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ABSTRACT
Introduction. Advances in sequencing technologies have enabled extensive genetic testing on an individual basis. Genome-
-wide association studies (GWAS) have provided insight into the pathophysiology of PD. Additionally, direct-to-consumer 
genetic testing has enabled the identification of genetic diseases and risk factors without genetic counselling. As genetics 
increasingly permeates clinical practice, this paper aims to summarise the most important information on genetics in PD for 
clinical practitioners.

State-of-the-art. LRRK2 mutations may be found in c.1% of all PD patients with an indistinguishable phenotype from sporadic 
PD. LRRK2-PD is more prevalent in patients with a positive family history (5-6%) and among certain populations (e.g. up to 41% 
in North Africans and Ashkenazi Jews). Other familial forms include PRKN (patients with early onset, EOPD), VPS35 (Western 
European ancestry), PINK1 (EOPD), DJ-1 (EOPD), and SNCA. GBA mutations are found in a large number of PD patients and are 
associated with faster progression and a poorer prognosis. GWAS have identified 90 genetic risk variants for developing PD and 
several genetic modifiers for the age at onset, disease progression, and response to treatment. 

Clinical implications. Multigene panels using next-generation sequencing (NGS) are the first choice for genetic testing in clini-
cal settings. Whole exome sequencing is increasingly being used, particularly as the second-tier testing in patients with negative 
results of multigene panels. NGS may not detect accurately copy number variants (CNV), meaning that additional analysis is 
warranted. In a case of a variant of unknown significance (VUS), we suggest firstly searching the up-to-date literature. Segrega-
tion studies and in silico predictions may shed more light on the character of the VUS; however, functional studies remain the 
gold standard. Several interventional clinical trials are active for carriers of LRRK2 and/or GBA mutations.

Future directions. Application of artificial intelligence and machine learning will enable high-throughput analysis of large 
sets of multimodal data. We speculate that, in the future, the treatment landscape for PD will be similar to that in oncological 
conditions, in which the presence of certain gene mutations or gene overexpression determines the prognosis and treatment 
decision-making.
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Introduction

The clinical and research stance on the heritability of 
Parkinson’s Disease (PD) has come full circle. It has long been 
acknowledged that PD is non-genetic; however, the mapping 
and discovery of the first genes in familial PD at the end of 
the 20th century proved the importance of genetic factors in 
PD [1, 2]. Over the past two decades, more than 100 genetic 
loci have been associated with PD and other forms of parkin-
sonism [3]. Recent advances in sequencing technologies and 
analyses have made it possible to conduct extensive genetic 
testing on an individual basis in clinically relevant timeframes 
[4]. However, the initial enthusiasm cooled when the emerging 
data revealed a low diagnostic yield of clinical genetic testing 
in PD, and so the extent of genetics relevance in PD remains 
an unsolved conundrum. 

Although a positive family history in a first-degree rel-
ative increases the risk of developing PD two- to three-fold 
compared to controls, only 15% of patients have a positive 
family history, and even fewer, c.5–10%, have a familial form 
of the disease [5, 6]. 

Genome-wide association studies (GWAS), in which hun-
dreds of thousands of genetic variants across many genomes 
are tested to check for potential phenotype associations, have 
raised fresh hopes in addressing the relevance of genetics 
in PD. GWAS have provided further insight into the risk 
factors of developing PD, its progression, and its response 
to treatment, although applying these findings in clinical 
practice remains challenging. In addition, commercial test-
ing through direct-to-consumer genetic testing has enabled 
the identification of genetic diseases and risk factors without 
genetic counselling, and found many PD patients reporting to 
healthcare professionals to address issues raised by these tests.

As genetics increasingly permeates clinical practice, and 
as most patients will at some point approach their primary 
neurologist about their genetic status or advances in the 
field, we must learn genetics and become fluent in this new 
lingua franca. 

Therefore, this paper aims to summarise the most impor-
tant information on genetics in PD for clinical practitioners, 
and looks into the possible applications of genetic testing in 
managing PD patients in the near future. 

State-of-the-art

Familial forms of PD (Tab. 1)

LRRK2
The most common genetic form of PD is related to muta-

tions in LRRK2, which are inherited in an autosomal dominant 
fashion and display incomplete, age-dependent penetrance 
[3, 7, 8]. LRRK2 mutations are found in 5–6% of familial, 
and 1% of sporadic, PD cases [3, 9]. As per the Human Gene 
Mutation Database Professional (HGMD, version 2023.2), to 

date almost all of the pathogenic mutations (97%) have been 
missense/nonsense variants [10]. Due to the founder effect, 
the prevalence of LRRK2 mutations is even higher in certain 
populations, including North African Berber and Ashkenazi 
Jewish (p.G2019S mutation in up to 41% and 34% of familial 
and sporadic cases), as well as northern Spanish (p.R1441G), 
Italian and Belgian (p.R1441C) populations [9]. The phenotype 
is that of typical PD, with a late onset, slow progression, and 
good response to L-Dopa [3, 7, 9]. 

PRKN
Homozygous or compound heterozygous PRKN mutations 

are the second most common cause of genetic PD [3, 11]. They 
are most often found in early-onset PD (EOPD), accounting for 
up to 15%, and 50% with the onset aged 25-50 years [3, 12–14]. 
Most pathogenic mutations are exonic deletions, followed 
by missense/nonsense variants and exon duplications [10]. 
In certain populations, the prevalence of PRKN-PD may be 
higher; for instance, it accounts for 8% and 6% of familial and 
sporadic PD in Japan [15]. The phenotype is that of EOPD with 
slow progression, good response to L-Dopa, high frequency 
of bradykinesia, and rigidity. 

VPS35
VPS35-PD is autosomal dominant familial PD with incom-

plete penetrance and c.150 cases reported worldwide, with an 
estimated prevalence of less than 1% of familial PD and 0.1% 
of sporadic PD cases [3, 16]. To date, pathogenicity has been 
confirmed only for the p.D620N mutation; however, three 
other missense/nonsense variants and one deletion have been 
suggested to be linked with PD [10]. The phenotype is that of 
typical PD, with slow progression, good response to L-Dopa, 
and a low risk of atypical features [3, 16].

PINK1
PINK1-PD is an autosomal-recessive with complete pene-

trance and an estimated prevalence of 0.1% of sporadic and less 
than 1% of familial PD [3, 17]. It is more common in younger 
patients, accounting for up to 5% of EOPD worldwide [3]. Most 
pathogenic mutations are missense/nonsense variants (70%), 
followed by structural variants [10]. The phenotype is EOPD 
with a benign course and good response to L-Dopa, albeit 
with a higher frequency of dystonia and dysautonomia [3, 17]. 

DJ-1
DJ-1-PD is a very rare genetic form of PD, with autosomal 

recessive inheritance, complete penetrance, and an estimated 
prevalence of 0.02% of sporadic, less than 0.5% of familial PD, 
and up to 1% of EOPD cases [3]. Missense/nonsense variants 
are the most common (42%), followed by deletions (36%) [10]. 
The phenotype is that of EOPD, with slow progression and 
a good response to L-Dopa. However, compared to typical PD, 
there is a higher susceptibility for psychiatric manifestations, 
dystonia, and dysautonomia [3].
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SNCA
Pathogenic SNCA mutations may be found in up to 0.01% 

of sporadic PD cases and less than 0.5% of familial PD cases 
[3]. SNCA-PD is inherited in an autosomal-dominant fashion 
and displays incomplete penetrance [3]. Whole-gene multi-
plications are the most common variants (70%), followed by 
missense variants [10]. Penetrance, age at onset, and phenotype 
severity are associated with SNCA dosage, with a higher copy 
number having a worse disease course [18]. 

VPS13C, DNAJC6 and other genes
VPS13C-PD is a very rare autosomal recessive form of 

PD, reported to date in only 18 cases [18]. Missense/nonsense 
variants are the most common, followed by deletions. The phe-
notype is that of EOPD with a good response to L-Dopa, albeit 
with faster disease progression, earlier cognitive decline, and 
higher risk for atypical features compared to sporadic PD [18]. 

DNAJC6-PD is another rare form of autosomal recessive 
PD with the age at onset of before 21 years, frequently accom-
panied by developmental delay, seizures, dystonia, myoclonus, 

and varied responses to L-Dopa and other dopaminergic 
medications [19, 20]. Mutations in several other genes have 
been identified as being associated with PD, including ARSA, 
CHCHD2, DNAJC13, EIF4G1, GIGYF2, HTRA2, LRP10, 
NUS1, SMPD1, RIC3, TMEM230, and UCHL1, but as the data 
on them is limited and sometimes contradictory, they await 
further validation [21].

Intermediate forms of PD

GBA encodes a lysosomal enzyme β-glucocerebrosidase 
(GCase), and biallelic variants within the gene were classically 
associated with Gaucher’s Disease [3, 7]. At present, GBA var-
iants are mostly researched and clinically tested in the context 
of PD, in which they occur in 5-30% of all patients, making it 
the most common genetic risk factor [3, 7, 22]. As a relatively 
high proportion of GBA variant carriers develop PD, there is as 
yet no consensus on whether it is a risk factor or a monogenic 
form of PD. Overall, the cumulative risk for developing PD in 
GBA variant carriers is 5%; however, this increases with age 

Table 1. Characteristics of most common familial forms of Parkinson’s Disease

LRRK2 PRKN VPS35 PINK1 DJ-1 SNCA VPS13C

Prevalence: 
sporadic PD

1% 0.3-1% 0.1% 0.1% 0.02% 0.01% < 0.01%

Prevalence:

familial PD

5–6% 2–3% < 1% < 1% < 0.5% < 0.5% < 0. 1%

Inheritance AD AR AD AR AR AD AR

Penetrance Incomplete, 
age-dependent, 
15–95%

Complete Incomplete, 
age-dependent

Complete Complete Incomplete N/A

Pathogenic 
mutations

Missense/non-
sense variants

Structural and 
missense/non-
sense variants

Asp620Asn Missense/
nonsense 
and structural 
variants

Missense/
nonsense 
and structural 
variants

Structural and 
missense/non-
sense variants

Missense/
nonsense 
and structural 
variants

Phenotype Typical PD, with 
a late onset, 
slow progres-
sion, and good 
response to 
L-Dopa

EOPD, benign 
course, good 
response to 
L-Dopa, high 
frequency of 
bradykinesia 
and rigidity, 
susceptibility to 
impulse control 
disorder

Typical PD, slow 
progression, 
good response 
to L-Dopa, 
and a  low risk 
of atypical 
features

EOPD, benign 
course, good 
response to 
L-Dopa, higher 
frequency of 
dystonia and 
dysautonomia

EOPD, slow 
progression, 
good response 
to L-Dopa, 
susceptibility 
for psychiatric 
symptoms, 
dystonia, 
dysautonomia

Duplications: 
benign pheno-
type with slow 
progression; 
Triplications: 
early onset, 
rapid progres-
sion, atypical 
features.

Missense 
variants (A53T): 
intermediate 
phenotype

EOPD, fast 
progression, 
good response 
to L-Dopa, 
susceptibility 
for early cog-
nitive decline, 
psychiatric 
symptoms, 
dystonia, atypi-
cal features

Protein 
function

Neuronal vesi-
cular trafficking, 
mitochondrial 
functions, 
autophagy

Mitochondrial 
homeostasis 
and mitophagy

Recycling of 
transmembrane 
receptors

Mitochondrial 
homeostasis 
and mitophagy

Mitochondrial 
homeostasis 
and mitophagy

Synaptic plasti-
city, neuronal 
homeostasis, 
mitochondrial 
activity

Mitochondrial 
homeostasis 
and mitophagy

Post 
mortem 
features

α-synuclein, 
tau-pathology, 
TDP-43

Rarely 
α-synuclein 
pathology

Negative for 
α-synuclein*

α-synuclein* tau-pathology* α-synuclein α-synuclein

 *limited data; AD — autosomal dominant; AR — autosomal recessive
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up to 10% and 30% by the ages of 60 and 80, respectively [3, 7, 
23]. To date, at least 240 GBA variants have been linked to PD, 
of which the majority are missense/nonsense variants (83%) 
[10]. The missense variants p.N370S, p.E326K, p.T369M, and 
p. L444P, are the most common and constitute more than 80% 
of GBA variants in the PD population [3]. 

The GBA variants differ in the extent to which they im-
pact upon the activity of GCase, with the p.L444P variant 
decreasing the activity by the most, and being associated with 
the highest risk of PD and the worst severity. In contrast, the 
variants p.E326K and p.T369M have the mildest impact on 
GCase activity and convey lower risk and milder severity 
of PD, while p.N370S is intermediate in terms of PD risk 
development and phenotype severity [22]. Recent research 
has demonstrated that impairment of GCase activity leads to 
aggregation and accumulation of α-synuclein, which in turn 
further inhibits the activity of GCase [24]. 

Overall, GBA variants in PD are associated with younger 
age at onset, faster cognitive and motor progression, and 
a higher burden of non-dopaminergic symptoms (i.e. freezing 
of gait, postural instability) [3, 7, 22].

Population genetics of PD

Over the last 15 years, several GWAS have been conducted 
in PD, partly explaining the risk of developing the disease and 
its heterogeneity [3, 21]. So far, 90 independent common ge-
netic risk variants have been identified, accounting for 16–36% 
of heritable disease risk [25]. Common genetic variation has 
also impacted upon the age at onset, with attributed variability 
of 8–11% [26, 27]. A number of genetic variants have been 
associated with the rate of motor progression, susceptibility to 
L-Dopa-induced dyskinesia, and motor fluctuations [28–31]. 
Common genetic variations have also been associated with 
non-motor symptoms, including susceptibility to cognitive 
decline, REM sleep behaviour disorder, insomnia, daytime 
sleepiness, and impulse control disorder [28–30, 32, 33]. One 
study looked into genetic determinants of clinical PD subtypes, 
tremor-dominant vs. postural instability and gait difficulty, 
identifying several suggestive associations, but none reached 
genome-wide significance [34]. Common genetic variants have 
also been linked to different treatment outcomes, including 
therapy with subthalamic deep brain stimulation [35]. 

GWAS nominated several novel genes to be included in 
the pathophysiology of PD, providing new insights into the 
biological pathways involved in PD [3, 21]. Furthermore, many 
of the ‘top hits’ from the GWAS have been linked to genes 
previously identified in familial forms of PD, which shows that 
sporadic and familial forms of PD share pathophysiological 
pathways [3, 21]. 

However, GWAS are also burdened with several shortcom-
ings. Most of the findings from initial studies have not been 
replicated subsequently due to different designs (particularly 
in terms of population structure), non-sufficient statistical 

power, inconsistencies in clinical measures, and the possible 
inclusion of patients with disorders other than PD [3, 21]. 
Additionally, as the results from previous studies indicated 
that different genetic loci impact upon the risk of developing 
PD and its heterogeneity, studying them together could reduce 
the research yield [3]. 

Many of the identified variants in the GWAS are mapped 
to non-coding regions of the DNA, and pinpointing the causal 
gene is challenging [36]. Interestingly, only 30% of the causal 
genes are the nearest gene to the GWAS-identified variant 
[36]. In recent years, it has become possible to predict more 
reliably the functional effects of the candidate variants and 
identify the target gene [36]. However, in silico models may 
not be accurate enough, and animal studies are still required 
to confirm the causal gene [36].

Most previous studies were conducted on PD patients of 
European ancestry [21]. Therefore, the currently developed 
algorithms for polygenic risk score estimation are of limited 
use to patients of other ancestries, and more research on 
ethnically diverse populations is needed to ascertain the 
significance of the previously identified variants in the patho-
genesis of PD [21]. Despite identifying more than 100 genetic 
risk variants or phenotype modifiers, at present they can only 
be used to estimate the likelihood of developing, but not to 
discriminate whether the patient finally develops, the disease 
and the particular phenotype. Thus far, the heritability and 
clinical heterogeneity of PD may only partly be explained by 
the polygenic scores, while most underlying causes remain 
undetermined. It is also possible that shared environmental 
factors, which remain common confounders in GWASs, could 
have falsely inflated the heritability estimates and influenced 
the heterogeneity, spuriously reducing the significance of the 
identified variants [36].

Polish patients

The population of Polish patients with PD remains geneti-
cally understudied (see Table 2). The most common monogen-
ic form of PD is LRRK2-PD, with a prevalence of up to 1% [37, 
38]. PRKN-PD and PINK1-PD have been detected in up to 5% 
and in 1% of Polish patients with EOPD, respectively [39, 40] 
[40, 41]. SNCA-PD was found in 0.3% of Polish patients with 
sporadic PD, whereas VPS35 and DJ-1-PD have not yet been 
reported [42]. To date, two studies have investigated GBA mu-
tations in the Polish population, including only two (p.N370S, 
p.T369M) of the four most common GBA variants [43, 44]. 

Overall, genetic studies on Polish PD populations have 
yielded lower results than those conducted in other European 
populations. This is surprising given the long history of in-
teraction between Poland and its neighbours and the influx 
of immigrants, mainly from Germany (13–16th centuries), 
Italy (14–16th centuries), the Netherlands (15–16th centu-
ries), Scandinavia (from 15th century), and England and 
Scotland (16th century) [45]. For instance, a family with 
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PD-LRRK2 p.N1437H, a mutation previously only reported in 
Scandinavia, was recently identified in Poland [56]. Moreover, 
Ashkenazi Jewish and Polish populations have shared a com-
mon history for more than 1 thousand years. Thus, the 
prevalence of genetic forms of PD, particularly LRRK2, in 
the Polish population is probably underestimated. However, 
recent genetic studies indicated homogeneity of the Polish 
population, with different frequencies of pathogenic alleles 
compared to other European populations [53]. We cannot 
exclude the possibility that there are other genetic forms of 
PD specific to Polish populations that remain undiscovered. 
Therefore, more studies are needed to ascertain the genetics 
of the Polish PD population. 

Common genetic variants  
and PD symptomatology

Several common genetic variations have been identified 
as impacting upon the progression of the disease, the burden 
of motor and non-motor symptoms (particularly dementia), 
and prognosis in general [3]. Apolipoprotein E4 (APOE4) 
allele and polymorphisms in several other genes have been 
associated with faster cognitive decline [3, 54]. Susceptibility 
to developing impulse control disorder has been linked to 
variants in COMT, DRD1, DRD2, DRD3, and DDC [3]. The age 
of the first symptoms has been related to SNCA, TMEM175, 
and BST1 variants [3]. The rate of motor progression, predis-
position to develop dyskinesia, and fluctuations have been 
associated with polymorphisms in COMT, DRD3, LRRK2, 
GBA, OPRM1, and several other genes [3]. Some variants 
have been linked to a different clinicaltrajectory following 
treatment with advanced therapies, e.g. CRHR1, IP6K2, and 
PRSS3 polymorphisms have been associated with a higher 
burden of axial symptoms following deep brain stimulation 
(DBS) [35]. Most of these variants individually have a low 
impact on the disease symptomatology, but combined they 
can be used to calculate polygenic risk scores and identify 
patients more prone to certain manifestations of the disease 

or to adverse effects of the therapy. For instance, carriers of 
APOE4 and GBA variants are more likely to develop cognitive 
decline post-DBS [55, 56].

Clinical implications:  
genetic testing in clinical settings

Genetic testing in clinical settings may include targeted, 
multigene, whole exome sequencing (WES), or whole genome 
sequencing (WGS) [4, 57]. Targeted analysis, in which a single 
gene or a few variants within it are tested, has currently lim-
ited utility due to other diagnostic methods providing more 
comprehensive genetic information. However, in light of the 
low cost per sample, it is still useful in highly selected patients 
suspected of particular genetic variants, e.g. in PD patients 
with a strong positive family history of a monogenic variant. 
Multigene panels, sequencing several genes associated with PD 
using next-generation sequencing (NGS), currently present the 
optimal benefit-to-cost ratio and are the first choice for genetic 
testing in clinical settings [4, 57]. In a recent survey of available 
multigene panels for PD from the United States (n = 7) and 
Europe (n = 4), the authors noted significant differences in 
terms of the number of included genes, which ranged from 
5 to 62 [4]. However, all of them included the most important 
familial PD genes, i.e. SNCA, PRKN, PINK1, DJ-1, and LRRK2, 
whereas the inclusion of VPS35 and GBA varied [4]. WES 
enables comprehensive testing of the whole protein coding ge-
nome using NGS and is being increasingly used in routine clin-
ical practice, particularly as the second-tier testing in patients 
with negative results of multigene panels. Analysis of WES or 
WGS can still be targeted to a single variant, gene, or multigene 
panel but it potentially enables repeated analysis in future 
when novel pathogenic variants are identified, or extension 
to evaluate parts of the exome/genome that were not included 
in the original report. Of note, as multigene panels and WES 
use NGS, they may not detect copy number variants (CNV) 
(e.g. deletions, duplication, repeat expansions) [4, 57, 58].  
Therefore, additional analysis of CNV is warranted, and it is 

Table 2. Familial forms of PD and GBA mutations reported in Polish population

LRRK2 PRKN VPS35 PINK1 DJ-1 SNCA GBA

Preva-
lence

0–1% [37, 38] 0–4.7% in EOPD [39, 40] Not repor-
ted [46]

0.7–0.9%*  
[40, 41]

Not reported 
[40, 47]

0.3% of spora-
dic PD [42],

4%–11.6% [43, 
44] 

Variants

reported

p.G2019S [38], 
p.N1437H [48]

Structural variants  
[11, 40, 47, 49, 50],

p.E79* [47],

p.K211N [11, 40, 47, 50],

p.R275W [40, 47],

p.Q34Rfs*5 [40, 47, 50],

p.Q44fsX48 [49],

p.P437L [47],

p.C446F [47, 50]

N/A p.A168P [47],

p.Lys186Asn [40],

p.I368N [40, 47, 51],

p.G411S [41, 47],

p.Q456X [47, 52],

p.Ser535Leu [40]

N/A p.A18T [42],

pA29S [42],

Duplication [11]

T369M [43],

N370S [43],

p.N409S [44],

p.L483P [44]

*heterozygous carriers; EOPD — early-onset Parkinson’s Disease; PD — Parkinson’s Disease
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not always stated by the laboratory whether such an analysis 
was performed, which could result in false negative results in 
carriers of familial PD forms due to structural variants, e.g. 
PRKN or SNCA [4]. 

Many patients have been detected as carrying variants of 
uncertain significance (VUS), which are genetic variations 
for which the association with disease risk is unclear [59]. As 
the databases with genetic variants and the medical literature 
are continually broadening, we suggest first searching the 
literature and checking the current status of the VUS [59]. 
Segregation studies (requiring clinical and sample testing 
of other family members) and in silico predictions may shed 
more light on the character of the VUS. However, functional 
studies in cellular and animal models remain the gold standard 
to determine the pathogenicity, or lack thereof [59].

Future directions

Genetic testing remains largely underemployed in clinical 
settings [60, 61]. Its high cost and perceived lack of impact on 
treatment decision-making are the main reasons for this [60, 61].  
However, both these arguments are becoming relics of the 

past. The cost of gene sequencing has decreased dramatically 
over the last few years. The cost of whole genome sequenc-
ing fell from over $1 million in 2007 to less than $1,000 in 
2019 [62]. Currently, it is quoted at c.$500, and it will most 
likely be under $100 in the near future [63]. Furthermore, 
several initiatives offer complimentary genetic testing and 
counselling for patients with PD, including PD GENEration by 
the Parkinson’s Foundation [64] and Parkinson’s Progression 
Markers Initiative by The Michael J. Fox Foundation [65]. 
A lack of medical ‘actionability’ is also no longer valid. Several 
interventional clinical trials dedicated to carriers of specific 
gene variants are already in progress (Tab. 3). They offer new 
types of potential treatment for selected patients, although, 
most likely, findings from these studies will also be translated 
to the sporadic form of PD. 

We speculate that the future treatment landscape for PD 
will be similar to that in oncological conditions such as breast 
cancer, in which the presence of certain gene mutations or 
gene overexpression determines the prognosis and treat-
ment decision-making [66, 67]. Additionally, the application 
of artificial intelligence and machine learning will enable 
high-throughput analysis of large sets of multimodal data, 

Table 3. Active clinical trials for patients with Parkinson’s Disease who are carriers of LRRK2 or GBA mutations. Data collected from Clinicaltrials.gov as of  
28 September, 2023

Genetic 
variant

Intervention Clinical-
Trials.gov ID

Administration 
route

Mechanism of 
action

Study 
phase

Status Location

LRRK2 DNL151 
(BIIB122)

NCT05348785 Oral Inhibition of 
LRRK2 

2 Active 
(recruiting)

Austria, Canada, China, France, 
Germany, Israel, Italy, Japan, 
Netherlands, Poland, Spain, 
United Kingdom, United States

LRRK2 DNL151 
(BIIB122)

NCT05418673 Oral Inhibition of 
LRRK2 

3 Active (not 
recruiting)

France, Germany, Italy, Spain, 
United Kingdom, United States

LRRK2 Trehalose NCT05355064 Oral Enhancement of 
autophagy

4 Active (not 
recruiting)

Not provided

LRRK2 BIIB094 NCT03976349 Intrathecal injection Antisense oligo-
nucleotide

1 Active 
(recruiting)

Canada, Israel, Norway, Spain, 
United Kingdom, United States

GBA Ambroxol NCT05287503 Oral Enhancement of 
glucocerebrosida-
se activity

2 Active (not 
recruiting)

Italy

GBA Ambroxol NCT02914366 Oral Enhancement of 
glucocerebrosida-
se activity

2 Active (not 
recruiting)

Canada

GBA BIA-28-6156 NCT05819359 Oral Enhancement of 
glucocerebrosida-
se activity

2 Active 
(recruiting)

Canada, France, Germany, Italy, 
Netherlands, Poland, Portugal, 
Spain, Sweden, United King-
dom, United States

GBA LY3884961 NCT04127578 Intra-cisterna magna Gene therapy 1/2 Active 
(recruiting)

Israel, United States

GBA Recombinant 
glucocerebro-
sidase

NCT05565443 Intracerebral (intra-
venous injections, 
followed by BBB 
disruption with 
MRgFUS)

Enhancement of 
glucocerebrosida-
se activity

1/2 Active (not 
recruiting)

Not provided

BBB — blood-brain barrier; MRgFUS — magnetic resonance-guided focused ultrasound
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including demographics, clinical, genomics (whole genome), 
transcriptomics, proteomics, and others [68].

Conclusions

Genetic testing remains largely underused in clinical set-
tings. However, in light of the rapidly decreasing cost of genetic 
testing, and the emergence of the first potential therapies dedi-
cated to carriers of specific gene mutations associated with PD, 
it is due time to reconsider attitudes toward the role of genetics 
in clinical settings. Clinicians should not be discouraged by 
VUSs, because with the growing amount of genetic data from 
PD patients, their significance will ultimately be resolved. 

Finally, and hopefully, the widespread application of genet-
ic testing will provide more insight into the pathophysiology 
of the disease, identify new potential therapeutic targets, and 
pave the way toward curative therapy in the future. 
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