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ABSTRACT
Aim. The aim of this study was to assess degenerative lesion localisation in the course of relapsing-remitting multiple sclerosis 
(RRMS) and to identify the association between localisation and the frequency of T1-hypointense lesions (black holes) with cog-
nitive dysfunction. We also searched for neuroradiological predictors of cognitive dysfunction in patients. The clinical rationale 
for the study was previous research, and our own findings suggest that lesion localisation plays an important role in cognitive 
performance and neurological disability of MS patients.

Material and methods. Forty-two patients were included in the study. All subjects underwent neuropsychological examination 
using Raven’s Coloured Progressive Matrices, a naming task from the Brief Repeatable Battery of Neuropsychological Tests, and 
attention to detail tests. Magnetic resonance imaging (MRI) was acquired on 1.5 Tesla scanner and black holes were manually 
segmented on T1-weighted volumetric images using the FMRIB Software Library. Linear regression was applied to establish 
a relationship between black hole volume per lobe and cognitive parameters. Bonferroni correction of voxelwise analysis was 
used to correct for multiple comparisons.

Results. The following associations between black hole volume and cognition were identified: frontal lobes black hole volume 
was associated with phonemic verbal fluency (t = –4.013, p < 0.001), parietal black hole volume was associated with attention 
(t = –3.776, p < 0.001), and parietal and temporal black hole volumes were associated with nonverbal intelligence (p < 0.001). 
The volume of parietal black holes was the best predictor of cognitive dysfunction.

Conclusions. Our approach, including measurement of focal axonal loss based on T1-volumetric MRI sequence and brief neu-
ropsychological assessment, might improve personalised diagnostic and therapeutic decisions in clinical practice.

Key words: relapsing-remitting multiple sclerosis (RRMS), T1-hypointense lesions, black holes, magnetic resonance imaging 
(MRI), cognitive dysfunction 
(Neurol Neurochir Pol 2019; 53 (1): 18–25)
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Introduction

Multiple sclerosis (MS) is the most common autoimmune 
disease of the central nervous system (CNS) in young adults. It is 
defined as a chronic neuroinflammatory and neurodegenerative 
disease, which in its most typical course leads to relapses and 
remissions of various neurological symptoms, resulting from 
focal demyelinating lesions of the CNS [1]. Magnetic resonan-
ce imaging (MRI) is a key tool in MS diagnosis, monitoring, 
measuring treatment response and predicting disability. While 
disease activity is usually related to T2 or FLAIR hyperintense 
white matter lesions, or gadolinium enhancing T1 lesions, the 
neurodegenerative aspect of MS is represented by T1 hypointense 
lesions with high water content. These are called black holes [2]. 
Depending on the degree of neuronal damage, black holes can 
be classified as persistent, transitional or slowly evolving lesions 
[3–4]. Some of the focal degenerative changes may be transfor-
med into persistent black holes [2, 5–6]. Early evolution of severe 
neurodegenerative lesions indicates more aggressive and rapidly 
disabling disease [7].

Currently, treatment guidelines do not address the occur-
rence of new black holes as an indication to escalate therapy, 
despite the fact that those lesions are irreversible and over time 
are followed by brain atrophy. Black holes represent complete 
demyelination with irreversible axonal damage on the focal le-
vel. As such, they are likely to contribute to disease progression, 
which has been shown in several studies [8–9]. Also, their clinical 
relevance may be reflected by their associations with other MRI 
parameters (lower supratentorial and infratentorial brain volu-
me) [10], clinical data (disease duration, score of EDSS) [10–11] 
and cognitive impairment [12].

In the course of multiple sclerosis, 40–70% of patients de-
velop cognitive dysfunction [13]. The most commonly observed 
deficits related to MS include executive dysfunction, low verbal 
fluency, and difficulties in visuospatial performance, short-term 
memory, abstract reasoning and attention [14–15]. These may be 
accompanied or related to depression or general fatigue. Several 
MRI parameters have been correlated with cognitive dysfunction 
in MS patients. While total white matter T2 lesion volume load 
is a modest correlate for MS- related cognitive impairment 
[16], measures of neurodegeneration, including brain atrophy, 
are stronger predictors of cognitive dysfunction [17–18]. These 
measures include black holes, but also other MRI parameters 
that correlate with cognitive dysfunction and clinical markers of 
disability, such as fractional anisotropy (FA) or mean diffusivity 
(MD) coefficient, derived from diffusion tensor imaging (DTI) 
methods [19]. Similar results have been obtained by using fun-
ctional MRI or magnetisation transfer (MT) imaging [20]. These 
techniques, although potentially superior, require additional 
scanning time and advanced post-processing, which makes black 
holes assessment a more feasible yet reliable method.

The purpose of the present study was to assess the spatial 
distribution of MS-related white matter neurodegenerative 
lesions and its association with cognitive impairment, focusing 

on the following domains: nonverbal intelligence, attention, and 
phonemic verbal fluency. We hypothesised there is an associa-
tion between localisation and the frequency of black holes and 
examined cognitive functions, and that black holes in the brain 
lobes are predictors of cognitive functioning.

Clinical rationale for the study

Early detection of neurodegenerative changes in multiple 
sclerosis should prompt a change in patient therapy. However, 
current treatment guidelines do not indicate any specific actions 
based on detection of new black holes. We evaluated the rela-
tionship between black holes in selected cortical regions of the 
brain and the severity of cognitive deficits.

The complete extent of brain damage cannot be estimated 
without a precise neurocognitive assessment. Neglecting the 
cognitive component of patient dysfunction might result in 
missing an important insight into disease progression, and 
the main reason behind the decline of quality of life in young 
individuals with MS.

Materials and methods 

Cohort characteristics
Forty-two patients (25 women, 17 men) with relapsing-

-remitting multiple sclerosis fulfilling the 2010 McDonald criteria 
[21] at the time of diagnosis were recruited for the study. The 
mean disease duration was 5.6 years (range 0–24). Four patients 
were diagnosed at the time of inclusion into the study, while 
the longest time since diagnosis was 24 years in one patient. 
Age and EDSS measures are presented in Table 1. Thirty six 
percent of patients had obtained higher education. Significant 
comorbidities were found in three subjects: bronchial asthma 
(n = 2) and ulcerative colitis (n = 1). Beck Depression Invento-
ry (BDI) scores ranged from 0 to 39 (median = 7, interquartile 
range, IQR = 1-12). Exclusion criteria included: current relapse 
stage or relapse within the last eight weeks, immunomodulatory 
therapy in the last year, age older than 65 years, concomitant 
psychiatric disease, current use of neuroleptics or antiepileptic 
drugs, alcohol or drug abuse, diagnosis of another autoimmune 
or neoplastic pathology, relevant motor deficit in the dominant 
hand, upper limb ataxia or loss of visual acuity, and dementia. 
The neurological, MRI and neuropsychological examinations 
were all performed within a one month period. Patients treated 
with intravenous steroids within the previous three months, or 
immunomodulation at any point before baseline assessment, 
were not included in the study.

Procedure
All subjects underwent a neurological examination, psycho-

metric assessment and MRI examination. Psychometric tests used 
for the assessment of cognition included:

 — Raven’s Coloured Progressive Matrices (RCPM; non-
-verbal intelligence) [22]
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 — Attention to detail test (attention) [23]
 — Spontaneous word list generation test, which is a modified 

version of phonemic naming task from Brief Repeatable 
Battery of Neuropsychological Tests (phonemic verbal 
fluency).
Structural MRI was performed on 1.5 Tesla MRI scanner 

(Siemens Avanto, Erlangen, Germany), with the use of Magne-
tisation Prepared Rapid Acquisition Gradient Echo (MPRAGE, 
TR = 2400 ms, TE = 3.61 ms, IR = 1000 ms, slice thickness 
1.2 mm, pixel band width 180 Hz, FOV 240 × 240 mm, voxel 
size 1.25 × 1.25 × 1.20 mm) and FLAIR space sequence (TR = 
6000 ms, TE = 359 ms, IR = 2200ms, slice thickness 1.5 mm, 
pixel band width 930 Hz, FOV 227 × 260 mm, voxel size 
1.01 × 1.01 × 1.50 mm).

Structural analysis of T1-weighted sequences was performed 
with the use of FSL (FMRIB Software Library, https://fsl.fmrib.
ox.ac.uk/fsl; version 5.0.6) [24] installed on Linux (Ubuntu 
16.04 LTS). The analysis included: manually segmenting black 
holes by a reader blinded to clinical status, reproduction of manu-
al segmentation after four weeks, and Bland-Altman assessment 
of intra-rater reproducibility. Probabilistic brain MNI152 atlas 
included in the FSL package was registered to each patient using 
flirt and black hole volume from each lobe was extracted using 
the fslstats tool.

Manual segmentation allowed the creation of masks of the 
black holes (dark area in T1-weighted sequences). Detailed de-
tection of images was possible with the use of the fslview tool. 
Before the brain extraction procedure, the masks of degenerative 
changes in white matter were created by using the fslview and 
fslmerge (to concatenate the images) technique.

Secondly, brain and structure extraction were performed 
by the fslroi command and Brain Extraction Tool (BET) of FSL. 
Fslroi command allows extraction of a selected region of the 
brain based on the determination of the size values of individual 
axes. BET methods were needed to delete non-brain tissue from 
images of the whole head. We also estimated the inner and outer 

skull surfaces, and outer scalp surfaces, for good quality T1 input 
images. Two parameters were used: the force threshold (f = 0.44) 
and the gradient threshold (g = 0). The level of the force threshold 
was optimised. The duration of the brain extraction process was 
up to one minute.

A registration process was necessary to fit extracted scans and 
masks to the MN152 atlas of the FSL program. Before masks regi-
stration, the binarisation procedure (masks value = 1, other brain 
structure = 0, default value of threshold) was conducted using the 
fslmaths technique. In our linear registration, the parameters were 
set on 12 degrees of freedom (three rotations, three translations, 
three scales, and three warps), the cost function (such as mutual 
information), and three-linear interpolation. The result of this 
affine transformation process was a linear transformation matrix 
needed to receive standard images nearing to the atlas template. 
After the registration, the masks and scans were matched using 
the ApplyXFM option.

Brain lobes were selected based on the structural atlas 
MN152 of brain template images. Automated image registration 
algorithms were used to align brain MRI images with the target 
image [25]. By using the MN152 brain atlas (the volumetric co-
ordinate system created by averaging MRI scans of 152 people) 
it was possible to analyse nine anatomical structures: frontal, 
parietal, occipital and temporal lobes, thalamus, insula, caudate, 
putamen and cerebellum. For the result of linear registration for 
each scan, see Figure 1.

Statistical analysis

Non-parametric mapping software (NPM) was used to ana-
lyse all scans with fitted plaques’ masks in the MNI152 atlas. In 
cases of binarised masks, we used a Voxel Based Morphometry 
(VBM) technique in MRICRON ver. 2012 software. We calcu-
lated statistical maps for each cognitive dysfunction and black 
hole spatial distribution. Each variable was evaluated using 
a Shapiro-Wilk normality test. Normally distributed variables 

Figure 1. A linear registration of multiple sclerosis plaques and scans of axial brain section in magnetic resonance imaging (MRI):  
(A) extracted brain, (B) extracted brain after linear registration with prepared masks, (C) previous image fitted to the MNI152 atlas 

A B C
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were summarised using mean and standard deviation. For 
non-normally distributed continuous variables, median and 
interquartile range (IQR) were calculated. Finally, linear regres-
sion analysis and stepwise regression analysis were conducted 
to identify associations between black hole volume per lobe 
and cognitive dysfunctions. BPF was calculated according to 
the formula: grey and white matter volume / total intracranial 
volume derived from FSL FAST. We applied Bonferroni correc-
tion for multiple comparisons. We also calculated Spearman’s 
correlation coefficients for BPF and global black hole volume. 
Statistical analyses were performed using the RCRAN statistical 
environment (www.r-project.org) and the RStudio 1.1.453 grap-
hical interface.

Results

Descriptive statistics for variables in the study
The descriptive statistics for all the measured variables are 

presented in Table 1.

Spatial distribution of degenerative lesions
Lesion distribution maps for nonverbal intelligence, pho-

nemic verbal fluency and attention are represented in Figure 2.

Lobar black hole lesion load
Spatial heterogeneity of black hole location limits the clinical 

interpretation of the VBM results. Therefore, we calculated black 
hole lesion load for each lobe and conducted stepwise regression 
to identify the lobe where the lesion load was the best predictor 
of cognitive dysfunction.

Stepwise linear regression performed using black hole le-
sion load identified parietal lobe damage as the main predictor 
of cognitive dysfunction for each domain. Parietal lesion load 
predicted 2 to 29% of variance in the cognitive functioning. 
Detailed results are presented in Table 2. BPF did not correlate 
with total black hole lesion load (rho = -0.161, p = 0.348), but 
there was a correlation with the temporal black hole load (rho 
= -0.344, p = 0.040). No significant differences (p > 0.05) of the 
volumetric parameters were found for gender or level of educa-
tion in the studied MS cohort.

Discussion

We found that in RRMS cohort parietal lobe black hole lesion 
load was predicting cognitive dysfunction for each evaluated 
domain: attention, phonemic verbal fluency, and nonverbal in-
telligence. The role of the parietal lobe is focused on multimodal 
information integration, which is crucial for intelligence and 
attention control. Both these functions are frequently impaired 
in multiple sclerosis patients [26]. We observed the highest le-
sion load in parietal lobes, and the lowest in occipital lobes. The 
results of voxel-wise analysis identified lesions associated with 
dysfunction in other structures as well. Specifically, attention 

deficit was associated with caudate lesions, and nonverbal in-
telligence and phonemic verbal fluency deficits were associated 
with frontal lobe lesions.

In previous studies, the incidence of black holes explained 
disharmonious cognitive and emotional processing in MS [27]. 
The location of degenerative white matter lesions can be asso-
ciated with subsequent development of atrophy in distant brain 
regions [28–31].

Most of the published studies have focused on the relation-
ship between black holes and neurological disability measured 
with the EDSS scale [32]. However, black holes are also associated 
with cognitive dysfunction [33]. This aspect has been undere-
stimated and only a few studies have provided detailed analysis 
of this association [16]. In one study, T1 hypointense lesions 
were shown to correlate with Stroop test performance [34]. In 
another study, which analysed cognitive event-related potentials 
(ERPs), white matter degenerative lesion volume was associa-
ted with semantic and phonemic verbal fluency [14]. Both the 
Stroop test and the verbal fluency test require high performance 
in executive functions. This suggests that spatial distribution 
of degenerative white matter lesions could influence executive 
functions and other cognitive domains, including attention or 
auditory processing [35]. Similar results were found by Hojjat et 
al. [12]. According to their study, there were regional perfusion 
associations with cognitive dysfunction.

As for the choice of the psychometric tests, we used easily 
accessible tools that could be applied in everyday clinical practice. 
Following the literature, we decided to assess cognitive functions 
that had already been described as being affected in the course 
of MS [36], namely attention, which we measured with the use 
of an attention to detail test [23], and non-verbal intelligence 
(involving the visuo-spatial processes), which we assessed 
with Raven’s Coloured Progressive Matrices [22]. To assess the 

Table 1. Descriptive statistics for clinical data of the examined group

Variable Median(IQR) or 
*Mean(SD)

Range

Age *39.55 (11.3) 18–63

EDSS 1.00 (0–2.0) 0–6

Cognitive functions

Phonemic verbal fluency *20.05 (4.38) 12–31

Nonverbal intelligence 33 (30–35) 20–36

Attention 7 (5–8) 1–8

Volumetric measurements

BPF *0.77 (0.03) 0.70–0.85

Spatial distribution of black hole load per lobe [cm3]

Frontal lobes 0.62 (0.18–2.39) 0.00–15.23

Parietal lobes 1.10 (0.09–3.45) 0.00–15.63

Temporal lobes 0.06 (0.00–0.63) 0.00–17.21

Occipital lobes 0.26 (0.00–1.71) 0.00–10.00

All MS plaques 7.02 (1.82–16.48) 0.21–87.05

http://www.r-project.org/
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phonemic verbal fluency we used a modified version of the Word 
List Generation (WLG), which is a phonemic naming task in 
the original BRB-N [37]. WLG is a semantic verbal fluency test. 
In our study, we decided to measure one type of verbal fluency. 
Phonemic verbal fluency, which consists in generating words for 
a given letter in a minute, requires higher efficiency of executive 
functions than semantic fluency [38–40].

Individual lesions in multiple sclerosis always run the chan-
ce of damaging critical infrastructure and causing widespread 
dysfunction of structures distant to the lesion. This is often hard 
to prove because of low lesion burden per studied group. To 
solve that problem, grouping lesions based on atlas information 
might confer meaningful and easy-to-obtain information for 
every clinician. Modern image processing software is perfectly 
capable of producing a black hole lesion report per lobe, which 
in turn conveys the risk of cognitive dysfunction.

As for our methodological approach, the advantage of con-
ducting linear registration using FMRIB’s Linear Image Registra-
tion Tools (FLIRT) is that it may be fully automated, although it 
is significant to analyse the default values of the parameters. Also, 
according to Tam et al. [41] the assessment of the association 
between black holes volume and clinical parameters will be more 
precise if unpaired segmentation and paired registration methods 
are used. Literature data confirm that both fully-automated [42] 
and semi-automated [43] segmentation methods are justified. 
Manual lesion segmentation, such as we applied in the current 
study, is time consuming, and so in clinical practice its usefulness 
may be limited. Automated methods of black holes analysis are 
more likely to be used in everyday practice.

In the current study we chose to investigate white matter 
black holes. While it would be interesting to relate cognitive 
dysfunction also to cortical lesions in our cohort, this was not 
possible due to the sequence protocol and magnet field that we 

Figure 2. Statistical maps of black hole distribution for each cognitive function computed using Voxel Based Morphometry (VBM) analysis 
(Brunner-Munzel z statistics). Lesions are overlaid on the Montreal Neurological Institute (MNI) brain in axial slices. Colored voxels were 
-log of the p value (p < 0.05). The equivalent of Bonferroni-corrected threshold was 5.112 and the equivalent of BM threshold was 3.1734. 
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used. Cortical pathology is difficult to visualise in a conventional 
MRI protocol. Although the value of grey matter pathology has 
been increasing, as shown by the inclusion of cortical locali-
sation in the latest version of MS criteria [44], it is still largely 
underestimated due to technical difficulties in their visualisation. 
Neither T2*-weighted gradient echo nor Double Inversion Re-
covery (DIR) sequences are routinely available. Also, high-field 
magnets, which are also more sensitive to cortical pathology, are 
not at a routine disposal. Nevertheless, cortical lesions have in 
fact been shown to be associated with cognition and disability 
in MS patients [45].

Our study is limited by its small, relatively heterogeneous 
sample size and relatively long and differential disease duration. 
The sample size was limited by the exclusion criteria, including 
immunomodulation therapy, which is currently widely available 
for RRMS and thus the sample size is limited. However, we wan-
ted to avoid the possible influence of immunomodulatory drugs 
on brain volumetry results. Also, we focused solely on degene-
rative white matter lesions without taking into account FLAIR 
lesions and atrophy accumulated over time. This reductionist 
approach stemmed from the context of this work, which was 
primarily a masters’ thesis of the first author. Another limita-
tion is the choice of basic psychometric tests to assess cognitive 
dysfunction. However, this could also be a potential advantage, 
as they can be used without charge or time consumption in an 
everyday clinical practice setting.

Clinical implications and future directions

The pathophysiological substrate of cognitive dysfunction 
in MS is not fully understood. Several MRI markers have been 

suggested as predictors of cognitive impairment. Over recent 
years, attention has shifted to more and more sophisticated 
parameters derived from advanced image analysis. In this pa-
per, we are revisiting the aspect of traditional and relatively 
easily identified T1 hypointense lesions detected on volumetric 
T1-weighted images as predictors of poor cognitive performance. 
We suggest that modern image processing software should be 
used to obtain a black hole lesion mapping report. Such a report 
could aid in assessing the individual risk of cognitive dysfunction 
in MS patients, and in selecting the patients for detailed neuro-
psychological assessment. Also, linking cognitive dysfunction to 
degenerative white matter lesions could be an important predictor 
of MS patients’ quality of life. It may aid in selecting patients in 
need of neuropsychological rehabilitation [46].

Studies on a larger sample size and using standardised bat-
teries of neuropsychological tests are needed to enable the use 
of black hole spatial distribution analysis in everyday clinical 
practice.
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Table 2. Linear regression analysis of T1- weighted black holes in multiple sclerosis patients

Volumes of black holes in brain structures R2 adjusted F β t p

Phonemic verbal fluency

Frontal lobes 0.269 16.108 -0.536 -4.013 .000

Parietal lobes 0.233 13.476 -0.502 -3.671 .001

Temporal lobes 0.132 7.221 -0.391 -2.687 .010

Occipital lobes 0.039 2.679 -0.251 -1.637 .109

Attention

Frontal lobes 0.100 5.542 -0.349 -2.354 .024

Parietal lobes 0.244 14.257 -0.513 -3.776 .001

Temporal lobes 0.107 5.895 -0.358 -2.428 .020

Occipital lobes 0.088 4.940 -0.332 -2.223 .032

Nonverbal intelligence

Frontal lobes 0.195 10.954 -0.464 -3.310 .002

Parietal lobes 0.290 17.732 -0.554 -4.211 .000

Temporal lobes 0.283 17.157 -0.548 -4.142 .000

Occipital lobes 0.098 5.456 -0.346 -2.336 .025
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