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a b s t r a c t

Introduction: Several imaging modalities are under investigation to unravel the pathophysi-

ological mystery of delayed performance deficits in patients after mild traumatic brain

injury (mTBI). Although both imaging and neuropsychological studies have been conducted,

only few data on longitudinal correlations of diffusion tensor imaging (DTI), susceptibility

weighted imaging (SWI) and extensive neuropsychological testing exist.

Methods: MRI with T1- and T2-weighted, SWI and DTI sequences at baseline and 12 months

of 30 mTBI patients were compared with 20 healthy controls. Multiparametric assessment

included neuropsychological testing of cognitive performance and post-concussion syn-

drome (PCS) at baseline, 3 and 12 months post-injury. Data analysis encompassed assess-

ment of cerebral microbleeds (Mb) in SWI, tract-based spatial statistics (TBSS) and voxel-

based morphometry (VBM) of DTI (VBM-DTI). Imaging markers were correlated with neuro-

psychological testing to evaluate sensitivity to cognitive performance and post-concussive

symptoms.
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Results: PatientswithMb in SWI in the acute phase showedworse performance in several

cognitive tests at baseline and in the follow-ups during the chronic phase and higher

symptom severity in the post concussion symptom scale (PCSS) at twelve months post-

injury. In the acute phase there was no statistical difference in structural integrity as

measuredwith DTI betweenmTBI patients and healthy controls. At twelvemonths post-

injury, loss of structural integrity in mTBI patients was found in nearly all DTI indices

compared to healthy controls.

Conclusions: Presence of Mb detected by SWI was associated with worse cognitive

outcome and persistent PCS in mTBI patients, while DTI did not prove to predict

neuropsychological outcome in the acute phase.

© 2018 Polish Neurological Society. Published by Elsevier Sp. z o.o. All rights reserved.
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1. Introduction
Mild traumatic brain injury (mTBI) affects approximately 100–
300 per 100,000 individuals per year and is thereby one of the
most common neurological disorders diagnosed in the
emergency department [1]. While most patients with mTBI
recover within weeks to months, a subgroup of 20–50%
continues to complain about emotional, cognitive and/or
somatic symptoms, also known as post-concussion syndrome
(PCS) [2–5], whereas after one year 10% of mTBI patients still
have symptoms [6,7].

Although overall test-results show normal cognitive
performance several months after injury, some patients still
complain of cognitive symptoms [8]. Even after decades of
mTBI research, there is an ongoing debate about the exact
pathophysiology of persistent neurobehavioral and cognitive
symptoms [9]. A possible explanation is that they are the
consequence of diffuse axonal injury (DAI) [10,11]. Current
research projects focus on imaging signs to contribute to the
diagnosis, prognosis and understanding of the pathomechan-
isms of mTBI [12]. Presence of individual pathoanatomical
features on T1- or T2-weighted MR sequences, such as brain
contusions, microbleeds (Mb) and foci of hemorrhagic axonal
injury do not always correlate with poor outcome after mTBI
[13–15]. Diagnostic strength of newer imaging modalities for
PCS have been studied comparing cognitive status with DTI
findings [16–25]. Quantitative DTI metrics, such as fractional
anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD)
and radial diffusivity (RD), representing microstructural white
matter lesions, seem to correlate with cognitive deficits during
the first months after mTBI [19,20,23–25]. However, most
studies have focused only on the acute or subacute phase
[24,26–28]. Therefore, we evaluated structural integrity by
means of T1- and T2-weighted, SWI and DTI MR sequences
and PCS in the acute and chronic phase for its ability to predict
cognitive performance and hypothesized that PCS and DTI
abnormalities would correlate more than SWI abnormalities.
2. Methods

The full sample of the present study consisted of an mTBI
group and a control group (CTRL). The mTBI group included
consecutive patients presenting to the emergency department
betweenAugust 2012 andDecember 2013. This cohortwas part
of a larger study, investigating the effect of 3-day sick leave vs.
7-day sick leave as described in Studerus-Germann et al. [29]
mTBI was defined as an initial GCS of 13–15, loss of
consciousness (LOC) lasting less than 30 min, posttraumatic
amnesia (PTA) of less than 24 h and/or any alteration inmental
status at the time of injury (e.g. feeling initially confused,
dazed or disoriented). Inclusion criteria were as follows:
Isolated mTBI without focal neurological deficits as defined
above, CTwithout pathological findings, age at inclusion 18–64
years and German speaking. Exclusion criteria were: patients
under the influence of alcohol (above 0.5 per mill blood
alcohol), regular drug consumption, psychiatric disease under
medical treatment (at present or in the last two years),
previously under medical treatment for (traumatic) brain
injury, recurrent falls, major concurrent injuries, residence
abroad or far away (not able to attend follow-up (FU) visits) and
contraindication for a 3 Tesla MRI (e.g. pace maker, pregnan-
cy). The CTRL group consisted of 20 healthy age- and sex-
matched individuals recruited from the community with
normal cognitive functioning. The study was approved by the
local ethics Committee. All participants provided written
informed consent.

2.1. Procedure for mTBI patients

After providing study information and collecting informed
consent, the neurosurgeon on call completed a standardized
concussion evaluation form, adapted according to the Acute
Concussion Evaluation (ACE) form [30]. Additionally, medical
history, current medication, smoking habits and drug use was
assessed. As part of standard care of our hospital, an
information sheet on mTBI with behavioral advice after mTBI
and a prescription for a regular analgesic were handed out
prior to discharge.

2.2. Neuropsychological assessments (NPA)

All patients returning to FU were assessed with a battery of
validated neuropsychological measures within one week (T1),
at three (T2) and twelvemonths (T3) post-injury. The following
tests and questionnaires were included: Immediate Post-
Concussion Assessment and Cognitive Testing (ImPACT);
subtests alertness, divided attention, covert shift of attention
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of the Test of Attentional Performance (TAP); Trail Making Test
A and B (TMT); Deux Barrages (DB); visual and verbal
retentiveness test (VVM), subtests digits forward, backward
span, similarities from the German version of the Wechsler
Adult Intelligence Scale (WIE); Five-Point Test (FPT); Regens-
burg Word Fluency Test (RWT); Stroop Color and Word Test
(SCWT); Grooved Pegboard; Green's Medical SymptomValidity
Test (MSVT); Adjustment Disorder New Module (ANMD); Beck
Anxiety Inventory (BAI); Beck Depression Inventory (BDI);
health survey short form (SF 36); stress inventory (SVF).

The patients rated the severity of symptoms on a 7-point
Likert scale as part of ImPACT, whichwas used to compute the
post concussion symptom score (PCSS). Raw data, in addition
to comparison, were matched to validated data stratified for
age and transferred into one single unit (T-scores) and
composite indices of attention, memory, executive function,
fine motor speed and intellectual capacity. A mean value
composite index was calculated as a measure of overall
cognitive test performance for each participant at all time
points. Additionally, information about the current job,
medication and current drug consumption was obtained.

2.3. MRI data acquisition and analysis

MR-images were acquired at baseline and 12 months after
injury in the same 3T Siemens MAGNETOM Verio scanner
(Siemens Medical Solutions, Malvern, PA, USA). The MRI
protocol consisted of an axial 3D T1-weighted, a fast gradient
T2-weighted, a high-resolution 3D gradient-echo SWI and an
axial DTI acquisition.

2.4. Analysis of T1-weighted, fast gradient T2-weighted
and SWI sequences

The neuroradiologist recorded the amount and localization of
Mb (max 2–10 mm) on SWI. In order to exclude other possible
lesions mimicking Mb, the expected Mb should not have a T2-
hyperintense rim (edema), should not appear as a calcifica-
tions in CT or localize in typical calcification areas (globus
pallidus, pineal gland), and should be rather in the typical
localizations (border zone gray and white matter, brainstem,
corpus callosum). Other findings such as contusion, hemato-
ma, edema or incidental findings were also recorded. Group
differences regarding neuropsychological test results and
PCSS were calculated betweenmTBI with MR positive findings
andmTBIwithMRnegative findings. Quantitative correlations
between Mb and cognitive performance and symptoms of PCS
were calculated.

2.5. Analysis of DTI data

Semi-automated methods from the FSL toolbox have been
used to allow investigating the whole brain without the need
of manual segmentation of regions of interest (ROI) [31]. First,
Eddy Current and LinearMotion Correctionwere performed by
aligning all the DWI volumes to the image without diffusion-
weighting using 12 degrees of freedom. The brain was
segmented using the brain extraction tool and the tensor
model was fit in every voxel with the DTIFIT program to
estimate fractional anisotropy (FA), mean diffusivity (MD),
axial diffusivity (AD) and radial diffusivity (RD) maps [32].
Voxelwise statistical analysis of the DTI derived maps was
carried out using tract-based spatial statistics (TBSS) [33]. All
subjects' FA maps were non-linearly aligned into a common
space (FSL's FMRIB58_FA template) using the registration tool
FNIRT [34–36]. Thereafter, themean FA imagewas created and
thinned to create a mean FA skeleton that represents the
centers of all tracts common to the group. Each subjects'
aligned FA data were then projected onto this skeleton. A
skeleton threshold of 0.2 was used. The resulting datawere fed
into voxelwise cross-subject statistics. For group comparison,
randomized tests on skeletonized DTI images were conducted
with threshold-free cluster enhancement (TFCE) procedure
and 10,000 permutations (FSL recommended parameters for
permutation tests). Statistical results were generated with the
family-wise error (FWE) correction for multiple comparisons.
The same procedure was applied to MD, AD and RD maps. In
addition, a voxel-based morphometry (VBM)-like analysis of
the DTI maps was performed (VBM-DTI). Whole brain FA, MD,
AD and RDmaps were registered to the FMRIB58_FA template,
smoothed with a Gaussian kernel of sigma = 3 mm and then
fed into the RANDOMISE command of FSL as described above
for the TBSS analysis.

Randomize step: Voxelwise general linear model (GLM) was
designed with age and sex as covariates. We tested for
differences in DTI parameters between T1 and controls,
between T3 and controls as well as differences between T3
and T1. The threshold of resulting t-stat FWE corrected maps
were set at a significance level alpha = 0.05.

Region by region analysis: FA, MD, AD and RD values in
significant voxels were extracted to compute their correlation
with clinical data. Furthermore, a slightly modified version of
the MNI structural brain atlas was used to identify the brain
areas with VBM-DTI differences and to computemean FA, MD,
AD and RD.

2.6. Statistical analysis

Statistical analysis was conducted using SPSS 22.0 (SPSS, Inc.,
Chicago, IL, USA). Group comparisons were performed using
unpaired, two-tailed Student's t-tests orMann–WhitneyU test.
To evaluate the relationship between two categorical variables
Pearson's chi-squared test (X2) and Fisher's exact test were
used. Correlations were calculated with Pearson or Spearman
correlation. P values <0.05 were considered statistically
significant.
3. Results

The full sample of the present study consisted of 50
participants: 30 mTBI patients (mean age: 35.0, SD: 13.4, range:
18–55 years, 16 males and 14 females) and 20 healthy controls
(mean age: 43.2, SD: 14.4, range: 19–62 years, 10 males and 10
females). There were no group differences between mTBI
patients and controls regarding sex, age, years of education
and handedness. Complete MRI data of 30 patients and 20
patients were available at T1 and T3, respectively. DTI data
were available of 29 patients at T1 and of 18 patients at T3. The
MR data of one healthy control were excluded due to poor
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image quality. A complete NPA could be performed in 27
patients at T1, 24 at T2 and 20 at T3. The NPA data of one
patient were excluded since he failed in the MSVT screening
for bad effort or malingering. Dropouts were mainly due to
motivational reasons of the patients. Time to FU was 0–7 days
at T1 (MD: 2.7, SD: 1.8), 81–123 days at T2 (MD: 95.9, SD: 9.2) and
355–406 days at T3 (MD: 372.8, SD: 13.0).

3.1. Injury related MR findings and the presence of Mb

Patients showed a trend of more MR abnormalities at T1 than
at T3 considering possible injury related findings (T1 sum of
MR findings = 10, T3 sum = 4, Wilcoxon-test = –1. 51, p = 0.132).
MR findings of both groups are shown in Table 1. At T1, 16/30
patients showed MR findings possibly associated with the
mTBI (Mb, contusion, hematoma, edema). At T3, in 4/20
patients Mb were detected as the MR finding possibly
associated to trauma. In two patients Mb were found at T3,
but not at T1. One of them reported that he had suffered a
second mTBI four months after the initial mTBI. The possible
origin of the new Mb in the other patient is unknown.
Interestingly, hemosiderin deposits were found in 5 of 19
healthy controls (26.3%) as an incidental finding. The
hemosiderin deposits in 2 controls related to calcifications,
in 1 to microangiopathy and in 2 it was unknown.

3.2. DTI-analyses

Table 2 shows DTI-parameter analyses of FA, AD, RD and MD
between mTBI patients and controls. There were no differ-
ences detected at T1 between patients and controls. At T3 FA
(TBSS) was increased and RD andMD (TBSS) were decreased in
patients. In VBM-DTI findings were similar to TBSS. FA was
increased at T3 in patients; AD, RD and MD were decreased in
comparison with controls. Fig. 1 shows the significant
Table 1 – MRI findings of mTBI-patients versus controls.

Number of patients/controls with:

T1

No cerebral MRI findings: 14 (46.7)
Cerebral MRI findingsb 16 (53.3)
Hemosiderin deposit/microbleedsa 4 (13.3)
Contusiona 1 (3.3)
Hematomaa 8 (26.7)
Subdural hematomaa 2 (6.7)
Epidural hematomaa 1 (3.3)
Preseptal/supraorbital hematomaa 1 (3.3)
Subgaleal hematomaa 4 (13.3)
Subarachnoid hematomaa 2 (6.7)

Edemaa 2 (6.7)
Foci of gliosis 5 (16.7)
Calcifications 3 (10.0)
Moderate cerebral atrophy 1 (3.3)
Unclear malformations 0

Total patients 30 (100)
a Microbleeds, contusion, hematoma, edema in mTBI patients were asso
b At T1: 1 patient with MRI finding had just one type of MRI finding, all
differences of DTI parameters between the acute and late
phase inmTBI-patients. The TBSS analysis showed greater AD
values in the acute phase (T1) compared to the late phase (T3)
post-injury in the group of mTBI patients. The VBM-DTI
technique revealed consistently significantly higher values in
FA,MDandAD in several areas in the acute phase compared to
the late phase.

3.3. Correlations between MR findings and NPA data

Symptom values measured with the PCSS were significantly
higher in mTBI patients with than without MR findings
possibly associated with injury at T1, T2 and T3 (see Table 3).
Cognitive testing and psychological questionnaires did not
show significant differences between these groups at either
FU. Patients with Mb (Mb 1) and without (Mb 0) showed
significant group differences in eight neuropsychological test
results at T1 (five of them measuring psychomotor speed and
speed of information processing), in one test result at T2 and in
five test results at T3 (see Table 4). In all but one of the test
scores with significant group differences, Mb 1 performed
worse than Mb 0. The Mb1 group scored better at the reaction
time composite score of the ImPACT. Regarding PCSS, theMb 1
group showed higher symptom values in total symptom score,
fatigue, difficulty concentrating and difficulty remembering at
T3 (see Table 4 for details). The amount of Mb at T1 correlated
significantly with ten symptom values of the PCSS at T2 and
with six symptom values at T3 – all correlations were positive.
This means that a higher amount of Mb at T1 was associated
with higher symptom severity later on. The amount of Mb also
showed a negative correlation with some of the NPA scores at
T1, T2 and T3 (see Table 5).

At T1, no significant differences in TBSS or VBM-DTI could
be shown between patients and controls. Consequently, no
correlations existed between DTI parameters and NPA.
Frequency (%)

T3 Controls

14 (80.0) 9 (45.0)
6 (35.0) 11 (55.0)
4 (20.0) 5 (25.0)
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
2 (9.1) 6 (30.0)
1 (4.5) 3 (15.0)
1 (3.3) 0
0 2 (10.0)
20 (100) 20 (100)

ciated with the mTBI.
other had more than one type of MRI finding.



Table 2 – Differences in DTI parameters between controls (CTRL) and mTBI patients at T1 and T3.

Technique Image type CTRL vs mTBI at T1 CTRL vs mTBI at T3 Regions with sign.
group differences

mTBI at T1 vs
mTBI at T3

Regions with
significant group

differences

TBSS FA No differences CTRL<mTBI at T3 Right: white matter No differences
AD No differences No differences mTB at T1>

mTBI at T3
Bilaterally: in white
matter, parietal and

occipital lobe
RD No differences CTRL> mTBI at T3 Bilaterally: in white

matter, frontal,
parietal, temporal and

occipital lobe
Right: caudate

nucleus, putamen,
thalamus

No differences

MD No differences CTRL> mTBI at T3 Bilaterally: in frontal,
parietal, temporal and
occipital lobe, caudate
nucleus, putamen,

white mater

No differences

VBM-DTI FA No differences CTRL< mTBI at T3 Left: parietal lobe mTB at T1>
mTBI at T3

Bilaterally: in white
matter, thalamus

Left: caudate nucleus
AD No differences CTRL> mTBI at T3 Bilaterally: in white

matter
mTB at T1>
mTBI at T3

Bilaterally: white
matter, parietal,

temporal and occipital
lobe, insula

Left: frontal lobe,
putamen

RD No differences CTRL> mTBI at T3 Bilaterally: in white
matter

Right: frontal, parietal
and temporal lobe

No differences

MD No differences CTRL> mTBI at T3 Bilaterally: in white
matter, Right: frontal,
parietal & temporal

lobe

mTB at T1>
mTBI at T3

Bilaterally: white
matter, Left: frontal,
parietal and occipital

lobe

TBSS, tract-based spatial statistics; VBM-DTI, voxel based morphometry (on DTI data); FA, fractional anisotropy; AD, axial diffusivity; MD, mean
diffusivity; RD, radial diffusivity; vs, versus.
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3.4. Mb and development of DTI abnormalities

Patients with Mb at T3 showed significantly higher values in
the following DTI parameters of TBSS compared to patients
without Mb: MD in left parietal lobe (t = 2.35, p = 0.032) and in
right temporal lobe (t = 2.32, p = 0.034) and RD in right occipital
lobe (t = 2.53, p = 0.022). The amount of Mb at T3 correlated
positively with twelve DTI parameters (MD and RD from
several areas) from TBSS, respectively with four DTI param-
eters (AD, MD and RD in white matter) from VBM-DTI.
4. Discussion

4.1. Microbleeds in SWI

Our data show that the amount of Mbmeasured by SWI in the
acute phase correlates positively with cognitive symptoms
such as slowing, difficulty in memory and concentration after
mTBI. Our data support previous findings of associations ofMR
abnormalities and acute symptoms as well as correlations
betweenMbanda lowerGOS at 1 year anddevelopment of PCS,
suggesting important prognostic value for persistent symp-
toms [13,37–39]. However, we could not find a significant
correlation between the amounts of Mb between patients with
PCS compared to patients without PCS. Due to the low number
of patients with Mb no functional anatomical correlations
were found in the current study. Presence and quantity of Mb
were previously found to be closely related with lower scores
on the GCS on the day of trauma and on the GOS one year post-
injury [37].

Differences in cognitive performance in the acute phase in
patients with Mb have been most commonly found in
cognitive tests measuring psychomotor speed and speed of
information processing showing opposite results [34]. In the
current study, there is no logical explanation for the better
performance of patients with Mb in the reaction time
composite score of ImPACT in comparison to patients without
Mb.

Our age-matched controls showedunexpected high rates of
Mb, which puts the entity ‘‘traumatic microbleed’’ into
another perspective and could have led to a Type II error in
the mTBI population. Akoudad et al. showed in a large
population based study in>60 years old subjects the predictive
power of microbleeds in ischemic brain lesions [40]. Next to
that, Mb are predictive of both intracerebral hemorrhage as
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Fig. 1 – Differences in DTI parameters in the acute phase in mTBI-patients. The colored regions are the regions that showed a
difference in comparison to the chronic phase. Blue, turquoise and yellow areas in 1st–3rd row show where VBM-DTI
revealed higher values of FA, MD and AD in the acute phase, respectively. Green clusters in the bottom row show areas
where TBSS revealed higher values of AD in the acute phase. VBM, voxel-based morphometry [1_TD$DIFF], and TBSS, tract-based spacial
statistics[2_TD$DIFF], findings in the acute phase versus late phase in mTBI patients.

Table 3 – Neuropsychological differences between patients with versus patients without MRI findings at T1 in PCSS at T1–
T3.

mTBI with MRI findings
M (SD)

mTBI without MRI findings
M (SD)

U p

T1
Feeling slowed down 3.00 (1.51) 1.35 (1.94) 32.00 0.037
Difficulty remembering 3.00 (1.60) 1.00 (1.80) 27.00 0.016

T2
Difficulty concentrating 3.00 (1.00) 0.13 (0.50) 0.50 0.002

T3
Difficulty concentrating 1.29 (1.70) 0.17 (0.58) 0.50 0.002
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well as cerebral small vessel disease [41]. The development of
Mb after mTBI could thereby be influenced by other factors
than the actual mechanical injury itself, which should be
taken into consideration when conducting SWI-sequences
after an mTBI.

4.2. Structural integrity measured by DTI

Diffusion Tensor Imaging (DTI) is a newer technique that is
under investigation to detect DAI than conventional MR
imaging [42]. It allows detection of changes in the white
matter tracts and brain structural connectivity [19]. In the
present study, correlations betweenhigher numbers ofMb and
higher values in the DTI parameters MD, AD and RD were
found. Whether structural damage is caused by the Mb due to
weaker constraining of water molecule movements and more
freely moving water is not known and needs further
investigation. Mb were not excluded from the DTI analyses,
as they are not detectable in T2 or DTI. However, one would
expect lower values of MD, AD and RD, which were not found.
In the acute phase (1 week), no significant differences in DTI
patterns of mTBI patients compared to healthy controls were
found. A possible explanation is that DTI in the acute phase is
not sensitive enough to detect true differences.



Table 4 – Neuropsychological differences between mTBI-patients with and without microbleeds.

Tested cognitive skill (units) – test name Mb+
mean (SD)

Mb�
mean (SD)

U p

T1
Verbal fluency lexical (words per min) – RWT 6.33 (0.58) 14.55 (5.04) 5.00 0.014
Verbal fluency categorical (words per min) – RWT 17.00 (2.65) 23.73 (6.26) 7.00 0.027
Design fluency (items per 3 min) – Design Fluency 22.67 (3.51) 33.13 (7.99) 7.00 0.024
Fine motor speed dominant hand (sec. till completion) – Grooved
Pegboard

93.67 (22.50) 63.05 (7.91) 4.50 0.011

Fine motor speed non-dominant hand (sec. till completion) –
Grooved Pegboard

90.67 (16.65) 72.19 (10.86) 7.50 0.031

Delayed verbal recall (number of recalled items) – VVM 3.67 (2.89) 9.87 (5.51) 9.00 0.041
BDI-II severity coding (1 = minimal, 2 = mild, 3 = median, 4 = sever
depressive symptom) – BDI-II

1.33 (0.578) 0.30 (0.56) 7.50 0.024

Reaction time composite score (T-score) – ImPACT 51.33 (5.13) 43.09 (6.26) 9.50 0.046

T2
Divided attention visual cue (mean reaction time in sec.) – TAP 827.00 (43.14) 724.85 (74.46) 7.00 0.035

T3
Extrinsic alertness (mean reaction time in sec.) – TAP 241.50 (0.71) 219.53 (15.45) 2.00 0.047
Speed of processing (sec. till completion) – TMT A 25.50 (0.71) 16.71 (4.44) 2.00 0.047
Immediate verbal recall (number of recalled items) – VVM 9.50 (0.71) 15.53 (3.81) 2.00 0.047
Fine motor speed dominant hand (sec. till completion) – Grooved
Pegboard

74.50 (9.19) 55.76 (4.80) 0.00 0.012

Composite score attention (T-score) – mean of all tests measuring
attention

46.50 (1.56) 52.14 (2.38) 0.00 0.012

PCSS
Total Symptom Score 12.29 (12.87) 5.00 (4.24) 1.50 0.023
Fatigue 1.86 (1.95) 0.58 (1.17) 1.50 0.023
Difficulty concentrating 1.29 (0.70) 0.17 (0.58) 0.00 0.012
Difficulty remembering 1.71 (2.22) 0.00 (0.00) 0.00 0.012

Mb+, with microbleeds; Mb�, without microbleeds. Lower values indicate better performance in the following tests: Grooved Pegboard, BDI-II,
TAP, TMT A, PCSS. Higher values indicate better performance in the following tests/composite scores: RWT, Design Fluency, VVM, ImPACT,
overall performance for the domain attention. In PCCS a higher score reflects a higher symptom severity. Per symptom 6 was the highest
selectable value, 0 means the patient does not experience a symptom.
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Interestingly, after 1 year higher values in FA and lower
values in MD, RD (TBSS and VMB-DTI) and AD (VBM-TBI only)
compared to healthy controls and higher values in FA, MD and
AD (VMB-DTI) and AD (TBSS) compared to the acute phase
were found in widespread regions, possibly reflecting axonal
atrophy in the late phase. In the TBSS analysis, no differences
were found in AD for the late phase after mTBI compared to
controls, which is in accordancewith the finding ofMessè et al.
[22]. Higher FA in mTBI has been related to an inflammatory
response such as axonal swelling or cytotoxic edema
[21,43,44]. Our pattern of higher values in FA in the acute
phase compared to the late phase in the same patients with
mTBI resembles the finding of Veeramuthu et al., that also
found higher values in FA in their mTBI group in the acute
phase (within 24 h) compared to a different chronic phase
(after six months) [24]. Our pattern of significantly higher MD
and AD in the acute phase compared to the late phase (after 12
months) in the same group of mTBI patients is a new finding,
since other studies comparingmTBI at a similar time point did
not find significant group differences in MD or AD [24,27,28].
Chronic pathophysiological pathways are triggered leading to
DTI changes at a later stage as shown in the current study and
by Yuh et al. [45]. As the disconnection is not present, or at
least not detectable in the acute phase compared to controls, it
is probable that a chronic process leads to destruction of
neuronal pathways and gliosis as seen in all peripheral and
central nerve injuries. The theory that Mb release iron
increasingly into the tissue and thereby leading to further
destruction, possibly leading to triggering inflammatory path-
ways as well is still to be proven [46,47]. These findings call for
further investigationscomparingdiffusionparametersbetween
mTBI patients in the acute and late phase in larger populations.

4.3. Limitations

Our findings are limited by the small sample size. It was
primarily due to lack of patient motivation to participate in
spite of active telephone follow-ups, reimbursement of travel
costs and strict inclusion criteria. Due to the lack of NPA of the
healthy control group we were not able to analyze the
neuropsychological effects of Mb as a degenerative disorder,
e.g. small vessel disease, in absence of mTBI.

Despite all efforts, numerous factors influence the validity
in the comparison of DTI data; e.g. selection of mTBI patients
(i.e. especially with or without CT findings), type of scanner,
scan parameters, time of scan post-injury and type of method
of analysis (e.g. TBSS or VBM-DTI). It has also been shown that
more diffusion directions lead to more accurate estimation of
the diffusion tensor, hence the choice to use 64 directions in
this study was valid [48]. From a technical point of view more
b = 0 images should have been acquired in order to improve
bias of fiber orientation.



Table 5 – Correlations between number of Mb at T1 and
performance on neuropsychological tests and PCSS
symptom severity.

Tested cognitive skill or
symptom – test name

R p

T1
Word fluency lexical – RWT –0.482 0.015
Word fluency semantic – RWT –0.398 0.049
BDI-II severity coding – BDI-II 0.523 0.006

T2
BDI-II severity coding – BDI-II 0.459 0.032

PCSS
Total Symptom Score 0.477 0.025
Nausea 0.500 0.018
Dizziness 0.535 0.010
Sensitivity to noise 0.835 0.000
Sleeping more than usual 0.425 0.049
Feeling more emotional 0.474 0.026
Sadness 0.474 0.026
Nervousness 0.724 0.000
Difficulty concentrating 0.513 0.015
Difficulty remembering 0.560 0.007

T3
Speed of processing – TMT A –0.517 0.028
Fine motor speed dominant hand –

Grooved Pegboard
–0.584 0.011

Composite score attention – overall
performance for the domain
attention

–0.547 0.019

BDI-II severity coding – BDI-II 0.728 0.001

PCSS
Total Symptom Score – PCSS 0.504 0.033
Nausea 0.500 0.035
Visual problems 0.728 0.001
Fatigue 0.570 0.013
Difficulty concentrating 0.841 0.000
Difficulty remembering 0.835 0.000
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5. Conclusions
Microbleeds in the acute phase of mTBI were associated with
later cognitive symptoms and the development of PCS,
however the Mb can also be caused by ischemic disease as
described previously. Structural integrity measured by DTI is
more affected by mTBI in the late phase than in the acute
phase, implying late structural reorganizing processes. SWI
seems to be more valuable in the acute phase than DTI. Hence
we recommend performing anMRI including SWI sequences if
an mTBI patients' recovery develops unfavorably within the
first fewweeks aftermTBI. The goal thereafter is depending on
SWI results to recommend neuropsychological testing and
tailored treatment. Further studies are needed to assess a
clinical benefit of DTI in mTBI patients in the chronic phase.
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