inactive 
plaques reaches an equilibrium at 47 years of age [20]. At the 
same age (i.e. 18-20 years of disease duration) the number 
of smouldering lesions starts to peak. Smouldering lesions, 
also known as slowly expanding lesions, are only seen in the 
progressive forms of MS and are characterised by a rim of 
MBP- or PLP-positive macrophages/microglia surrounding 
an inactive centre that is depleted of macrophages [22, 25]. 
Smouldering lesions are considered one of the correlates of 
MS-related progression [26, 27]. 

With regards to myelin repair, or remyelination, this is 
common and relatively effective in early MS [28] but often 
incomplete in progressive MS. Remyelinated axons can be 
distinguished by thinner myelin sheaths and consequently 
a paler staining intensity [25]. The plaques where remyelina-
tion is extensive are called shadow plaques, and are present in 
both relapsing and progressive MS [25].

In recent years, beyond focal white matter pathology, 
cortical lesions have also emerged as key MS characteristics. 
Cortical demyelination begins early and accumulates with 
disease duration [29, 30]. In early MS, it typically occurs on 
a background of inflammation [30, 31] but it is most prominent 
in the progressive disease [32]. Three types of cortical plaques 
have been distinguished, namely leukocortical (type 1), intra-
cortical (type 2), and subpial (type 3) [33–35]. Importantly, 
their distribution reflects correlates of irreversible disability 
and cognitive impairment [33, 36].

Cortical lesion load is one of the strongest predictors of 
MS-related disability [37, 38]. Yet on the other hand, cortical 
lesion load is low in MS patients with clinically ‘benign’ dis-
ease [39]. Interestingly, extensive cortical demyelination can 
be present in the near absence of focal white matter lesions 
[32, 40].

Another important neuropathological feature of MS is 
meningeal inflammation, which is associated with cortical 
demyelination, microglial activation and neuritic damage [41, 
42]. Clinically, meningeal inflammation has been associated 
with a more severe course of primary progressive MS, shorter 
disease duration, and younger age at death [43]. Moreover, me-
ningeal follicular structures have been reported in secondary 
progressive MS [44]. These lymphoid structures have been 
reported to be immunoreactive for EBV [45].

As for axonal damage in MS, signs of acute axonal injury, 
namely axonal spheroids and end bulbs, are visible mainly 
within active plaques but also, to a smaller extent, within 
normal-appearing white matter and chronic lesions [46]. In 
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active lesions, axonal damage is probably the by-stander result 
of the toxic inflammatory milieu [47]. As for chronic axonal 
damage, the pathomechanism is even more complex, including 
lack of trophic support from myelin and oligodendrocytes 
and mitochondrial failure [46]. The mean reduction of axon 
density in cerebral plaques is estimated between 59–64% [48]. 
A significant (57-68%) reduction in the number of axons/ 
/mm2 is also seen in spinal cord lesions [49]. Global axonal loss 
is a major correlate of end-point disability in MS patients [50].

Acute disseminated  
encephalomyelitis

Acute disseminated encephalomyelitis (ADEM) is a typi-
cally monophasic immune-mediated primarily demyelinating 
CNS disorder that usually affects children and follows an 
infection or vaccination. It is distinguished clinically by a first 
multifocal neurological episode with suspected demyelinating 
aetiology associated with encephalopathy and no clinical or 
radiological dissemination in time, usually with a favourable 
prognosis [51]. While several MRI features are suggestive of 
ADEM rather than MS, e.g. large, poorly demarcated lesions, 
frequent basal ganglia involvement, and lack of T1 hypoin-
tensities, often simultaneous gadolinium enhancement and 
CSF analysis can be of help (ADEM patients are typically 
negative for CSF-specific oligoclonal bands); ADEM remains 
a diagnosis of exclusion [52]. From the neuropathological 
perspective, ADEM is characterised by perivenous demyeli-
nation (sometimes coalescent), as opposed to an MS-related 
confluent pattern [53]. The inflammatory infiltrate consists 
mainly of macrophages, T and B lymphocytes. Granulocytes 
and plasma cells can also be identified, albeit only occasionally 
[54]. Interestingly, all three types of cortical lesion described in 
MS have also been identified in ADEM cases, namely subpial, 
intracortical and leukocortical. A unique pattern of cortical 
microglial activation and aggregation that is not associated 
with cortical demyelination has been described in patients 
with ADEM [54]. One could speculate that these diffuse 
microglial aggregates are a substrate of ADEM-associated 
encephalopathy. 

It is of the utmost importance to reliably distinguish 
ADEM from MS, because the latter necessitates a prompt 
disease-modifying treatment strategy in order to improve 
patient prognosis [55]. However, the criteria used to distin-
guish relapsing ADEM from MS can be vague. Moreover, 
the currently used ADEM criteria are in fact only applica-
ble to children and have never been adjusted for the adult 
population [11]. Pathology (if available) remains the gold 
standard for ADEM diagnosis. However, cases of concurrent 
perivenous and confluent demyelination in the same patient 
have been described [54], highlighting the possibility that, in 
rare cases, even a neuropathological study may not defini-
tively distinguish ADEM from MS.

Aquaporin 4-antibody positive 
neuromyelitis optica spectrum  

disorders

Our understanding regarding the pathology of NMOsd 
has been revolutionised by the discovery of anti-aquaporin-4  
antibodies [4], or NMO-IgG. Previously considered an MS 
variant with poor prognosis and selective involvement of 
optic nerves and spinal cord, it is now seen as a separate 
autoimmune inflammatory CNS disease, with detailed di-
agnostic criteria [56] and novel targeted therapies [57]. As 
for NMOsd pathology, some features are shared with MS, 
including macrophage infiltration, microglial activation and 
the presence of myelin-laden macrophages which suggest 
active demyelination. Although complement deposition 
is present in both NMO and early active IP-II lesions, in 
MS C9neo antigen is present within macrophages but not 
around blood vessels (on glia limitans), as seen in NMOsd 
cases [58]. MAG loss, which characterises early active IP-III 
MS lesions, can also be observed in some NMOsd lesions. 
Other features unique for NMO lesions include eosinophils 
and neutrophils infiltration, prominent perivascular immune 
complexes and complement deposition (often in a rosette 
pattern), vascular hyalinisation and prominent necrosis 
[59]. Given that AQP-4 is a water channel localised mainly 
on astrocytes, astrocytic pathology is prominent in NMOsd 
lesions and includes astrocyte dystrophy, disintegration of 
astrocyte foot processes, apoptosis and gliosis [60]. However, 
the observation of aquaporin 4 internalisation with loss of 
astrocyte surface immunoreactivity suggests antigenic modu-
lation which reflects a functional outcome of IgG binding. 
Therefore, antigen-bearing cells can be compromised but not 
destroyed [60]. This suggests that AQP4 loss is not entirely 
due to astrocyte loss, but may also be a result of NMO-IgG 
initiated modulation of AQP4, the latter being potentially 
reversible.

Interestingly the relapsing course is the most common 
form of NMOsd, and secondary progression is unlikely, 
whereas the opposite is true of multiple sclerosis patients [61, 
62]. This aligns with the fact that cortical demyelination and 
smouldering lesions, thought to be correlates of MS-related 
progression, are absent in NMOsd biopsies [63, 64].

Meningeal B-cell follicles, which are typically observed 
in progressive forms of MS [42], have not been identified in 
NMOsd, and meningeal infiltration differs between MS and 
NMOsd (Guo et al., unpublished data).

Myelin oligodendrocyte glycoprotein 
antibody-associated disease

MOG antibody-associated disease (MOGAD) has emerged 
as a subset of the AQP4-IgG negative NMOsd population, 
which is defined serologically by the presence of serum 
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anti-MOG antibodies and clinically by younger age at onset, 
less frequent relapses, more restricted symptomatology (i.e. 
only optic neuritis episodes), frequent disc oedema, spinal 
cord lesions localising in the conus medullaris, better recov-
ery from relapses, and an excellent response to steroids (and 
sometimes even steroid dependence) [6, 65–67]. As opposed 
to AQP4, which is present in numerous tissues beyond the 
CNS, MOG is expressed exclusively in the CNS, localising on 
the outermost surface of the myelin sheath and the plasma 
membrane of mature oligodendrocytes (but not oligodendro-
cyte progenitor cells, OPCs [68]). A minor myelin component, 
it is known to be highly immunogenic [69]. MOG-IgG is 
not limited to NMOsd phenotype, but has also been associ-
ated with ADEM, paediatric MS, isolated optic neuritis and 
a single episode of transverse myelitis [70]. However, specific 
diagnostic criteria for MOG-IgG-Associated Disorders have 
been proposed [8, 9]. 

Neuropathologically, MOGAD is characterised by the 
overlap of MS and ADEM features and is different from 
AQP4-IgG seropositive NMOsd [64]. The coexistence of 
perivenous (as in ADEM) and confluent (as in MS) demy-
elination, complement deposition and overrepresentation 
of intracortical plaques are typically seen in MOGAD 
biopsy and post mortem material. In contrast to AQP4-
IgG seropositive NMOsd, AQP4 is preserved, dystrophic 
astrocytes are absent, and there is a variable degree of 
oligodendrocyte and axonal destruction [64]. No slowly 
expanding/smouldering lesions have been identified in 
MOGAD cases [64]. Interestingly, our group did not ob-
serve preferential MOG loss in a study of two autopsies 
and 22 biopsies of MOGAD patients, which would suggest 
endocytic internalisation following antigen modulation by 
MOG-IgG [64]. This in turn suggests a different pathogen-
ic mechanism than in AQP4-IgG positive NMOsd cases. 
However, Takai et al. did report MOG-dominant myelin 
loss in 60 out of 167 demyelinating lesions they studied 
in brain biopsies from 11 MOGAD patients [71]. Their 
biopsy patient population was older (median age 29 years 
as opposed to 10 in our joint Mayo Clinic/University of 
Vienna biopsy cohort) and included half the number of 
cases, with only two ADEM cases, whereas in our biopsy 
cohort, ADEM-like presentation accounted for 61% of 
cases. Takai et al. also found no isolated optic neuritis 
or transverse myelitis cases. Given the relatively recent 
description of MOGAD as a separate disease entity, more 
neuropathological studies are likely to emerge soon.

Summary, clinical implications and 
concluding remarks

Neuropathological studies are used for the purpose of estab-
lishing an accurate diagnosis for a patient with suspected CNS-
IDD. However, in a broader perspective, they are also crucial for 
the understanding of disease mechanisms and for advancing the 
diagnostic and therapeutic landscape in MS and related disorders.

A summary of the pathological hallmarks of different 
inflammatory demyelinating diseases of the CNS is set out in 
Table 1 and Figure 2.

Undoubtedly, pathology is acquired in a minority of 
patients with multiple sclerosis, and usually for the reason 
of diagnostic uncertainty. Therefore, data obtained for this 
somehow atypical population needs to be interpreted and 
extrapolated with caution. 

Reassuringly, our group and others have consistently 
shown that despite the atypical and/or aggressive onset of the 
disease, the subsequent course, acquired disability and prog-
nosis do not differ from the classic MS population [72, 73], and 
in fact can even be slightly milder, as we have demonstrated 
with regards to ambulation, EDSS and progression conver-
sion in a predominantly tumefactive MS cohort compared to 
a community-based MS patient cohort [74]. 

Although pathology can be extremely helpful in differen-
tiating MS from other mimicking causes in patients with 
atypical presentation, MS remains a clinical diagnosis. This 
is exemplified by CNS demyelination reported secondarily in 
patients using TNF-alpha inhibitors [75, 76]. We have recently 
published a neuropathological study on a case of a rheuma-
toid arthritis patient treated with infliximab who developed 
CNS demyelination that was clinically and radiologically 
inconsistent with an MS diagnosis, yet was pathologically 
indistinguishable from multiple sclerosis [77].

Research in immunobiology and neuropathology of CNS- 
-IDD is facilitated by the meticulous documentation of clinical 
records, biological samples and pathological data obtained 
from patients with atypical demyelinating syndromes. Careful 
analysis of this data, especially when long-term follow-ups are 
available, and adhering to the recommended procedures for 
tissue sampling and preservation [1] is likely to unravel and 
define further CNS-IDDs that have been previously catego-
rised as multiple sclerosis. 

Conflicts of interest: None.
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Table 1. Comparison of multiple sclerosis, aquaporin 4-IgG positive NMOsd, MOG antibody-associated disease, and acute disseminated encephalomyelitis pathology

MS AQP4-IgG+ NMOsd MOGAD ADEM

Target Myelin/OG Astrocyte/AQP4+ cells Myelin/OG Myelin/OG

Pattern of DM Confluent Perivascular and confluent non-DM 
lesions

Perivenular, coalescent, 
confluent

Perivenular, coalescent,

Immuno-
pathology

I: (no complement) 
II: Complement on myelin/OG subset 

III: MAG loss subset 

Vasculocentric complement deposition 
with some MAG loss overlap

Complement deposition Fibrinous exudates 
around vessels

Inflammation CD8 > CD4 T-cells 
B-cells

Granulocytes, eosinophils 
few T-cells

CD4 > CD8 T-cells, 
granulocytes

T-cells and B-cells, 
occasional plasma cells 

and granulocytes

AQP4 expression Increased Decreased/lost Increased Increased 

Astrocyte Hypertrophic gliosis (Creutzfeldt-
-Peters cells present)

Wide spectrum of astrocytopathopathies 
(hypertrophic, dystrophic, lysis) 
Creutzfeldt-Peters cells absent

Preserved/hypertrophic 
(Creutzfeldt-Peters cells 

present)

Preserved/hypertrophic

Axonal 
pathology

Acute/confluent denuded axons Variable (from preserved to massive 
axonal destruction)

Limited (spheroids) Axons relatively 
preserved but features 
of acute injury present

Smouldering 
plaques 

Present Absent Absent Absent

Cortical 
demyelination

Subpial/leukocortical >  
> intracortical

Absent Intracortical > subpial, 
leukocortical

Intracortical, subpial, 
leukocortical

DM — demyelination; MS — multiple sclerosis; OG — oligodendrocytes

Figure 2. Typical neuropathological features associated with specific inflammatory demyelinating diseases of central nervous system. Multiple scle-
rosis (A–D): Typical MS presents as macrophage enriched CNS lesions (A) with demyelination involving both white matter (B) and cortex (C). Panel 
(D) shows hypertrophic astrogliosis (indicated by arrows) and Creutzfeldt-Peters cell with multiple micronuclei (inset). Acute disseminated encep-
halomyelitis (E and F): (E) White matter lesion of ADEM shows pallor stains on H/E with focal haemorrhage; F. LFB/PAS stain shows characteristic 
perivascular myelin loss (indicated by arrows) which has fused into more extensive confluent lesions. MOG antibody-associated disorder (G) shows 
similar pathology to ADEM with both confluent and focal perivascular demyelination (arrows). Neuromyelitis optica (H and I): NMO lesions show 
wide spectrum of astrocytopathy; H. Severe spinal cord lesion in NMO shows lysis of astrocyte highlighted by GFAP immunohistochemistry; I. AQP4 
immunoreactivity shows even more extensive loss in consecutive section. Scale bars: 200 μm (A–C, E–I). 20 μm (D)
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