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ABSTRACT
Multiple sclerosis (MS) is a heterogenous condition with differences between patients regarding disease presentation, imaging 
features, disease activity, prognosis and treatment responses. Following the discovery of new biomarkers, the concept of MS has 
evolved, with syndromes previously considered to be its variants now recognised as separate entities, including aquaporin-4 
(AQP4)-antibody (Ab) neuromyelits optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG)-Ab 
disease (MOGAD). In line with their distinct pathology, the newly emerging conditions have imaging characteristics which 
are dissimilar to typical MS. Progress in reclassifying such demyelinating CNS conditions has highlighted the challenge in 
meaningful categorisation of atypical presentations at the borders of MS, such as antibody-negative neuromyelitis optica-like 
syndromes, tumefactive demyelinating lesions, or Balo’s concentric sclerosis. 

In this review, we discuss the increasing role of imaging in distinguishing MS from non-MS CNS inflammatory/demyelinating conditions 
and defining undetermined borderline cases. This progress relies both on better characterisation of imaging features of these conditions on 
conventional imaging in terms of their appearance and location, as well as on the implementation of novel image acquisition and/or post-
-processing techniques allowing for more in-depth lesion assessment, including the presence of a central vein sign or paramagnetic rim. 

Key words: multiple sclerosis, neuromyelits optica

(Neurol Neurochir Pol 2022; 56 (3): 210–219)

Introduction

Multiple sclerosis (MS) is a chronic demyelinating inflam-
matory disease of the central nervous system (CNS) primarily 
driven by autoimmune response of T cells directed against 
myelin antigens [1]. More recently, the role of B cells has 
been emphasised as evidenced by the presence of oligoclonal 
bands in the CSF and the beneficial effect of B cell-depleting 
therapies, including ocrelizumab, on disease activity [1]. 

There is no single diagnostic biomarker in MS, and the diag - 
nosis relies on finding the evidence of disease dissemination, 
in the absence of a better explanation, which is encapsulated 
in the revised diagnostic criteria [2]. Brain magnetic resonance 

imaging (MRI) plays a major role in the diagnosis as it can 
show both dissemination in time — when contrast-enhancing 
lesions co-exist with non-contrast-enhancing lesions on the 
same scan or when new lesions emerge on a follow-up scan 
— and in space — when the scan shows multiple lesions in 
different regions of the brain and/or spinal cord. The presence 
of unmatched oligoclonal bands in the CSF suggestive of 
intrathecal antibody production also indicates dissemination 
of the disease process in time [2]. 

This classical approach to the diagnosis of MS has its 
limitations, because conditions recently recognised as sep-
arate from MS such as AQP4-antibody (AQP4-Ab) neuro-
myelits optica spectrum disorders (NMOSD) and myelin 
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oligodendrocyte glycoprotein (MOG)-Ab disease (MOGAD) 
may have overlapping clinical and radiological presentation 
and disease course with that of MS and may fulfill the diag-
nostic criteria for MS. All three conditions typically present 
with relapses of optic neuritis, transverse myelitis and brain/
brainstem attacks which are associated with inflammatory 
lesions on brain and spinal cord imaging [3, 4]. 

Serum testing for antibodies against AQP4 and MOG is the 
gold standard for the diagnosis of NMOSD and of MOGAD, 
respectively [5, 6]. Antibody assays are, however, not widely 
available, and results usually take a long time to arrive and 
might be inconclusive or inaccurate, in particular if fixed cell-
-based assays or ELISA are used [7, 8]. CSF testing can also be 
helpful but has its limitations: oligoclonal bands unmatched 
for serum are a hallmark of MS but can be found in up to 30% 
of NMOSD and MOGAD patients [9, 10]. 

Taking all these caveats into account, imaging is often the 
main source of information for disease diagnosis. Not only are 
the imaging features crucial for the decision as to whether to 
test for antibodies, but also to the interpretation of the results. 
If assays are not available, or come back negative or positive 
using less accurate assays, then imaging becomes the main 
diagnostic tool. 

Longitudinally extensive transverse 
myelitis (LETM) is strong argument against 

diagnosis of MS 

Acute severe transverse myelitis alongside bilateral optic 
neuritis has been recognised as the classical clinical feature 
of neuromyelitis optica since its first description by Devic [9]. 
The clinical severity of transverse myelitis in NMO matches 
longitudinal extension of spinal cord lesions (termed LETM) 
which span at least three segments of the spinal cord and are 
associated with cord swelling and hypointensity in the central 
part of the cord seen on T1-weighted images [11]. LETM has 
been found to be such a common (91%) and characteristic 
feature of NMO that it was incorporated into its first criteria, 
published before AQP4 antibody’s discovery in 1999 [11]. 
LETM sets NMO apart from MS where transverse myelitis is 
accompanied by short-segment, lateral lesions in the spinal 
cord. LETM is extremely rare in MS but can be mimicked by 
LETM-like appearance of the coalescing short segment lesions 
[12]. To avoid misinterpretation, careful scrutiny of the scan 
should include both sagittal and axial images. It should be 
noted that while LETM is the predominant form of myelitis 
in both AQP4-Ab NMOSD and MOGAD, short-segment 
myelitis can be seen in both conditions, and does not exclude 
the consideration of antibody testing [13, 14]. 

LETM occurs both in AQP4-Ab NMOSD and MOGAD, 
and despite some differences none of the LETM features appear 
to be exclusive for any of the two [14–16]. Importantly, similar 
to AQP4-Ab NMOSD, LETM lesion in MOGAD can extend 
into the brainstem and involve the dorsal medulla. Conus 

involvement occurs in around 40% of patients and is more 
frequent than in AQP4-Ab NMOSD (c.12%) [14, 17]. The 
most important clue might come from brain imaging showing 
acute disseminated encephalomyelitis (ADEM)-like lesions, 
typical of MOGAD and seen in up to 44% of patients with 
MOG-Ab associated myelitis [14, 18]. Contrast enhancement 
is frequent in AQP4-Ab LETM lesions and can take the form 
of ring-enhancement [19]. Contrast enhancement has also 
been reported in MOG-Ab LETM, but with varied frequency 
between studies [14, 17].

LETM lesions are also seen in monophasic and relapsing 
idiopathic antibody-negative transverse myelitis and in double 
antibody negative NMOSD. In a retrospective study including 
a small number of seronegative NMO patients (n = 5), sero-
negative LETM had similar features to AQP4-Ab-associated 
LETM [15]. In a recent study classifying double antibody- 
-negative MS/NMOSD overlap patients in an unsupervised 
way based on clinical and MRI measures, 2 / 4 identified 
subgroups included patients with a previous history of LETM 
[20]. One of these subgroups included ‘classic NMO-like’ 
patients with bilateral optic neuritis and no evidence of brain 
damage. The other group is known as ‘NMO-like with brain 
involvement’ as patients had significant cerebral white and grey 
matter damage and a history of NMO-like brain lesions. This 
dichotomy within antibody-negative LETM patients suggests 
that double-negative NMOSD might be heterogenous and 
contain distinct pathological subgroups [20]. Importantly, 
long spinal cord lesions are also seen outside of NMOSD [21]. 
For example, in spinal cord sarcoidosis they are characterised 
by dorsal cord subpial enhancement extending over at least 
two vertebral segments and persistent enhancement present 
for 2+ months [22]. If dorsal-subpial enhancement co-occurs 
with central canal enhancement, the lesion often resembles 
a trident head on axial sequences. This has been termed the 
‘trident sign’ [23].

Importance of defining appearance of 
imaging lesions for diagnostic purposes

Early attempts at incorporating imaging features into the 
MS diagnostic criteria focused on predicting the development 
of MS in those with clinically isolated syndrome, rather than 
on excluding its mimics [24, 25]. Paty’s criteria included at 
least four lesions (of any type) or at least three if one of them 
was periventricular [25]. These criteria were highly sensitive 
but lacked specificity. Barkhof et al. [26] studied in more detail 
cut-off points for the number of particular types of lesions 
needed to fulfill the criteria, and proposed highly sensitive 
and specific criteria. 

One of the challenges when establishing any set of criteria 
is the selection of features. For example, periventricular lesions 
which are ovoid, perpendicular to the ventricles, and extend 
into the adjacent white matter have long been considered 
highly typical of MS (and termed ‘Dawson fingers’ as reflecting 
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the perivenular distribution of MS lesions on histopathology 
first described by Dawson), but were rarely studied as a sep-
arate diagnostic criterion [27]. Matthews et al. [28] proposed 
a more objective and less arbitrary approach to criteria selec-
tion when they compared brain lesion probability maps in 
50 MS and 44 AQP4-Ab NMOSD patients. This comparison 
of distribution and morphology of lesions led to the identifi-
cation of one out of three criteria in favour of MS diagnosis 
vs. NMOSD, consisting of: at least one lesion adjacent to the 
body of the lateral ventricle and in the inferior temporal lobe; 
or the presence of a curved juxtacortical lesion; or a Dawson 
finger-type lesion [28]. These criteria could distinguish MS 
from AQP4-Ab NMOSD with very high sensitivity of 92% 
and very high specificity of 96% in the original cohort. A fur-
ther study validated their performance in an independent 
multicentre European cohort and, importantly, showed their 
high specificity in distinguishing MS from MOGAD [29]. The 
criteria, sometimes also incorporating longitudinally extensive 
transverse myelitis (LETM) on spinal cord imaging, have been 
further validated against NMOSD and MOGAD in Asian and 
Latin American cohorts [30–32]. 

Fluffy infratentorial lesions and other 
lesions typical of MOGAD

Following the objective brain lesion mapping comparison 
of MS and AQP4-Ab NMOSD [28], a later study also included 
MOGAD patients to study relationships between the three 
conditions [33]. This time an alternative approach was used, 
where patients were scored on a set of 29 pre-selected features 
to build models discriminating between the three conditions 
and identify the best discriminators [33]. MS clearly differed 
from both NMOSD and MOGAD as evidenced by predictive 
discriminant models. Interestingly, AQP4-Ab vs. MOGAD 
model was non-predictive, which pointed to overlapping 
brain appearances of antibody-mediated conditions despite 
their different cellular targets. Fluffy infratentorial lesions 
were the most promising discriminator, and were present in 
57% of MOGAD compared to 27% of AQP4-Ab NMOSD 
patients. These lesions were rare in MS (12%). Fluffy infraten-
torial lesions in MOGAD patients were more often located 
in cerebellar peduncles (26% vs. 9% AQP4-Ab NMOSD). 
A recent study also reported that a cerebellar peduncle lesion 
increases the likelihood of MOGAD vs. NMOSD [34]. Other 
brain imaging lesions which have been reported to be more 
frequent in MOGAD vs. AQP4-Ab NMOSD include cortical 
grey/juxtacortical white matter lesions [35].

Brain lesions are an important aspect of childhood MOG-
AD, where the disease often presents as ADEM [10]. Lesions 
are large, poorly demarcated and bilateral, typically affecting 
white and grey matter including thalamus and basal ganglia, 
but can also be seen in the brainstem and spinal cord. Unlike 
MS, periventricular lesions are typically absent. The appear-
ances are similar to those seen in MOG-Ab-negative ADEM. 

In one study including a total of 33 children, patients with 
MOG-Ab-associated ADEM had the involvement of more 
anatomical areas including the spinal cord characterised by 
LETM, and more often had a complete resolution of lesions 
compared to MOG-Ab-negative cases [36]. 

A different type of brain involvement has been described in 
a unique presentation of MOGAD characterised by unilateral 
cortical encephalitis with seizures [37]. Lesions are associated 
with mild swelling and are limited to the cortex. They are best 
seen on FLAIR-weighted images, but might partially enhance 
on T1-weighted imaging after contrast [37]. Of interest, sei-
zures have also been described in MOGAD in patients with 
normal brain MRI [38]. Similarly, on rare occasions (c. 10%) 
transverse myelitis can be MRI-negative in MOGAD, in par-
ticular in the early stages of acute myelitis [39].

AQP4-Ab NMOSD-associated brain lesions

Brain lesions associated with AQP4-Ab NMOSD have 
been well characterised and include diencephalic lesions ad-
jacent to the 3rd ventricle, dorsal medulla lesions (including 
area postrema), peripendymal lesions surrounding the lateral 
ventricles, extensive hemispheric lesions, and long corticospi-
nal tract lesions [40]. Such lesions are extremely rare in MS, 
and where they occur argue strongly against a diagnosis of 
MS. It has been proposed that the location and configuration 
of NMOSD lesions could be explained in the main by high 
expression of AQP4 in the affected regions. Area postrema is 
a good example, as it has a predilection for imaging lesions 
and is known to be rich in AQP4 [41]. However, as NMOSD-
-like lesions might occur in MOGAD [33, 42], alternative 
explanations for their formation are possible, e.g. linked with 
the point of entry of antibodies to the CNS. It is a matter of 
debate whether AQP4-Ab NMOSD has any unique imaging 
features which never occur in MOGAD. 

Optic nerve imaging

While brain imaging appearances do not unequivocally 
discriminate between AQP4-Ab NMOSD and MOGAD, optic 
nerve features might be more distinctive in those who present 
with optic neuritis. In particular, perineural enhancement 
defined as contrast enhancement of the optic nerve sheath 
(sometimes also of the surrounding soft tissue) has been 
reported to be a specific feature of MOG-Ab-associated optic 
neuritis occurring in around half of patients and may be the 
cause of MOGAD optic neuritis-associated headache [43–45]. 
Both AQP4-Ab NMOSD and MOGAD are characterised by 
longitudinally extensive (involving more than 50% of the 
length of the nerve) optic nerve lesions. In MOGAD, long 
lesions have a tendency to affect the anterior segment of the 
nerve and co-occur with optic nerve swelling on fundoscopy, 
while AQP4-Ab optic neuritis has a predilection for posterior 
segments and the optic chiasm [40, 44]. Optic chiasm lesions 
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also occur in MOGAD where they are usually a part of the 
longitudinally extensive involvement of the whole nerve start-
ing in the orbit [46]. Longitudinally extensive lesions of the 
optic nerve are rare in MS [47, 48]. It should also be noted that 
both NMOSD and MOGAD have a tendency for bilateral optic 
nerve involvement, which would be very unusual in MS [3].

Atypical demyelination with an unclear link 
to MS

Recognition of AQP4-Ab NMOSD and MOGAD as new 
disease entities having a separate non-MS-like radiological 
appearances has sparked interest in other types of atypical 
demyelination with an unclear link to MS, in particular tu-
mefactive demyelinating lesions (TDLs) and Balo’s concentric 
sclerosis [49, 50]. 

TDLs are radiologically defined as lesions greater than 2 cm 
in diameter and are typically seen on T1- and T2-weighted  
imaging (as hypointense and hyperintense, respectively) [51, 
52]. They are usually associated with minimal surrounding 
oedema and a T2-hypointense rim (Fig. 1D). Contrast en-
hancement is seen in most cases and can be ring-like (closed 
or open ring), homogenous or heterogenous/punctiform. 
TDLs at onset presentation can occur in isolation or in the 
context of MS, NMOSD, MOGAD or ADEM (Fig. 2). The 
occurrence of TDLs in MS does not seem to indicate a highly 
active relapsing course of the disease or predict a poor long-
-term prognosis [53]. In a recent study including 75 patients 
with pathologically confirmed MS following a brain biopsy 
(in 62 the biopsied lesion size was at least 2 cm), long-term 
clinical and imaging outcomes were comparable to those with 
typical MS [54]. When TDLs occur in isolation, differential 
diagnosis is challenging and includes abcesses, tumours and 
progressive multifocal leukoencephalopathy. Serial imaging 
might be of help as diffusion-weighted imaging can show 
evolving restricted diffusion at the lesion edge (Fig. 1E). Other-
wise, workup might include brain biopsy. In a retrospective 
study including 16 patients with isolated tumefactive lesion at 
onset after a median follow-up of more than 5 years, 10 patients 
remained monophasic at final follow-up, one had recurrence 
of TDL, and five received the diagnosis of MS [55]. AQP4- and 
MOG-Abs have been reported in patients with isolated TDL 
and both antibodies should be tested in such cases [56,57]. 
If patients with relapsing TDL are double antibody-negative 
and do not fulfill the MS criteria, the classification and treat-
ment are unclear but most clinicians would probably opt for  
B cell-depleting therapies. 

TDLs can sometimes present as Balo’s concentric sclerosis. 
Typical features include alternating and concentric bands 
within white matter lesions identified on either T1-, T2-, or 
diffusion-weighted MRI and showing gadolinium enhance-
ment. Alternating bands are characterised by at least two 
T2 hyperintense bands separated by one hypointense band. The 
number of T2 hyperintense bands can increase on subsequent 

Figure 1. A–C. A 43-year old male had two attacks of LETM four months 
apart and subsequently developed progressive motor disability;  
A. T2-weighted sagittal image performed in acute phase shows cer-
vical LETM extending to dorsal medulla; B. Lesion has accompanying 
contrast enhancement on post-gadolinium T1-weighted image; C. On 
axial images, T2 hyperintensity is mainly restricted to grey matter (up-
per image) but gadolinium enhancement is more pronounced in an-
terior and posterior parts of cord. Patient repeatedly tested negative 
for both anti-AQP4 and anti-MOG serum antibodies; D–E. A 64-year 
old female with history of right optic neuritis presented with right- 
-sided trigeminal neuralgia associated with fluffy infratentorial lesions 
in brainstem and right middle cerebral peduncle (arrows). Although 
presentation and imaging were highly suggestive of MOGAD, patient 
tested negative for MOG-Ab; F–H. An adult female presented with 
acute onset of left hemiparesis and speech disturbances; F. FLAIR 
imaging showed two large tumefactive lesions surrounded by mild 
oedema located in hemispheric white matter. Lesions showed open 
ring enhancement on post-contrast images (G) and restricted diffu-
sion at lesion edge (H). A two-segment cervical spinal cord lesion was 
also present (not shown). Patient tested negative for both AQP4- and 
MOG-Abs, and following brain biopsy was diagnosed with ADEM (clini-
cal case courtesy of Dr Beata Błażejewska-Hyżorek, 2nd Department 
of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland). 
Abs — antibodies; AQP4 — aquaporin-4; LETM — longitudinally exten-
sive transverse myelitis; MOG — myelin oligodendrocyte glycoprotein; 
MOGAD —MOG-Ab disease

scans performed within one month [50]. Evolution of signal 
abnormalities at the lesion edge is particularly interesting 
with diffusion restriction seen before contrast enhancement, 
which in turn is followed by the rim of T2 hyperintensity [58]. 
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A Balo’s concentric sclerosis lesion can be isolated and mono-
phasic but usually occurs in conjunction with MS-like lesions 
or precedes the occurrence of more typical MS-like lesions. 
Diagnosis is thus clearer than in TDLs due to the character-
istic MRI appearance and correct interpretation preventing 
unnecessary brain biopsy in solitary lesions.

New silent lesions outside of relapse

In both AQP4-Ab NMOSD and MOGAD, silent brain le-
sions during acute attacks are well recognised. For example, in an 
early study, 44% of patients with MOGAD who presented with 
neuromyelitis optica phenotype (simultaneous optic neuritis 
and transverse myelitis) were found to have silent ADEM-like 
lesions on brain MRI [18]. Silent lesions occurring outside of 
relapse are however unusual in antibody-mediated conditions. 
This holds true for both spinal cord and brain imaging and is 
very different from MS, where silent asymptomatic lesions on 
follow-up scans are a typical finding and reflect ongoing disease 
activity. In five different studies including a total of 82 MOGAD 
patients scanned at different follow-up points, not a single si-
lent spinal cord lesion was observed in any of the patients [17, 
18, 35, 59, 60]. In a paediatric study including a prospective 
incident cohort of 74 MOG-Ab children with serial brain MRI 
scans over a median of five years from presentation, silent brain 

lesions were identified infrequently (14% of patients) and most 
commonly within the first months after presentation [61]. 

In line with these observations, and in contrast to MS, se-
rial routine MRI in antibody-mediated conditions is generally 
not considered useful for disease activity monitoring [62]. 

Progress in structural imaging helps 
differential diagnosis in neuroimmunology 

clinics

Recent progress in structural imaging incorporating new 
pulse sequences and post-processing techniques provides 
deeper understanding of the underlying tissue damage. This 
allows better characterisation of various aspects of MS lesions 
such as subpial or intracortical demyelination, lesion forma-
tion around the veins, and chronic activity at the lesion edge. 

Cortical lesions

Cortical lesions represent foci of cortical demyelination 
and are a characteristic pathological feature of MS [63]. They 
can be small and purely intracortical, involve both grey and 
white matter or extend within the cortex from the surface 
downwards [64]. Cortical lesions are clinically relevant as 
they correlate better with cognitive impairment in MS than 
the more typical MRI white matter lesions [65]. They also have 
predictive value for disability progression [66]. 

Reliable detection of cortical lesions is challenging in 
clinical practice as cortical lesions are difficult to visualise 
using routine T2-weighted or FLAIR imaging. This problem 
can be partially overcome by the use of a double inversion 
recovery (DIR) sequence which improves the contrast between 
the lesion and the normal cortex and suppresses the signal 
both from the white matter and the CSF [67]. Phase-sensitive 
inversion recovery (PSIR) is another widely used technique 
for cortical lesion detection (Fig. 3A), allowing for good 
resolution in a shorter acquisition time than DIR [68]. These 
optimised sequences are able to detect up to 25% of cortical 
lesions compared to the golden standard of histopathology 
[69]. Although this percentage might seem low, it is expected 
to correlate well with the total number of cortical lesions in 
an individual patient [69].

Cortical lesions occur in MS, but are rare in AQP4-Ab 
NMOSD [16, 70]. In a recent comparative study, cortical/ 
/juxtacortical lesions were seen in 65% of MS patients and 
in 16% of MOGAD patients, but were absent in AQP4-Ab 
NMOSD [16]. Interestingly, all cortical lesions in MOGAD 
were of the mixed cortical/juxtacortical type, while MS patients 
had both leukocortical and purely cortical lesions [16]. Others 
have also reported cortical/juxtacortical lesions in a minority 
of MOGAD patients [35, 42]. Pathology studies have also 
demonstrated the presence of both intracortical, leukocortical 
and subpial demyelinating lesions in MOGAD, in particular in 
those with ADEM and cortical encephalitis [71, 72]. It should 
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Figure 2. Possible clinical scenarios in patients with TDL on ima-
ging at disease onset. ADEM — acute-disseminated encephalo-
myelitis; MOGAD — myelin oligodendrocyte glycoprotein antibody 
disease; MS — multiple sclerosis; NMOSD — neuromyelitis optica 
spectrum disorders; TDL — tumefactive demyelinating lesions
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be noted that MS-like small and localised cortical lesions are 
different on MRI from oedematous cortical lesions reported 
on FLAIR images in MOG-Ab-associated unilateral cortical 
encephalitis [37]. In a recent prospective study including 
25 patients with overlapping features of NMOSD and MS, 
no cortical lesions were identified using DIR in those who 
received the clinical diagnosis of antibody-negative NMOSD 
in a highly specialised NMO clinic [20].

Leptomeningeal enhancement (LME)

LME is a recently described imaging sign that has been 
proposed to reflect the presence of B cell follicles in the menin-
ges of MS patients [73, 74]. LME is predominantly identified 
in patients with progressive forms of MS. Since B cell follicles 
have been implicated in the formation of cortical demyeli-
nation, LME is expected to co-occur with cortical lesions on 
imaging. This link however has not been completely proven, 
as only a subset of studies has shown a higher frequency of 
cortical lesions in those with LME [75, 76]. It is also worth 
noting that LME has been detected not only in MS patients 
but also in other conditions, for example those of infectious or 
vascular origin. Importantly, LME was retrospectively demon-
strated on post-contrast T1-weighted and FLAIR images as 
a sign of leptomeningeal blood-brain barrier disruption in 
11 AQP4-Ab NMOSD patients on clinical scans performed at 
onset attack or relapse [77]. Such discrepancies call for caution 
in the interpretation of LME.

Central vein sign (CVS)

The presence of a vein in the centre of a demyelinating 
lesion is a pathological hallmark of MS. In recent years, this 
has been able to be visualised using imaging and used to dif-
ferentiate MS from its mimics (Fig. 3B). 

                  The visualisation of a CVS is typically performed 
by combining two images acquired in a different way: one that 
depends on the paramagnetic properties of haemoglobin in 
the vessels (T2*-weighted or susceptibility-weighted imaging), 
and one that removes signal from the CSF and offers good 
contrast from the lesions (FLAIR) [78]. Gadolinium injection 
is sometimes used to enhance the visibility of vessels [79]. 
Around 70–80% of MS lesions are CVS-positive and this 
percentage increases with the proximity of the lesion to the 
lateral ventricles [78]. Lesions with CVS have been identified 
in non-MS inflammatory conditions of the CNS, including 
AQP4-Ab NMOSD [80], MOGAD [81], Susac syndrome 
[82] or CNS inflammatory vasculopathies [79], but represent 
a minority of lesions. Interestingly, CVS was not detected in 
any of nine patients with systemic lupus erythematosus and 
brain involvement [79]. It is worth noting that some lesions 
in MS mimics might contain a vein, but its location is not 
central as reported in AQP4-Ab NMOSD [80]. The presence 
of CVS in MS mimics has led to the introduction of cut-off 

rules for CVS positivity including a ‘40% threshold’ (i.e. at 
least 40% of lesions positive for CVS) [83] and a ‘six lesions 
rule’ (where at least six lesions have veins in the centre) [84]. 
Apart from the diagnosis, CVS can also be potentially useful 
in predicting the occurrence of CIS and ultimate MS diagnosis 

Figure 3. Non-conventional imaging findings in patients with MS 
and radiologically isolated syndrome; A. A cortical lesion seen on 
phase-sensitive inversion recovery sequence (marked with arrow 
on left, enlarged on right lower image) in a male entering secon-
dary progressive MS. Same lesion is also identified on FLAIR (right 
upper image); B. Two MS-typical ovoid, well-demarcated lesions 
perpendicular to lateral ventricles and centred by veins as shown 
on FLAIR* images (marked with arrows and enlarged on right) in 
an adult female with radiologically isolated syndrome; C. Lesion 
with hypointense paramagnetic rim on high-resolution susceptibi-
lity weighted image (marked with arrow and enlarged on right) in 
adult male with MS. MS — multiple sclerosis
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in those with incidental MS-like white matter lesions (known 
as radiologically isolated syndrome). 

Paramagnetic rim sign (PRS)

While central veins can be identified in both acute and 
chronic lesions, the presence of a paramagnetic rim is associated  
with chronic active lesions and corresponds to iron-rich, acti-
vated microglia and macrophages at the lesion edge [85]. PRS is 
therefore a sign of ongoing inflammation occurring behind the 
intact blood-brain barrier, as opposed to acute inflammation 
seen on T1-weighted post-contrast images. The detection of 
PRS requires information from phase images, which show local 
signal distortion at the lesion edge caused by paramagnetic 
iron. It is seen as hypointense on SWI and hyperintense on 
quantitative susceptibility imaging. Interestingly, PRS lesions 
are stable or expand slowly over time [86]. Their presence is 
correlated with worse motor and cognitive disability outcomes 
and higher levels of serum neurofilament light chain, a marker 
of axonal damage [86, 87]. This correlation is particularly 
striking if there are four or more lesions with a rim [86, 87]. 
Recently, an alternative method of detecting rims has been 
proposed which involves the use of a double inversion recovery 
sequence suppressing both CSF and grey matter signal [88]. 
Dark rims detected by this technique showed 97% specificity 
in discriminating RRMS from non-MS white matter lesions 
when at least two rim lesions were present [88].

Reflecting ongoing inflammation, PRS is an excellent can-
didate for a biomarker to predict disease course and monitor 
treatment efficacy, but can also be useful diagnostically (Fig. 3C).  
In a recent international multicentre study including 438 in-
dividuals with various neurological conditions, paramagnetic 
rim lesions were present in 52% of MS patients compared to 7% 
of patients with a non-MS diagnosis, which gave this feature 
a very high specificity of 93% in differentiating MS from non-
MS [89]. In particular, rims were very rarely (less than 5%) 
reported in NMOSD lesions [80, 90]. Similar to CVS, PRS can 
be detected in patients with radiologically isolated syndrome, 
pointing to the existence of chronic active inflammation in this 
asymptomatic group [91]. Their significance in predicting the 
development of clinical disease is however currently unknown, 
and requires further studies. 

Conclusions and future prospects

The differential diagnosis of MS has recently broadened 
to include the newly recognised conditions AQP4-antibody 
NMOSD and MOGAD. More attention has also been paid to 
double antibody-negative patients with overlapping features of 
MS and NMOSD as being diagnostically and therapeutically 
challenging [92]. 

Given the occurrence of borderline, undetermined and 
atypical cases, a relative lack of biomarkers, limited access to 
optimised antibody tests, and the likelihood of false positive 

and false negative results, the role of imaging in differential 
diagnosis is critical. A compelling need for precise imaging 
has been paralleled by the characterisation of new MS imaging  
signs requiring novel types of image acquisition or image 
post-processing methods, which can be applied reliably on 
3T scanners. These features have either high specificity for 
MS (such as paramagnetic rim or cortical lesions) or need 
to be determined by a cut-off level (central vein sign). The 
identification is currently largely visual, but initial attempts at 
automatic detection have been made [93, 94]. Limitations still 
exist; for example, paramagnetic rim and CVS are best assessed 
in well-demarcated lesions whereas larger, confluent and mer-
ging lesions are more challenging. Detection of cortical lesions 
(in particular of the intracortical and subpial types) is still 
suboptimal even with optimised inversion recovery sequences. 

Future progress will focus on increasing detection sensiti-
vity, unifying acquisition and analysis protocols, and identify-
ing new imaging signs and their automated detection. 
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