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ABSTRACT

Introduction. Genetic forms of Parkinson’s disease (PD) often cluster in different ethnic groups and may present with recogni-
sable unique clinical manifestations. Our aim was to summarise the current state of knowledge regarding the genetic causes of
PD and describe the first Polish patient with SNCA duplication.

Methodology. We searched the electronic database, PubMed, for studies between January 1995 and June 2020 that evaluated
genetics in Polish patients with PD, using the search terms ‘Parkinson’s disease, ‘Polish; ‘genetics, ‘mutations; and ‘variants
Results. In total, 73 publications were included in the review; 11 genes responsible for monogenic forms and 19 risk factor
genes have been analysed in the Polish population. Pathogenic variants were reported in four monogenic genes (LRRK2, PRKN,
PINK1, and SNCA). Eight genes were associated with PD risk in the Polish population (GBA, TFAM, NFE2L2, MMP12, HLA-DRA,
COMT, MAOB, and DBH). Multiplex ligation-dependent probe amplification and Sanger sequencing in PRKN, PINK1, DJ1, LRRK2,
and SNCA revealed SNCA duplication in a 43-year-old Polish patient with PD examined by movement disorder specialists.

Conclusion. Only a limited number of positive results have been reported in genes previously associated with PD in the Polish

population. In the era of personalised medicine, it is important to report on genetic findings in specific populations.
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Introduction

Parkinson’s disease (PD) is one of the most common
neurodegenerative movement disorders worldwide, affecting
people of all ethnic groups [1]. The cardinal motor features
include tremor, rigidity, bradykinesia or akinesia, and postural
instability [2-4]. The pathophysiology of this disease is based
on degeneration of dopaminergic neurons in the substantia
nigra [1]. The characteristic neuropathological feature is the
presence of Lewy bodies composed of aggregated a-synuclein
fibrils. However, many different molecular pathways of dys-
function have been proposed leading to PD [1]. Diagnosis is
usually based on clinical features, but radiological methods
such as dopamine transporter scan and positron emission
tomography are useful diagnostic tools [5, 6].

Multiple factors may be associated with the prevalence of
PD. The frequency of PD and PD subtypes differ in different
ethnic groups. One of the most common observations is that
PD occurs much more frequently in Western populations.
However, there are specific ethnic groups in Asia and Africa
where PD is common [7]. The factors impacting upon disease
prevalence also differ across populations [8, 9]. One difference
in prevalence may be associated with the most important risk
factor for PD: age [10]. Western European ethnic groups are
usually older than subgroups from low-income countries, so
the prevalence of PD is higher. Also, diagnostic and thera-
peutic options are more available in high-income countries
[11, 12]. Furthermore, genetic background is characteristic
for different ethnic groups [10]. Most PD cases are sporadic;
however, about 15% are familial [1]. The genetic cause of PD
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is usually determined in patients with early-onset PD (EOPD)
or in those with a positive family history. Many genetic loci
associated with PD have been identified.

In the Online Mendelian Inheritance in Man (OMIM)
database, 23 genes have been associated with monogenic
forms of PD. The last genome-wide association study (GWAS)
identified more risk genes than the 23 already in the OMIM
database; > 90 risk loci [13].

Poland is ethnically homogenous; the current population
is 38 million and 97.1% declare Polish nationality. However,
in the past, many different minority groups have lived in cur-
rent Polish territories; the borders have changed many times,
resulting in massive migrations of people. These factors have
led to the presence of a unique genetic background in this
country. Poland has a substantial older population and the
occurrence of PD is increasing; approximately 75,000 cases
were reported in 2016 [14].

Many genetic PD loci associated with different pathways have
been studied in the Polish population. Patients have been re-
cruited in five main PD centres in Poland (Supplementary Fig. 1).

The aim of this review was to summarise the genetic stud-
ies that have been conducted in Polish patients with PD. The
electronic database, PubMed, was searched for articles published
between January 1995 and June 2020 relating to studies that
evaluated genetics in Polish patients with PD. Review articles
and meta-analyses were also investigated, and their reference
lists were examined for possible inclusion. Our search was
limited to human studies. We used the following search terms:
‘Parkinson’s disease;, ‘Polish; ‘genetics, ‘mutations, and ‘varjants.
We also describe a new Polish patient with SNCA duplication.
The blood specimen from this patient was collected with institu-
tional review board approval, and informed consent was signed.

Monogenic forms of PD

In monogenic forms of PD, the disease is inherited
dominantly or recessively by mutation of a single gene. The
monogenic forms of PD are responsible for about 30% of
familial forms and 3-5% of sporadic cases [15]. Several genes
from this group have been reported in Polish populations
(Tab. 1) [16-30].

Autosomal recessive PD genes

Many studies of monogenic PD forms in Polish popula-
tions have analysed the three most common autosomal reces-
sive genes reported in EOPD: PRKN, PINK1, and DJ1 [16, 20,
23,24, 31]. Though typical age at onset for PD is above 60 years,
EOPD is defined in different ways. While the European Parkin-
son’s Disease Association defines ‘early’ as age at onset younger
than 40, the American Parkinson’s Disease Association defines
it as age at onset younger than 50. EOPD is reported in about
5% of patients [32]. Summaries of monogenic PD forms are
provided in Table 1 and Figure 1.

PRKN (OMIM 602544, PARK2)

The PRKN gene is associated with the autosomal recessive
form of EOPD [33]. PRKN encodes the protein responsible
for quality control of mitophagy. PRKN is an E3 ubiquitin
ligase that participates in ubiquitin-proteasome interac-
tion. Mutations in PRKN result in degradation of damaged
mitochondria, leading to oxidative stress that can damage
the substantia nigra dopaminergic cells [15]. According to
published data, the mutations in PRKN are present in a large
proportion of EOPD worldwide (up to 18% of patients) [15].
PRKN PD type is characterised by a broad range of clinical
phenotypes, some atypical signs, but generally has early onset,
slower progression, better response to levodopa, and often
more severe drug-induced adverse effects [34]. Sometimes
in the clinical phenotype in carriers, parkinsonism is not
a dominant symptom [31].

Several studies have analysed PRKN in Polish popula-
tions. The first case-control study of 79 patients with EOPD
(onset < 40 years) and 204 controls revealed two patients
with homozygous or compound heterozygous mutation
and one with heterozygous mutation (3.8%) [24]. A study
of 150 patients with EOPD (onset < 45 years) reported
PRKN mutations in 4.7% [23]. Gaweda-Walerych et al. [20]
identified only one heterozygous PRKN deletion; however,
from 344 patients with PD (171 EOPD), Ambroziak et al.
[16] identified five compound heterozygous and three het-
erozygous mutations.

PINKI1 (OMIM 608309, PARK®6)

PINK1 (phosphatase and tensin homolog-induced putative
kinase 1) is another common cause of early-onset parkinson-
ism worldwide. It was first described in a large Italian family
and is the second most commonly identified mutation in
patients with autosomal recessive EOPD [35]. PINK1 protein
strongly cooperates with PRKN in mitochondrial quality
control to identify, label, and remove damaged organelles.
PINKI1 is responsible for ubiquitin phosphorylation at Ser65.
The endogenous Ser65 phosphopeptide is only detected with
PINKI and together cause a decrease in mitochondrial mem-
brane potential [27].

In the first Polish PINKI genetic study, only four patients
with EOPD (2.67%) were carriers of PINKI mutations (one
homozygote) [23]. Another study analysed molecular charac-
teristics of PINKI p.GIn456Ter mutation present in two family
members. This mutation can lead to a decrease in mRNA
and loss of protein function [29, 36]. One molecular study
revealed that previously described PINK]I p.Ile368 Asn cannot
be stabilised on the outer mitochondrial membrane upon
mitochondrial stress, and due to conformational changes in
the active site, does not exert kinase activity towards ubiquitin
[17]. In 748 Polish patients with PD, 0.94% were carriers of
PINK1 p.Gly411Ser mutation, which increased PD risk via
dominant-negative mechanism [27].
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Table 1. Autosomal recessive and autosomal dominant inherited genes analysed in Polish populations

Gene

Autosomal recessive

PRKN

PINK1

DJ1

Autosomal dominant

LRRK2

SNCA

VPS35
DNAJC13
CHCHD2
EIF4G1

HTRA2

Chromosome
localisation

6q26

1p36.12

1p36.23

1212

4q22.1

16911.2
3922.1
7p11.2
3927.1

2p13.1

Results

2 homozygotes/compound heterozygotes and 1 hetero-
zygote

5 compound heterozygotes, 2 heterozygotes
5 compound heterozygotes, 3 heterozygotes
No pathogenic mutations

1 homozygote, 3 heterozygotes

PINKT p.GIn456Ter in both patients

PINKT1 p.lle368Asn in both patients

0.94% p.Gly411Ser PINK1 mutation carriers

No pathogenic mutations

1 G2019S heterozygote
No pathogenic variants

No p.Ala30Pro, p.Glu46Lys, p.Ala53Thr, or multiplication
p.Ala18Thrin 1 patient, p.Ala29Ser in 1 patient

SNCA duplication in patient with EOPD*®
No pathogenic mutations

No pathogenic mutations

No pathogenic mutation

p.Ala502Val in 1 patient (variant of uncertain pathogeni-
city)

No pathogenic mutations

EOPD — early-onset PD; LOPD — late-onset PD; PD — Parkinson'’s disease; “New patient

Study group

79 EOPD, age <40y [24]

150 EOPD, age < 45y [23]

344.PD (171 EOPD, age < 45 y; 173 LOPD) [16]

104 EOPD, age < 50y [20]

150 EOPD, age < 45y [23]

2 family members affected [29]
2 family members affected [17]
748 PD [27]

150 EOPD, age < 45y [23]

100 sporadic PD [22]
174 sporadic PD [18]
629 PD [21]

1 sporadic PD*

346 PD [30]

702 PD (9.23% positive family history) [25]
394 PD [26]

397 PD[19]

101 PD [28]

Figure 1. Main pathways associated with Parkinson’s disease pathophysiology explored in Polish patients. Bold indicates protein encoding
by genes responsible for monogenic forms of PD
ER — endoplasmic reticulum; SV — synaptic vesicle; UPS — ubiquitin-proteasome system
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DJ1 (OMIM 602533, PARK?)

The third most commonly reported EOPD gene is DJI;
however, it is much rarer than PRKN and PINKI. It has been
reported in only a few populations [37]. As with PRKN and
PINK1, DJ1 participates in mitochondrial quality control.
DJ1 increases the expression of two mitochondrial proteins,
UCP4 and UCP5, which decrease mitochondrial membrane
potential, reduce reactive oxygen species production, improve
mitochondrial functions, and protect the neuronal cells [38].
No DJ1 variants have been reported in Polish populations [23].

Autosomal dominant PD genes
Autosomal dominant inherited genes generally cause me-
dium-onset to late-onset parkinsonism or PD, with few or no
additional symptoms. The characteristic feature is incomplete
penetrance of these genes [1].

LRRK2 (OMIM 600907, PARKS)

LRRK2, a large (7,584 bp) gene that encodes leucine-rich
repeat kinase 2, is the most common genetic cause of PD. The
main purpose of this protein remains unknown, but it may in-
volve such cellular functions as neurite outgrowth, cytoskeletal
maintenance, vesicle trafficking, autophagic protein degrada-
tion, and the immune system. The well-established association
with autosomal dominant PD had six variants. The first families
identified with mutation in LRRK2 were in Japan and the US
[39, 40]. The most commonly reported LRRK2 mutation is the
p-Gly2019Ser variant, detected in 30% and 13% of Arab-Berber
and Ashkenazi Jewish familial cases of PD, respectively [41,
42]. It has also been reported in up to 6% of familial and 2% of
sporadic European PD cases [43]; however, in the Polish popu-
lation it is rather rare. A study screening for LRRK2 variants in
a European population only found them in one Polish family
[22], while another study performed in 174 Polish patients did
not reveal any pathogenic variants in this gene [18].

VPS35 (OMIM 601501, PARK17)

VPS§35 (vacuolar protein sorting 35 homolog) is a rare
cause of autosomal dominant PD. The first reported variant,
p-Asp620Asn, was described in Swiss and Austrian families
with late-onset PD [30, 44]. The encoding protein is respon-
sible for transmembrane receptor recycling and protein trans-
port between the endoplasmic reticulum and the trans Golgi
network. The functional protein cooperates with two other
proteins, VPS26 and VPS29, to create a highly conservative,
active complex. All three genes were analysed in 356 Polish
patients with PD, but no variants in VP§26 and VPS29 were
found [45]. The original paper describing a VPS35 variant in
a PD family also included analysis of 346 patients with PD and
did not reveal any other pathogenic variants [30].

SNCA (OMIM 163890, PARK]I)
SNCA mutation was first described in mixed Greco-
-Italian and Greek families [46]. Initially, point mutations were

reported, then multiplications [47]. The clinical phenotype is
consistent with late-onset PD with a positive family history
and is associated with a good response to levodopa treatment.
Occasionally, patients have multiple system atrophy pheno-
type. Fifty-nine families with SNCA duplications have been
described worldwide [48]. In some patients with duplications,
there is no family history and the phenotype is variable.
Patients with triplications usually have earlier age at onset
and more severe clinical symptoms [49]. From 629 Polish
probands, two sporadic cases with variants, p.Alal8Thr and
p-Ala29Ser, were reported, but P.Ala30Pro, p.Glu46Lys, and
p-Ala53Thr and multiplication variants were not discovered
[21]. The clinical phenotype was characterised by a good
response to levodopa, at least at the beginning of the disease.
Post mortem of the patient with p.Ala29Ser mutation revealed
Lewy bodies and neuritis [21].

We recently identified the first Polish patient with SNCA
duplication. A 43-year-old right-handed man was referred to
the neurology clinic. He had been suffering from right hand
tremor for two years. Neurological examination revealed hypo-
mimia, slow speech with dysarthria, bradykinesia, rigidity, and
rest tremor on the right side. He reported anosmia and mild
drooling, but denied any sleep disturbances. Family history was
negative for PD. The patient was diagnosed with PD and initial
levodopa treatment (200 mg daily) was implemented, with good
response. Because of the younger age at onset (< 50), multiplex
ligation-dependent probe amplification in PRKN, PINK1, D]1,
LRRK2, and SNCA and Sanger sequencing in PRKN were per-
formed, revealing a heterozygous SNCA duplication (Fig. 2).

Candidate familial PD genes
Additional genes have been identified as possible causes
of PD. Analyses of autosomal-dominant PD families initially
identified DNAJC13, CHCHD?2, EIF4G1, LRP10, NUSI, and
HTRA? as causative genes; however, data from the case-control
study did not support this observation [50]. These genes were
also analysed in Polish populations (Tab. 1).

DNAJC13 (OMIM 616361, PARK21)

The first variant in this gene was observed in a Dutch-
-German-Russian Mennonite family [51]. DNAJC13 (Dna]
[Hsp40] homolog, subfamily C, member 13 protein) is associ-
ated with recycling and functioning of the lysosomal system. In
apopulation of 702 Polish patients with PD with 9.23% positive
family history, no pathogenic variants were observed [25].

CHCHD2 (OMIM 616710, PARK22)

Heterozygous mutations in CHCHD?2 (coiled-coil-helix-
-coiled-coil-helix domain containing 2) were identified first
in Japanese families with autosomal dominant patterns of
inheritance of PD. The protein is responsible for cytochrome
c oxidase activity by acting as a transcription factor to reg-
ulate cytochrome c oxidase expression, thereby facilitating
mitochondrial electron transport chain flux under low oxygen
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Figure 2. Detection of the SNCA gene duplication in EOPD patient with multiplex ligation-dependent probe amplification (MLPA) method. Reaction
was performed with SALSA MLPA Probe mixes PO51 (MRC Holland). Dosage analysis was performed with GeneMarker Software v.2.7.0 (SoftGe-
netics, LLC). A. Trace comparison — overdosage of all SNCA exons of patient’s sample in relation to control. This panel shows the differences in
peak height between patient’s sample (blue) and control (red) for all SNCA exons. B. Report table — reporting peak ratio for all probes, duplication
of SNCA exons (high ratio > 1.3) are indicated in positions 9,12, 22,24, 26,46 and 50. C. Ratio plot — visualization of the peak ratios. Normal
relative probe signals are between the green lines (0.7-1.3), and are depicted in green. Aberrant relative probe signals are depicted in red

conditions and inhibiting mitochondria-mediated apoptosis.
In a study of 394 Polish patients with PD, there were no definite
pathogenic variants in this gene [26].

EIF4G1 (OMIM 614251, PARK18)

EIF4GI encodes the protein, eIF4F, a component of the
translation initiation complex. In a cohort of 397 Polish
patients with PD, p.Ala502Val variant with unknown patho-
genicity was identified in a single case [19]. However, further
analysis of this locus did not support its pathogenicity [52].

HTRA2 (OMIM 610297, PARK13)

The Htra2 protein, a serine protease located in mitochon-
dria, is responsible for apoptosis, especially during stress
conditions. This protein is also an element of Lewy bodies.
HTRA2 was first reported in German familial and sporadic PD
cases [53], but in 101 Polish patients with PD, no pathogenic
variants were reported [28].

Risk factor genes

In addition to the genes responsible for familial forms of
PD listed in the OMIM database, other genetic loci have been
identified that increase the risk of PD occurrence. Some genes
can be included as both monogenic and risk factor genes. Most
mutations of SNCA are responsible for monogenic forms of PD,
but some polymorphisms (e.g. rs356219) are risk factors for PD
[54]. The last GWAS revealed about 90 genomic regions that can
be associated with PD prevalence [13]. However, risk factor genes
were analysed in a population of less than 1,000 Polish patients
with PD, and so the study was underpowered [55]. While GWAS
PD studies are conducted mainly in European populations, Pol-
ish patients with PD are not often included in the analysis [13].

GBA
GBA encoding glucocerebrosidase is one of the first risk
factors described in PD. The encoding protein is a lysosomal
hydrolase located in the lysosomal membrane and is involved
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in the degradation of a sphingolipid glucocerebroside. Mu-
tations in both alleles are responsible for Gaucher’s disease,
which is characterised by glucocerebroside accumulation
and secondary macrophage accumulation [56]. Heterozygous
carriers of GBA variants had increased risk of PD, and the
highest prevalence of GBA mutations occurred in Ashkenazi
Jewish patients. GBA variants were found in 19% of patients
with PD and 3% of the general population [56]. In the first
study conducted in a Polish population, 4.07% of GBA carri-
ers were reported in a group of 270 non-demented patients
with PD [57]. The second study revealed 16 carriers (11.6%)
among 138 Polish patients with PD [58]. It is known that de-
mentia occurs more often in GBA mutation carriers (60.0%
vs. 19.6%) [58].

APOE

Apolipoprotein E plays a key role in lipid metabolism.
APOE is considered one of the most important genetic risk
factors for Alzheimer’s disease (AD). Three common poly-
morphisms (€2, €3, and e4) and six genotypes (e2/¢€2, €3/e3,
ed/ed, €2/€3, €2/¢4, £3/¢4) have been identified in APOE, and
€3 is the most common allele. The potential impact of these
variants was studied in the context of the occurrence of de-
mentia in PD, rather than disease prevalence [59]. In a Polish
population with PD, Pierzchlinska et al. [60] revealed no
statistically significant correlation between APOE genotypes
and dementia. Another study of 407 Polish patients with PD
found no statistically significant differences in the distribution
of APOE genotypes [60].

Other genetic analysis in Poland

We found other studies of Polish populations that do not fit
into the gene groups described above. They describe mutations
in mitochondrial DNA and genes associated with the immune
system or with dopamine metabolism. All pathways analysed
in Polish populations are set out in Table 2 [57, 58, 60-78].

Mitochondrial dysfunction has been implicated in PD
pathogenesis [79]. The mutations causing mitochondrial dys-
function in nuclear DNA also risk variants in mitochondrial
DNA [70]. Some changes in mitochondrial DNA may modify
risk of PD. Mitochondrial transcription factor A (TFAM) has
been shown to decrease reactive oxygen species [80]. The
intronic variant rs2306604 increased risk of PD in an analy-
sis of 326 patients with PD [67]. Mitochondrial DNA can be
divided into haplogroups, restricted to particular populations
and geographical areas.

Multiple European haplogroups, including J, K, U, and
some super-haplogroups (e.g. UK and JT), have been associ-
ated with a reduced risk of PD [70]. This observation was also
made in a Polish population [81]. Haplogroup ] was associ-
ated with a lower PD risk in men. Subcluster Kla was more
prevalent in healthy controls, while K1c was more frequent
in patients with PD (p = 0.025 and p = 0.011, respectively).

Furthermore, the sublineages (U4 + U5al + K + J1c + J2)
previously proposed to partially uncouple oxidative phos-
phorylation decrease PD risk (p = 0.027) [81]. No impact
of TOMM40 on disease occurrence was observed in 407 PD
patients [71].

Oxidative stress is one of the best-known potential
pathomechanisms of PD. NFE2L2 encoding nuclear factor-
erythroid 2-related factor 2 is responsible for regulation of
the expression of many antioxidant pathway genes in the
so-called phase II response. In a Polish case-control study,
NFE2L2 haplotypes decreased the risk of PD for heterozygous
and homozygous carriers [78]. Matrix metalloproteinases are
huge families of endopeptidases important in inflammation.
One of these families is macrophage metalloelastase (MMP12),
first identified as an elastolytic metalloproteinase secreted by
inflammatory macrophages [82]. In 241 patients with PD,
1s652438 G allele genotypes of MMP12 decreased the risk of
the disease [65].

One of the pathways previously associated with PD and
strictly connected with oxidative stress is the immune system.
In an analysis of the human leukocyte antigen region polymor-
phism HLA-DRA rs3129882 in 343 Polish patients with PD, the
recessive model of GG genotype was observed to be protective
[73]. In another case-control study (341 patients with PD and
315 controls), polymorphisms in IL-10 (-1082G > A and -592C
> A) were not risk factors for sporadic PD [63]. Although
semaphorins are the proteins responsible for regulation of the
immune system and tumour progression, rs7702187 SNP in
SEMAS5A was not a marker of PD risk in 235 Polish patients
with PD [64]. The triggering receptor expressed on myeloid
cells 2 (TREM2) is a member of the innate immune receptor
of the TREM family. It is found on activated macrophages,
immature dendritic cells, osteoclasts and microglia. While
the TREM?2 p.Arg47His (1s75932628) variant has been associ-
ated with increased risk of PD in a Polish study, this variant
was rare in patients with PD and no variants were reported
in controls [74].

A few studies have been conducted on the variants encod-
ing enzymes associated with dopamine metabolism pathway
[61,62,75,83]. Lack of dopamine in synapses is a main clinical
indication of PD. Because levodopa is a basic treatment for PD,
polymorphisms in these enzymes may impact upon response
to this treatment. A couple of studies in Polish patients have
analysed genes encoding enzymes associated with dopamine
metabolism [61, 62]. Catechol-O-methyltransferase (COMT)
and monoamine oxidase B (MAOB) are involved in dopa-
mine degradation in synapses. A study of 210 Polish patients
with PD found a significantly lower frequency of the COMT
LL genotype responsible for high enzyme activity [61]. The
combined haplotype of the MAOB G (G/G) and COMT HL
genotypes showed a four-fold increase (p < 0.05) in the risk of
PD in women [61]. Bialecka et al. [62] analysed the impact of
these polymorphisms on response to treatment. Their five-year
observational study of 95 Polish patients with PD analysed
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Table 2. Genetic risk factors associated with PD analysed in Polish populations

Gene Mechanism
APOE Responsible for lipid metabolism; pathological aggregation of proteins
GBA Lysosomal hydrolase responsible for degradation of a sphingolipid

glucocerebroside

Mitochondrial dysfunction

TFAM Mitochondrial DNA transcription factor

TOMM40 Translocase of the outer mitochondrial membrane 40 homolog
Haplo- Mitochondrial DNA

group J

Oxidative stress and immune system

NFE2L2 Regulation of expression of many antioxidant pathway genes

MMP12 Matrix metalloproteinase secreted by inflammatory macrophages,
responsible for inflammatory reaction

HLA-DRA Human leukocyte antigen

IL-10 Modulatory effects against proinflammatory cytokines, especially INF-y
and TNF-a

SEMAS5A Regulation of immune system and tumour progression

TREM2 Found on activated macrophages, immature dendritic cells, osteoclasts,

and microglia

Dopamine and other neurotransmitter metabolism

comT Catecholo-O-metylotransferase, responsible for dopamine metabolism
MAO-B Monoamine oxidase B responsible for dopamine metabolism

DBH Noradrenaline synthesis from dopamine in plasma

MDR1 Responsible for regulating environmental xenobiotics concentration

Pathways associated with other neurodegenerative disorders

STH Impact on AD pathogenesis

GRN Impact on FTD occurrence

MAPT Microtubule-associated protein

CALB1 L-type voltage-operated calcium channels

DAPK1 Ca2 +/ calmodulin-dependent serine/threonine kinase that plays

a proapoptotic role in programmed cell death cascade

Results

No impact on PD and PDD occurrence [60]

2 studies:

-4.07% in 270 non-demented patients with PD [57]
—-11.6% in 138 patients with PD [58]

Intronic variant rs2306604 increased risk of PD in analysis in
326 patients with PD (OR, 1.789; 95% Cl, 1.162-2.755;
p=0.008) [67]

No impact on PD occurrence [71]

Associated with lower PD risk in men (OR, 0.19; 95% Cl,
0.069-0.530; p=0.0014) [70]

NFE2L2 haplotypes decrease risk of PD-heterozygous
(OR, 0.4; 95% Cl, 0.3-0.6; p < 0.001), homozygous (OR,
0.2;95% Cl, 0.1-0.4; p < 0.001) [78]

1s652438G allele genotypes decrease risk of disease
(OR, 0.47; 95% Cl, 0.26-0.85; p = .013) [65]

153129882 GG genotype protective for PD occurrence
(OR, 0.67; p=0.04) [73]

No impact on PD occurrence [63]

No impact on PD occurrence [64]

No impact on PD occurrence [74]

Lower frequency of COMT LL in PD [61]

MAOB G (G/G) and COMT HL genotype - fourfold increased
risk of PD in women (p < 0.05)

No impact on response to treatment [62]
151611115 was observed more often (OR, 2.01; p=0.01) [75]

No impact on PD occurrence [77]

No impact on PD occurrence [72]
No impact on PD occurrence [68]
No impact on PD occurrence [69]
No impact on PD occurrence [76]

No impact on PD occurrence [66]

AD — Alzheimer's disease; FTD — frontotemporal dementia; INF — interferon; OR — odds ratio; PD — Parkinson'’s disease; PDD — Parkinson's disease dementia; TNF — tumour necrosis factor

the presence of COMT L and MAOB G polymorphisms in
two study groups: those receiving less than 500 mg/day of
levodopa, and those receiving 500 mg/day or more during
the observational period. No statistical differences were
observed between these groups [62]. Another study exam-
ined differences in polymorphism distribution in dopamine
B-hydroxylase (DBH), responsible for noradrenaline synthe-
sis from dopamine in plasma [75]. In a study of 224 Polish
patients, DBH -1021C > T; rs1611115 was observed more
often in the study group than in controls [75]. Michalowska
et al. analysed the occurrence of polymorphisms in genes

www.journals.viamedica.pl/neurologia_neurochirurgia_polska

associated with dopaminergic metabolism and their impact
on risk of PD and motor levodopa-induced adverse effects.
They found that rs6265 BDNF (p.Val66Met) was associated
with risk of PD. Additionally, they observed a synergic effect
of rs6265 BDNF (p.Val66Met), rs397595 DAT (SLC6A3), and
154680 COMT (p.Val158Met) polymorphisms on the occur-
rence of motor levodopa-induced adverse effects [83]. In
a study of 158 patients with PD and 139 controls, Tan et al.
[77] analysed seven SNPs from MDRI responsible for regu-
lating environmental xenobiotics, but found no significant
differences between the two groups.
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The correlation of eight SNPs localised in the chromo-
somal region 2q24.3, previously associated with PD risk, was
analysed; however, a study of 713 Polish patients revealed
no association with PD risk [84]. The saitonin p.GIn7Arg
polymorphism previously associated with AD was analysed
in 100 patients with PD, but no association with disease
occurrence was observed [72]. An SNP in the progranu-
lin gene (GRN; 3'UTR+78C > T; rs5848) associated with
frontotemporal dementia was not found to be a risk factor
for PD in 364 Polish patients [68]. Microtubule-associated
protein T was previously reported to be associated with AD
and frontotemporal dementia; however, a study of 832 Polish
patients with PD found no impact on disease presence with
MAPT p.Alal52Thr variant [69]. Death-associated protein
kinase 1, previously reported in AD, was also not observed
in patients with PD patients [66]. Calbindin belongs to
L-type voltage-operated calcium channels. It has been reported
that rs1805874 SNP may increase the risk of PD in Japanese
patients [85]; however, this observation was not confirmed
in Polish or other European populations (Tab. 2) [76]. Locus
5q23 (D5S1462 and D552501) was identified in two large Pol-
ish families with levodopa responsive parkinsonism [86, 87].

Clinical implications

Our report summarises the prevalence of PD genetic factors
in the Polish population, and presents the first case of SNCA
duplication in this population. Many genes responsible for both
familial forms of PD and increased risk of disease have been es-
tablished in the Polish population. Data indicates that PD genes
reported in other countries are rarely observed in this population.

The diagnosis of PD is still based on clinical examination.
Detailed genetic characteristics of specific populations may lead
to the discovery of new PD biomarkers [86]. With the increasing
availability of personalised medicine, the number of clinical tri-
als calling for specific mutation carriers will increase. Currently,
there is an ongoing phase I clinical trial for LRRK2 p.Gly2019Ser
mutation carriers. Antisense oligonucleotide BIIB094 binds to
LRRK2 mRNA and causes its degradation (NCT03976349).
Another trial analysed DNL201 particle inhibition of the
LRRK2 protein (NCT03710707) [87]. The most explored gene
in the context of clinical trials is GBA. There are six ongoing
clinical trials (three phase 1 and three phase 2) with different
mechanisms, including glucocerebrosidase activators, gluco-
sylceramide synthases inhibitors, and adeno-associated virus
gene therapy [87, 88]. In 2019, the Michael J. Fox Foundation
announced funding for development for PRKN and PINK1 [89].
In the 2019, the Michael J. Fox Foundation announced funding
for development for PRKN and PINKI targeted therapy.

Future perspectives

Many PD genes have been extensively screened in the
Polish population. The frequency of variants in known genes

is low. However, some methodological approaches (GWAS or
clinical exomes analysis) have not been conducted yet. Further-
more, there are new sequencing methods, such as long-read
sequencing, which can directly sequence single molecules of
DNA in real time, often without the need for amplification. This
direct sequencing approach enables the production of reads
that are considerably longer than those resulting from classical
short-read sequencing, allowing the sequencing of parts of the
genome that are yet to be discovered. Long-read sequencing will
facilitate better genetic characterisation of all patients with PD.
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