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ABSTRACT
Introduction. Type 2 diabetes mellitus is a metabolic disease the development of which depends on both environmental and 
genetic factors. The rapid increase in the number of cases observed in recent decades has been associated with the lifestyle 
predominant in the West, characterised by a high-calorie diet rich in carbohydrates and saturated fatty acids as well as little 
physical activity and chronic stress. Another disease with growing morbidity is Alzheimer’s disease, a neurodegenerative disor-
der characterised by progressive dementia. 

State of the art. The results of numerous studies indicate many similarities between these two diseases in terms of their patho-
mechanisms, especially changes in the activity of enzymatic pathways, accumulation of peptides with altered structure, and 
chronic inflammation. Amyloid β, hyperphosphorylated tau protein, amylin, and apolipoprotein J are involved in both patholo-
gies. The reasons for their excessive accumulation are not fully understood, but cellular metabolism disorders associated with 
insulin resistance and diabetes mellitus may play a key role in this process. 

It is highly probable that the changes observed at cellular level, which translate into the clinical state of patients, are caused by 
many abnormalities common to both diseases. 

Clinical implications. The discovery of pathophysiological similarities has resulted in attempts to use antidiabetic drugs in 
Alzheimer’s disease therapy. While animal studies have revealed the potential benefits of oral antidiabetic drugs, studies on 
humans have not provided clear data regarding their effectiveness. Most clinical trial results are promising, but there have also 
been studies that have shown no significant, or even adverse, effects of these drugs on Alzheimer’s disease course.

Future directions. Undoubtedly, further research is needed to better understand the mechanisms by which the medications 
used in diabetes treatment affect the nervous system, and further clinical trials to compare the effectiveness of this therapy in 
patients presenting different clinical conditions at different stages of Alzheimer’s disease.
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Introduction 

Diabetes mellitus is a significant problem for healthcare sys-
tems worldwide due to the rapidly growing number of patients 
diagnosed with this metabolic disease. The estimated number 
of patients in 1995, approximately 135 million, increased to 
c. 171 million in 2000, and 285 million in 2010. Estimates 
indicate that by 2030 the number will reach 578 million, and 
by 2045 c.700 million [1]. The more common type is Type 2 di-
abetes mellitus (T2DM) occurring in 85–95% of cases. This is 
more frequent in middle and older age and strongly associated 

with excessive amounts of adipose tissue, especially the abdom-
inal obesity that induces increased synthesis of compounds, 
including inflammatory mediators, contributing to progressive 
insulin resistance of tissues [2]. Metabolic disorders in T2DM 
are a complex problem. The disease affects the metabolism of 
carbohydrates, lipids and proteins, leading to dysfunction of 
almost all systems and organs of the body including the cardi-
ovascular system, kidneys, eyes, peripheral and central nervous 
system (CNS) [3]. The influence of factors related to T2DM on 
the CNS can be observed as atrophic changes in brain tissue in 
magnetic resonance imaging (MRI) [4]. 
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Diabetes mellitus increases the risk of various types of de-
mentia, including Alzheimer’s disease (AD) and Mild Cognitive 
Impairment (MCI), by promoting the formation of vascular 
lesions and ischaemia, altering metabolic processes of neurons 
and glial cells, and maintaining chronic inflammation. Changes 
in cognitive abilities can appear at any age and be noticeable even 
in children with diabetes [4–6]. Untreated or improperly treated 
diabetes increases the risk of developing dementia and main-
taining the physiological level of glycaemia improves cognitive 
functions, which is why it is so important to restore proper glucose 
metabolism with appropriately selected pharmacotherapy [7, 8].

According to WHO data, various types of dementia affect 
about 50 million people worldwide. AD is the cause of 50–75% 
of dementia cases [7]. There is a rare, early-onset form (age 
under 65) associated with genes of the amyloid precursor 
protein (APP) and presenilin 1 and 2. The most common is the 
sporadic form occurring in the elderly, the causes of which can 
be found in environmental and genetic factors such as carrying 
at least one ε4 allele of the apolipoprotein E gene (ApoE-ε4) 
[9]. The exact pathomechanism of AD is unclear. It is known 
that as a result of excessive accumulation of amyloid beta (Aβ) 
and hyperphosphorylated tau protein as well as damage to 
mitochondria, oxidative stress and many other mechanisms, 
nerve cell death and reduced neurotransmission occur. This 
leads to increasing cognitive impairment, mood disorders, 
general disability and, eventually, death [10]. 

AD is usually diagnosed based on the patient’s medical 
history, neurological examination and behavioural observa-
tions with screening tests, including the commonly used Mini 
Mental State Examination (MMSE) and the Montreal Cognitive 
Assessment (MoCA). These scales are useful for the assessment 
of a patient’s cognitive functions and determining whether 
more detailed evaluation is needed. Recently, in a study which 
included 281 participants aged over 60 (91 without neurocog-
nitive disorders (NCD) and the other 190 diagnosed with mild 
NCD), the Polish version of MoCA 7.2 was confirmed to be 
more sensitive than MMSE in the detection of mild NCD [11]. 
Structural and functional brain imaging also plays an important 
role in AD differential diagnosis. MRI shows atrophy in the 
cerebral cortex, especially in the medial part of the temporal 
lobe and the hippocampus. Functional studies with positron 
emission tomography (PET) detect changes at the early stage 
of the disease. Neuronal damage in areas such as posterior 
cingulate gyrus, precuneus, posterior, lateral and medial tem-
poral-parietal association cortex and lateral frontal cortex, are 
associated with decreased glucose metabolism detected with 
18F-fluorodeoxy-glucose (18F-FDG). Other radiotracers that 
bind to Aβ (florbetapir) or tau protein (flortaucipir) are used 
in the detection of neurotoxic peptides deposits [12]. 

As with T2DM, the number of people with AD will increase 
due to the ageing population. The common feature of both dis-
eases is treatment based on slowing progression of the disease 
without being able to stop it completely. Growing knowledge 
about alterations at the cellular level is revealing more common 

features in terms of enzymatic pathway insufficiency, chronic 
inflammation and metabolic disorders [13]. The association 
between both diseases seems to be particularly strong in the case 
of carriers of the ApoE-ε4 allele in whom reduced glucose me-
tabolism was observed in the posterior cingulate, precuneus and 
lateral parietal cortex [7, 14]. In addition, carriage of this allele in 
diabetic patients is associated with increased Aβ accumulation [7]. 

The many similarities between AD and T2DM are why 
some researchers have dubbed the metabolic disorders under-
lying the development of AD as ‘type 3 diabetes’ [8, 13–16].

Common pathophysiological mechanisms 
underlying T2DM and AD

 Insulin and insulin resistance
The main feature of T2DM is insulin resistance of tissues 

leading to impaired glucose transport into cells, changes in 
intracellular carbohydrates, lipids and protein metabolism, 
a decrease in glycogen synthesis and an increase in hepatic 
gluconeogenesis (Fig. 1). A large amount of adipose tissue 
causes increased production of compounds acting as inflam-
mation mediators, including TNF-α and interleukin-6, as well 
as alterations in the amounts of hormones secreted by adipose 
tissue, such as leptin and adiponectin. These compounds in 
physiological concentrations regulate carbohydrates and li-
pids metabolism and play a significant role in the regulation 
of satiety and hunger. Besides, these hormones influence the 
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Figure 1. Pathophysiological relations between diabetes mellitus 
and alzheimer’s disease
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CNS. Leptin decreases Aβ deposition by inhibiting β-secretase 
and increasing the removal of amyloid deposits from nervous 
tissue, and also reduces the activity of glycogen synthase kinase 
3 (GSK-3β) associated with excessive tau protein phospho-
rylation. Adiponectin, the concentration of which is reduced 
in the case of obesity and diabetes, has the ability to inhibit 
inflammation [17]. Insulin exerts its effect on cells through 
the transmembrane insulin receptor (IR) consisting of two α 
and two β subunits [8]. When an insulin molecule binds to 
one of the α-subunits, autophosphorylation of the β-subunits 
occurs because of its tyrosine kinase activity. This leads to 
activation of other enzymes which are part of the signalling 
pathways. The two most important are the MAPK-related 
pathway (mitogen-activated protein kinase) and the PI3K-
Akt-GSK-3β pathway [18–20]. When the balance of cytokines 
and hormones secretion is disturbed, a detrimental effect on 
the cells of the liver and other tissues begins to lead to impair-
ment of IR and the associated enzymatic signalling pathways 
function [13]. Research shows that disorders related to insulin 
resistance affect not only peripheral tissues but also take place 
in the central nervous system, and insulin resistance is a phe-
nomenon that occurs in the course of AD [21, 22].

Insulin can cross the blood-brain barrier (BBB). This is 
evidenced by its presence in the cerebrospinal fluid where 
insulin concentration increases proportionally to the increase 
in blood concentration [8, 19]. Transport of the hormone 
across the BBB is mediated by receptors on vascular endothe-
lial cells and depends on factors such as inflammation or 
triglyceride concentration related to obesity [23]. Long-term 
hyperinsulinaemia, caused by peripheral insulin resistance, 
also can reduce the transport of insulin across the BBB [24]. 
Additionally, transport of insulin takes place in structures such 
as the hypothalamus where the BBB is more permeable. This is 
confirmed by the increase of insulin activity in these regions 
after peripheral administration [24, 25]. In studies of human 
and rat brains, the presence of insulin mRNA has been detected 
in PCR tests. The presence of C-peptide in human CSF has also 
been observed, which may indicate a possible central synthesis 
of this hormone, but these studies require confirmation [9, 19]. 
It is also not known how much central insulin synthesis could 
contribute to the effect of this hormone on nerve cells [26].

In the CNS, insulin performs many important functions, 
but its role is not as well researched as is its influence on periph-
eral tissues [18]. There are numerous IRs in the hippocampus 
and medial temporal cortex which are related to the role of 
this hormone in memory processes [27]. These receptors are 
located both presynaptically and postsynaptically and their 
number, like the concentration of insulin itself, decreases with 
age [19]. Also, in patients with AD decreased expression of 
IRs within the CNS has been observed [20, 27]. Insulin plays 
a significant role in creating and strengthening new synaptic 
connections including the formation of long-term potentia-
tion (LTP). Therefore, it is an important factor in the learning 
process and impairment of its function in the brain may be 

one reason behind impaired new memory traces formation in 
AD [8, 13]. Additionally, insulin is related to other cognitive 
functions including attention and executive functions. It is also 
one of the factors responsible for regulation of neurotransmit-
ters, such as dopamine, acetylcholine and noradrenaline, by 
influencing secretion and reuptake [13, 18, 19, 28]. It also acts 
like a growth factor because of its involvement in neurogenesis, 
nerve cell development and neuroprotection [7, 25]. Insulin 
acts on the blood vessels through receptors in endothelial cells 
and can increase the production of nitric oxide, which causes 
vasodilatation. In high concentrations, insulin also stimulates 
the production of endothelin-1, which by constricting blood 
vessels increases blood pressure, which adversely affects the 
functioning of many organs including the brain [18]. Insulin 
resistance of cells or hormone deficiency increases the accu-
mulation of Aβ and the hyperphosphorylated tau protein. Tau 
protein stabilises the structure of microtubules in neurons, 
essential for the correct transport of compounds along axons 
to synapses. This function depends on tau phosphorylation, 
as the hyperphosphorylated protein does not bind properly 
with microtubules leading to destabilisation of the cytoskele-
ton and cell death. Tau protein phosphorylation depends on 
the activity of kinases including GSK-3β. The activity of this 
enzyme increases due to disruption of the PI3K/Akt signalling 
pathway when IR stimulation is reduced. High GSK-3β activity 
leads to a significant increase in tau protein phosphorylation, 
its function impairment and formation of the neurofibrillary 
tangles being one of the causes of neuron death in AD [7, 29]. 

Another important element of insulin’s impact on neurons 
is Insulin Degrading Enzyme (IDE) which is also responsible 
for the breakdown of other molecules including glucagon, atrial 
natriuretic peptide, Aβ and amylin [30]. The insulin resist-
ance-induced hyperinsulinaemia in T2DM leads to insufficient 
enzyme activity against amyloid, due to competition between 
its substrates, resulting in excessive accumulation of Aβ and 
damage to nerve cells [31]. Reduction of the Akt activity, caused 
by decreased stimulation of IRs, can also lead to decreased IDE 
activity, with all of the consequences mentioned above [32]. 

On the other hand, it has been observed that Aβ oligomers 
impair intracellular signalling related to IR, leading to a vicious 
cycle of increasing insulin resistance and Aβ accumulation [7, 33].

Amylin
Amylin, also known as islet amyloid polypeptide (IAPP), is 

produced and secreted with insulin by β cells of the pancreatic 
islets [34]. It plays an important regulatory function by reduc-
ing insulin and glucagon secretion, inhibiting gastric emptying 
and suppressing appetite. Increase in amylin production and 
accumulation in pancreatic islets, observed in T2DM, leads 
to β-cell damage and decrease in insulin production [35, 36]. 
Amylin has numerous similarities to Aβ in terms of physic-
ochemical properties such as a similar secondary structure 
and the mechanism of cytotoxicity [2, 34]. Both peptides 
form cell-damaging oligomers and fibrillary deposits which, 
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due to their low solubility, cannot be effectively removed from 
tissues. After penetrating the BBB, amylin can form deposits 
with Aβ and leads to inflammation, intensification of oxidative 
stress, mitochondrial dysfunction and nerve cell death [37, 
38]. Tissue tests of the pancreas and brain of patients with AD 
have shown the presence of Aβ and tau protein in pancreatic 
islet β cells in T2DM patients, and even in some non-diabetic 
patients [39, 40]. Moreover, it has been shown that amylin can 
co-deposit with both Aβ and tau protein in the pancreas and 
CNS. This may indicate that amylin, Aβ and tau are together 
involved in the development of both T2DM and AD [41].

Another compound associated with both AD and T2DM 
is clusterin (apolipoprotein J). This is a protein involved in the 
regulation of processes such as cell apoptosis, inflammation 
and lipid transport [9, 42]. In view of the fact that the concen-
tration of clusterin in blood is elevated in AD, in pre-diabetes 
and diabetes mellitus it is possible that clusterin is not only 
a biomarker but also a factor involved in the course of these 
diseases [43]. One study showed that the concentration of clus-
terin correlates negatively with MMSE scores and correlates 
positively with the concentration of glycosylated haemoglobin 
(HbA1C), the HOMA-IR index and the concentration of 
C-peptide. It is also associated with structural changes in the 
CNS imaging examinations. Clusterin can cross the BBB and 
is also produced by nerve cells in CNS where it influences the 
formation of Aβ deposits and its concentration increases with 
exacerbation of AD and diabetes [43]. Clearly, the role of clus-
terin in the course of both diseases requires further research.

Mitochondrial dysfunction, inflammation and 
oxidative stress

Dysfunction of mitochondria is an important element 
of the pathomechanisms of many diseases including T2DM 
and AD [9, 44, 45]. The problem is caused by disruption of 
enzymatic pathways related to the IR and by Aβ accumula-
tion. These phenomena are further intensified by progressive 
mitochondrial dysfunction which leads to a vicious circle [7]. 
Impaired function of these organelles results in decreased 
synthesis of ATP, the main energy carrier in cells, which 
contributes to cell death [44]. On the other hand, there is 
increased production of reactive oxygen species (ROS) which 
are responsible for alterations in the chemical structure of 
proteins and lipids [7, 46]. Oxidative stress is especially intense 
in T2DM because of reduced antioxidant compounds activity. 
Damage to the mitochondria also leads to disturbances in 
cellular calcium homeostasis, another factor associated with 
cell apoptosis [7, 9, 47].

Chronic inflammation occurs in both AD and T2DM and 
leads to IR dysfunction and insulin resistance of tissues. It 
is associated with increased adipose tissue volume and high 
concentration of lipid compounds in the blood. Fatty acids can 
cross the BBB and are taken up by nerve and glial cells. This 
process is intensified in people with increased body weight 
[48]. Saturated fatty acids bind to TLR 4 receptors (toll-like 

receptor 4) which are associated with the removal of Aβ from 
the extracellular space in the early stages of AD [33]. 

Over time, their activation leads to increased cytokine 
synthesis in astrocytes and inflammatory response in various 
structures of the CNS [49]. Chronic activation of microglial 
cells, associated with the presence of Aβ deposits in the brain 
tissue, leads to exacerbation of neurodegeneration due to con-
tinuous release of inflammatory mediators, including TNF-α 
and Interleukin-6, as well as neurotoxic ROS by activated glial 
cells [50]. However, inflammation is associated not only with 
glial cells. Increased activity of peripheral inflammatory cells 
in AD has been observed in the early stages of the disease, 
and studies indicate an association between the severity of 
inflammation and cognitive impairment [51, 52]. 

High levels of cytokines in the brain lead to a decreased 
response of CNS cells to insulin, similarly as in peripheral 
tissues [37]. Moreover, a high concentration of pro-inflamma-
tory cytokines leads to impaired LTP formation in the dentate 
gyrus, which results in impaired memory functions [16].

Antidiabetic drugs in AD therapy

Metabolic disorders, both systemic and directly related to 
the CNS, lead to progressive loss of nerve cells. This results 
in impaired functioning of extensive neural networks, largely 
associated with a significant reduction of neurotransmission. 
Drugs such as galantamine and rivastigmine inhibit the action 
of acetylcholinesterase and lead to increased acetylcholine 
concentration. Memantine exerts neuroprotective activity by 
NMDA receptor antagonism [13, 53]. However, this type of 
therapy is aimed at eliminating the effects of massive neural 
cell death. On the other hand, attempts to neutralise the causes 
of neurodegeneration with drugs, such as monoclonal Aβ an-
tibodies (solanezumab, aducanumab, crenezumab) or β-secre-
tase inhibitors (verubecestat), have not been effective [54–57]. 

Therefore, it is possible that effective therapy should focus 
on influencing the metabolic genesis of AD associated with 
insulin resistance, inflammation and mitochondrial dysfunc-
tion [13]. Connections between AD and T2DM indicate that 
drugs used in diabetes therapy may point to a new therapeutic 
direction in the fight against dementia.

Insulin
Exogenous insulin is the main agent used in treatment of 

patients with Type 1 Diabetes Mellitus, and in some situations it is 
also administered to patients with T2DM. Due to the consequenc-
es of insulin deficiency for nerve cells, researchers have drawn 
attention to the use of insulin in the treatment of AD and MCI. 

One study, in which 13 non-diabetic AD or MCI patients were 
administered intranasal insulin for 21 days, showed improve-
ments in memory function and attention compared to a placebo 
group [58]. Another study with MCI and AD participants showed 
that short-term (21 days) long-acting insulin administration is 
more effective with higher doses (40 IU compared to 20 IU) 
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[59]. Moreover, long-term insulin administration (4-month 
therapy) resulted in improvement of memory functions 
associated with slowing of atrophic changes in MRI and an 
improvement in the tau-P181/ Aβ42 ratio, but in this case the 
effects were noticeable with the use of short-acting insulin 
[60]. A recent study, in which patients with MCI or AD were 
administered insulin in daily doses of 40 IU for 12 months, 
showed no positive changes in terms of cognitive functions 
[61]. In clinical trials, insulin is administered intranasally and 
transport to CNS along the trigeminal nerve and the olfactory 
tract [62]. This route of administration is intended to minimise 
the risk of systemic side effects, such as hypoglycaemia, that 
could be the result of peripheral injections. 

Moreover, the nasal route of administration is associated 
with more effective delivery of appropriate doses to the CNS 
[62, 63]. Insulin has an effect on tau protein phosphorylation 
and Aβ removal as well as APP metabolism, and by these ef-
fects is probably responsible for a positive impact on the AD 
patients who take it [64]. A positive response to insulin therapy, 
in terms of improving cognitive abilities in these patients, is 
gender-related, with males responding better to higher doses 
(40 IU) than females [65]. The result seems to be influenced 
also by the carriage of the ApoE-ε4 allele. At high insulin doses, 
ApoE-ε4 (-) males achieved a better response to treatment than 
APOE-ε4 (+). The opposite effect was observed in high-dose 
group females. ApoE ε4 (-) females had the worst cognitive 
performance while ApoE ε4 (+) remained stable. ApoE ε4 (+) 
males and females with high insulin dose obtained results 
without significant improvements or decreases [65]. These 
differences could be a result of interaction of ApoE4 with the 
IR, observed in mice, causing the impairment of IR transport 
to the cell membrane by trapping it in endosomes which results 
in decreased insulin response in ApoE-ε4 allele carriers [66].

Metformin
Metformin is the first-line medication in T2DM therapy 

[19]. It is orally administered and has the ability to penetrate to 
the brain tissue across the BBB [67]. The mechanism of its action 
is based on increasing cells sensitivity to insulin. A significantly 
reduced risk of dementia has been reported in metformin users 
[68]. Observations of diabetic patients taking metformin show 
a positive effect of this drug on cognitive functions [64]. Clinical 
trials have confirmed the safety of metformin and its penetration 
into the CNS as well as the association with improvements in 
executive functions, memory and attention in patients with MCI 
and AD [58]. An improvement in the ADAS-Cog (Alzheimer’s 
Disease Assessment Scale-Cognitive subscale) score, which 
measures cognitive abilities, was also observed in patients with 
MCI who were overweight or obese, but not diabetic [69]. An-
other study showed that only participants taking metformin in 
monotherapy achieved significant improvements in cognitive 
function measured by neuropsychological tests [70]. 

However, there is some evidence that metformin may also 
cause cognitive decline, and that prolonged use could even 

increase the risk of AD [71, 72]. Certainly, further studies are 
needed to find the cause of these contradictions in the results 
of previous research and to set optimal doses and durations 
of therapy as well as to identify patients who could achieve 
significant benefits from metformin therapy. The MAP study 
(Metformin in Alzheimer’s Dementia Prevention, ClinicalTri-
als.gov Identifier: NCT04098666) was planned to start in early 
2021. This is a multicentre, randomised, phase II / III study in 
370 male and female participants with early-stage MCI and 
without diabetes. The study will provide new data about the 
role of metformin in inhibiting the progression of dementia.

Liraglutide
Liraglutide is an antidiabetic drug from the group of 

GLP-1 analogues (Glucagon-like peptide-1). In the CNS, re-
ceptors for GLP-1 are located in many areas including temporal 
cortex and hippocampus [73]. Studies have shown enhanced 
learning abilities in mice with high expression of GLP-1 recep-
tors within the hippocampus [74]. Liraglutide has a positive 
effect on CNS glucose transport and metabolism observed with 
FDG-PET in AD patients [75]. In rodents, the drug increased 
neurogenesis, had a neuroprotective effect by reducing the 
amount of Aβ and hyperphosphorylated tau reducing inflamma-
tion, and also had a positive effect on memory by participating 
in LTP formation [76–79]. Studies on a mouse model of AD 
have shown that liraglutide can improve memory functions and 
increase the number of nerve cells in the hippocampus [80].

Most of these effects have been observed in studies on ani-
mal models, therefore clinical trials in large groups of patients 
are necessary to assess the long-term efficacy of liraglutide in 
reducing AD symptoms. The effect of liraglutide on the hu-
man nervous system has already been observed as detected in 
fMRI improvement of connectivity within the Default Mode 
Network (DMN) seen after 12 weeks of liraglutide therapy 
[81]. However, the participants were not diagnosed with de-
mentia and the study found no changes in cognitive function. 
The influence of liraglutide on the course of AD was also the 
subject of the ELAD study (Evaluating the effects of the novel 
GLP-1 analogue Liraglutide in Alzheimer’s Disease) [82]. Its 
purpose was to evaluate changes in cerebral glucose metabo-
lism in AD patients after 12 months of daily administration 
of liraglutide compared to a placebo group. Participants were 
examined by PET of medial temporal lobe, posterior part of 
cingulate cortex and hippocampus. Changes in the condition of 
the study participants were also assessed with scales measuring 
the severity of AD symptoms (Alzheimer’s Disease Assessment 
Scale, Executive Domain Scores of the Neuropsychological Test 
Battery, Clinical Dementia Rating Sum of Boxes, and Alzheim-
er’s Disease Cooperative Study — Activities of Daily Living), 
MRI scans and several other parameters. Unfortunately, during 
the CTAD (Clinical Trials on Alzheimer’s Disease) congress 
in November 2020, it was reported that no changes in glucose 
metabolism were observed in studied regions of the brain 
between the groups administered the drug and the placebo.



423www.journals.viamedica.pl/neurologia_neurochirurgia_polska

Krzysztof Bednarz, Joanna Siuda, AD and T2DM

Dipeptidyl peptidase-4 (DPP-4) inhibitors
DPP-4 inhibitors are a class of medications that act on 

the enzyme responsible for the inactivation of incretin com-
pounds including GLP-1. The inhibition of DPP-4 increases 
GLP-1 level in the blood, thus enhances not only the antidi-
abetic properties of incretins but also those associated with 
a beneficial effect on the CNS.

In animal models of AD, linagliptin, a highly specific and 
potent inhibitor of DPP-4, improved cognitive function, and 
decreased inflammatory markers, tau phosphorylation and Aβ 
aggregation [55, 83]. A study of the neuroprotective properties 
of linagliptin on human nerve cells has shown that the drug 
can protect neurons from the effects of Aβ on mitochondrial 
damage, oxidative stress and impairment of IR signalling. 
Restoring the proper functioning of the IR pathways is caused 
by inhibition of GSK-3β activity, which leads to a reduction 
in tau protein phosphorylation [84]. These effects could be 
useful in AD therapy [55].

Sitagliptin also may improve the condition of patients with 
AD. In one study, 253 elderly patients with T2DM (205 par-
ticipants, including 52 with AD, completed the study) were 
divided into a sitagliptin and a non-drug group [85]. After 
six months of therapy, the group taking the drug not only re-
quired lower doses of insulin (improved glycaemic control in 
diabetes) but also achieved better MMSE scores. Improvement 
was seen in both AD patients and those without dementia.

Thiazolidinediones
This is a class of antidiabetic agents which act by peroxi-

some proliferator-activated receptors (PPAR-γ) and result in 
increased insulin sensitivity of tissues. These drugs not only 
normalise blood glucose level, but also have a positive effect 
on the lipid profile, which is very beneficial for patients with 
T2DM [86]. Pioglitazone, in addition to the above-mentioned 
effects, also has many properties that could be helpful in the 
treatment of AD [87]. This drug has the ability to reduce the 
amount of Aβ deposits. In vitro studies on rat nerve cells have 
shown that pioglitazone can inhibit the phosphorylation of 
the PPAR-γ which regulates the expression of IDE, an enzyme 
responsible for Aβ degradation. PPAR-γ also influences ex-
pression of β-secretase involved in APP processing leading to 
generation of Aβ [88]. The neuroprotective role of pioglitazone 
could also be related to a decrease in TNF-α concentration 
[89]. In mice treated for two weeks with pioglitazone and 
leptin, a positive effect of this form of therapy on spatial mem-
ory and on the amount of Aβ deposits was observed [90]. In 
healthy, elderly patients treated with low doses of pioglitazone 
(0.6 mg) for two weeks, an increase in fMRI-measured hip-
pocampal cells activity was observed during tasks involving 
memory functions [91]. Subsequent studies have shown an 
improvement in cognitive functions after pioglitazone thera-
py in patients with T2DM as well as MCI and AD, as well as 
an increase in cerebral blood flow within the parietal lobe in 
patients with T2DM and AD [92, 93].

Rosiglitazone improves spatial memory tested in the 
Morris water maze and increases removal of Aβ deposits, 
similarly to pioglitazone, by increasing IDE expression in 
diabetic and AD-induced mice [94]. The positive effect of ro-
siglitazone on nerve cells and formation of LTP in the dentate 
gyrus of rodents can also be a consequence of drug-associated 
decreased production of proinflammatory cytokines includ-
ing IL-1β and IFNγ [95]. There are many conflicting results 
from clinical trials regarding the efficacy of rosiglitazone in 
dementia treatment. Some trials indicate that the drug may 
improve cognitive performance in patients with MCI and AD 
[96]. However, later studies do not confirm such an effect [97].

Drugs affecting amylin receptors
Pramlintide is a synthetic amylin analogue for use in the 

treatment of Types 1 and 2 Diabetes Mellitus. It works by slowing 
gastric emptying and reducing glucagon secretion which results 
in improved glycaemic control [38]. It does not show the ability 
to form deposits which in the case of amylin impair physiological 
functions [98]. In studies on animal models, it has been observed 
that administration of amylin or pramlintide reduces the amount 
of Aβ deposits and phosphorylated tau protein, decreases inflam-
mation, and improves cognitive functions [38, 99].

Amylin receptor antagonists act by blocking amylin receptor 
(AMYR). Substances such as AC253 weaken the harmful effects 
of amylin and Aβ oligomers on cells via these receptors [38]. 
Injection of AC253 into the brain ventricles improves spatial 
memory and decreases microglia activity. It has been observed 
that the cyclic form of AC253 has better stability, better acces-
sibility to brain tissue, and higher affinity for AMYR than the 
original form of AC253 [100]. Interestingly, pramlintide and 
AMYR antagonists have a similar effect on the nervous system, 
although their actions on AMYR are in opposite directions [38].

As can be seen, the results of clinical trials do not provide 
a clear answer to the question of therapeutic effectiveness in 
AD. Some conflicting conclusions drawn from these studies 
may be related to the high heterogeneity of participants. Patients 
at different stages of disease can react differently to the same 
treatment. It is also important to stress that we still do not know 
all of the pathophysiological mechanisms of both metabolic and 
neurodegenerative disorders, so we cannot comprehend all the 
variables that could potentially affect the treatment outcomes in 
patients with apparently similar clinical conditions.

Conclusions and future directions

T2DM and AD present major challenges to healthcare 
systems. This challenge will continue to grow due to increases 
in the main risk factors for both diseases observed in the popu-
lation. Despite the differences in clinical presentation, diabetes 
and AD appear to have many similarities in terms of metabolic 
alterations in cells. Some studies show a positive effect of anti-
diabetic drugs in improving cognitive function in people with 
dementia, although some results have been less positive (Tab. 1). 
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Krzysztof Bednarz, Joanna Siuda, AD and T2DM

Clearly, further research and observations are needed. This 
seems to be promising area to investigate, and the amount of 
medications used in the therapy of diabetes that could affect 
the condition of dementia patients is considerable. 

The future will reveal whether the knowledge obtained 
through laboratory studies and clinical trials will result in 
improvements in the condition of patients.
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