First Polish case of CSF1R-related leukoencephalopathy

Zbigniew K. Wszolek
Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, United States

In this issue of the *Polish Journal of Neurology and Neurosurgery*, Żur-Wyrozumska, et al. describes the very first genetically proven case of CSF1R-related leukoencephalopathy in Poland [1]. CSF1R-related leukoencephalopathy (due to mutations in *CSF1R* gene [2]) has been reported in multiple countries around the world (reviewed in Konno et al. [3]); however, despite its worldwide occurrence, CSF1R-related leukoencephalopathy is still an underdiagnosed condition [4].

There are three primary reasons for this diagnostic difficulty. The disease was first recognized by Van Bogaert and Nyssen back in 1936 [5] as a subset of orthochromatic leukodystrophies. They identified it as a pigmentary orthochromatic leukodystrophy (POLD). However, until the discovery of causative *CSF1R* gene mutations in 2011 [2], only a handful of sporadic and familiar POLD cases were published (reviewed in Marotti, et al. [6]). To diagnose it with certainty, either brain biopsy or autopsy had to be done.

The second reason relates to a nomenclature confusion leading to labeling many cases of POLD as hereditary diffuse leukoencephalopathy with spheroids (HDLS). For example, in our own first publication on this subject from 2006, we erroneously named a POLD family as an HDLS family [7]. HDLS was first describe by Axelsson et al in 1984 [8] in a Swedish family with clinical and pathologic similarities to POLD families. Recently, this family was found to carry mutations in AARS2 gene [9]. Even before this genetic discovery, we found that families mislabeled as HDLS were indeed POLD families [10]. Fortunately, these nomenclature difficulties stemming from similarities in clinical and pathologic presentations have been solved by advances in genetic technology. The nomenclature introduced by Konno et al. [3] simplifies it, and now we identify these two separate conditions as CSF1R-related leukoencephalopathy, formerly POLD families, and AARS2-related leukoencephalopathy, formerly HDLS families (Tab. 1).

Unfortunately, there are also published and unpublished cases/families suspected for CSF1R-related leukoencephalopathy or AARS2-related leukoencephalopathy with negative genetic testing for both CSF1R and AARS2 gene mutations [11, and personal observation]. Thus, the concept of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), initially introduced by Marotti et al. [6] and further popularized by Wider et al. [11], is still quite useful. Konno et al. [3] make this distinction even more specific by introducing the term, CSF1R/AARS2-negative ALSP. It is very likely that there are other so far unidentified genes in which mutations are responsible for clinical and pathologic phenotypes currently indistinguishable from those seen in CSF1R-related leukoencephalopathy and AARS2-related leukoencephalopathy.

The third and most important reason is that clinical features of CSF1R-related leukoencephalopathy are very broad, encompassing headaches, seizures, spasticity, rigidity, tremors, psychiatric features, dementia, among others, thus leading to misdiagnosis or delayed diagnosis. Fortunately, a much wider availability of clinical genetic testing at this juncture makes

<table>
<thead>
<tr>
<th>Current nomenclature</th>
<th>Previously used nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF1R-related leukoencephalopathy</td>
<td>POLD cases/families</td>
</tr>
<tr>
<td>AARS2-related leukoencephalopathy</td>
<td>Previously mislabeled HDLS cases/families</td>
</tr>
<tr>
<td>CSF1R/AARS2-negative ALSP</td>
<td>Genetically negative for CSF1R/AARS2 mutation cases/families</td>
</tr>
</tbody>
</table>

Table 1. Current and previously used nomenclature

CSF1R-related leukoencephalopathy — colony stimulating factor 1 receptor-related leukoencephalopathy; *POLD* — pigmented orthochromatic leukodystrophy; *HDLS* — hereditary diffuse leukoencephalopathy with axonal spheroids; *AARS2*-related leukoencephalopathy — alanyl tRNA synthetase-related leukoencephalopathy; *ALSP* — adult-onset leukoencephalopathy with axonal spheroids and pigmented glia

Address for correspondence: Zbigniew K. Wszolek, M.D., Department of Neurology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Florida 32224, U.S.A., e-mail: wszolek.zbigniew@mayo.edu
the diagnosis easier and faster as demonstrated in the case presented by Żur-Wyrożumskas et al. [1]. I congratulate Żur-Wyrożumskas et al. for their diagnostic success and for bringing this case to the attention of the readership of the Polish Journal of Neurology and Neurosurgery. It is very likely that more cases of this disease will be identified in Poland.

At the present time, CSF1R-related leukoencephalopathy is an incurable disease. However, a better understanding of the pathophysiology and molecular biology of this illness makes development of a halting progression therapy a possibility [4]. In fact, hematopoietic stem cell transplantation has already been used to treat several patients (briefly discussed in Tipton, et al. [12]).

References

