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a b s t r a c t

Benign epilepsy with centrotemporal spikes (BECTS) is the most common focal epilepsy of

the childhood and also one of the best known. It has a proclivity to start at a particular age

and remit spontaneously before adolescence. Majority of patients may avoid long-term

treatment, because of the mild course and very good outcome. Only few patients may

present cognitive deficits if the proper treatment is not implied. BECTS is a part of hetero-

geneous group of syndromes that consists of Landau-Kleffner Syndrome (LKS), Continuous

Spike-and-Wave during Sleep (CSWS) and Atypical benign partial epilepsy (ABPE). These

syndromes may be also a result of various trajectories that BECTS may evolve to. Disease is

suggested to have genetic origins, as some patients have relatives with different types of

epilepsy. The discovery of the pathogenic mechanism of the disease and implementation of

targeted therapy belong to the main challenges in the treatment of these patients.

© 2018 Polish Neurological Society. Published by Elsevier Sp. z o.o. All rights reserved.
1. Introduction

1.1. Terminology

Rolandic Epilepsy (RE) or benign epilepsy with centrotemporal
Spikes (BECTS) is known to be the most common and one of the
best known focal epilepsy of the childhood.Most affected children
outgrow the seizures by their teen years, thus it is classified as
benign syndrome. Nevertheless there is growing evidence that
BECTS may functionally and structurally affect a larger portion of
thebrain,causingadditionalabnormalitiessignificantly interfering
in lives of affected children [1]. It is characterized as an idiopathic,
inherited, self-limiting syndrome with focal onset seizures and
subtle structural cerebral abnormalities. Other terms for RE/BECTS
used in medical terminology are:
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� B
di

p.
enign childhood epilepsy with centrotemporal spikes.

� B
enign epilepsy of children with rolandic (centrotemporal)
paroxysmal foci.
� B
enign rolandic epilepsy (BRE).

� B
enign rolandic epilepsy of childhood.

� C
entrotemporal epilepsy.

� S
ylvian epilepsy.

1.2. History and brief

BECTS has been known to pediatricians for over 60 years, and
was first described by Gastaut in 1952 [2]. Rolandic Epilepsy is
namedafter Luigi Rolando, an Italian anatomist known for his
pioneer research into localization of function within the
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brain. Seizures are sometimes referred to as sylvian seizures.
Appearing at an average age of 5–7 years,when emotional and
behavioral regulation is acquired; basic communication
skills, number concepts and complex reading is developed
[3]. Epileptogenic zone responsible for the autonomic senso-
ry-motor symptomatology in BECTS involves neuronal net-
works within the lower rolandic somatosensory cortex
(region of the Sylvian and Rolandic fissure), especially lower
parts of the precentral and postcentral gyrus, that represents
the face and the oropharynx bilaterally [1]. Anatomical
structures responsible for generating seizures are displayed
in Fig. 1.

1.3. Clinical symptoms

Maturational age-related instability of that region generates
typical clinicalmanifestations including fundamental features
for this syndrome:
� U
[(Fig._1)TD$FIG]

Fi
Fi
nilateral facial sensorimotor symptoms (30% of patients) –

motor seizures are focal, brief (1–3 min), preceded by an aura
that consists of somatosensory unilateral symptoms (para-
esthesias) of inner cheek, tongue, lips, hand or leg ipsilateral
to the affected side of the face [1,4].
– Sensory symptoms are described as jaw numbness
(sometimes only within the corner of the mouth), jerking
and pulling to one side, with accompanying speaking
difficulties.

– Motor manifestations may be sudden, lasting from few
seconds to a minute, sometimes concurrent with ipsilat-
eral tonic deviation of the mouth. Bursts are low
amplitude, manifested by continuous or clonic contrac-
tions often limited to lower lip that may spread to
g.
gu
1 – Anatomy of the BECTS' epileptogenic zone of the brain.
re author: Agnieszka Barańska.
ipsiliateral hand. Episodes aremore acute in older children
[5].
� O
ropharyngolaryngeal symptoms (OPLS) (present in 50% of
patients) – it is the most common clinically observed
sensorimotor manifestation.
– Among sensory symptoms patients complain about
numbness, paraesthesias (tingling, tickling, freezing) of
the cheek, teeth, gums, tongue, pharynx, larynx. These
can be diffuse or strictly limited – even to one tooth.

– Motor component comprises of strange sounds such as
gurgling, grunting, guttural sound, death rattle, especially
these let parents know when their child has an episode
during sleep.
� S
peech arrest (40% of patients) – anarthric speaking inability
due to loss of the power of coordination of the muscles
responsible for the articulation.
� H
ypersalivation (30% of patients) – a prominent autonomic
manifestation, which might be associated with OPLS,
hemifacial seizures, and speech arrest [2].

Daytime seizures are almost exclusively simple, partially
involving face and tongue. Atypical absence seizures, negative
myoclonus and loss of tension are rarely seen [6]. Nocturnal
seizures are more frequent, though still present in a small
amount. They usually start from lower lip, then spread to an
ipsilateral arm, leg or become secondarily generalized.
Majority of the generalized tonic–clonic seizures (GTCS) follow
rolandic activation, and therefore are secondary, mainly
during sleep [7]. Role of sleep in facilitating seizures and their
secondary generalization is still yet to be explained. Progres-
sion to GTCS occurs in approximately half of children andmay
be followed by postictal Todd's hemiparesis. Children who
experience postictal Todd paralysis are more likely to have
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migraine. Migraine is strongly comorbid with BECTS. The
prevalence of migraine in BECTS is 15% vs 7% in nonepilepsy
probands, and in siblings of probands prevalence was 14% vs
4% in nonepilepsy siblings [8]. Consciousness and memory is
fully retained in more than half of the patients, but become
impaired during the ictal progress and in one-third there is no
recollection of ictal events. Voluntary protrusion of tongue
may stop seizures [9].

1.4. Epidemiology

Prevalence estimates for 8–25% of childhood epilepsies with
overall incidence 10–20:100,000 in children aged 3–15 [1,4]. The
disorder occurs more often in boys, with male to female ratio
3:2. The reason for male sex preponderance is unknown [5,10].
Onset of the disease ranges from 3 (always after 2nd year of
life) to 14 years (75% within the range of 7–10) with
spontaneous remission before 16th year of life in 100% cases
[6,11], approximately within 2–4 years from onset [2,12].

2. Genetics
Recent studies have shown a strong correlation between
genetics and BECTS development. The first study reporting
association with familial incidence of seizures in BECTS was a
case report published in 1964, showing that 10% of relatives
may have positive family history of epilepsy [13]. Studies
published from 1960s to 1990s afterwards confirmed that up to
60% of patients with BECTS have a positive family history of
seizures [7]. It is believed that inheritance is autosomal
dominant, age-dependent, with slight male preponderance.
Genome scans imply more complex mode of inheritance,
displaying abnormalities at 15q14, 16p12-11.2, 11p13. It seems
that there is a strict evidence for linkage with chromosome
15q14 [5,14,15], though autosomal dominant inheritance with
age dependent penetrance rather refers to centrotemporal
spikes (CTS) than to BECTS in general [16]. CTS can also be
found in healthy children or children with autistic spectrum
disorder (ASD) without clinical seizures. The last locus (11p13)
is found to be pleiotropic for speech dyspraxia and CTS in
BECTS. The latest research adds newly identified risk factor to
the pot - four individuals were found carrying mutation (3
duplication and 1 deletion) at Xp22.31 [17]. Typical and atypical
BECTS are presumed to have a shared genetic etiology. Latest
studies overview present coherent data about genes and
mutated loci (Table 1). Exploring multifactorial genetic
inheritancewe observe genomic heterogenity, and phenotypic
variability. Except for GRIN2A and ELP4, most genes were
identified in other diseases first and then explored in BECTS.
3. Diagnosis

CTS and typical seizures are said to be sufficient for diagnosis,
however only 10% of children fulfilling EEG criteria of CTS
actually have seizures. NICE (National Institute of Health and
Care Excellence) and SIGN (Scottish Intercollegiate Guidelines
Network) stress significance of EEG, with ambulatory follow-
up sleep video EEG [18,19]. The spike-waves discharges are
activated as the patient enters theNREMsleep. BrainMRI is not
recommended as first-line investigation because of the
nonlesional nature of these epilepsies. The very low use of
neuropsychological assessments (less than 10%) is striking,
given the well-documented occurrence of language, literacy
and attentional comorbidities in BECTS and their impact on
educational achievement and quality of life [20].

3.1. EEG findings

Centrotemporal spikes arising independently in the right and/
or left hemispheres from a normal background activity
without any additional neurological conditions are the
hallmark of BECTS [21]. Another common feature is presence
of abundant focal Interictal Epileptiform Discharges (IEDs).
CTS are broad, diphasic, focal, high-voltage (100–300 micro-
volts) sharps, with a transverse diapole, and they are often
followed by a slow waves over the centrotemporal region
(Rolandic area). Ictal manifestations indicative of temporal
lobe involvement do not occur in rolandic epilepsy, and the
term 'centrotemporal' refers only to the spike topography.

CTS are activated by drowsiness and non-REM sleep, and
are mainly high amplitude, sharp and slow wave complexes
localized in the C3/C4 (high central) in 30% of patients, and C5/
C6 (low central region, midway between central and temporal)
electrodes in 70% [1,2]. Number of spikes increases during
stages I–IV of sleep. Ictal manifestations are more frequently
observed (75%) duringNREM (Non-Rapid EyeMovement) sleep,
mainly at sleep or just before awakening, they can be ipsi- or
contralateral to the symptomatogenic side and they are often
multifocal [4]. Approximately 75% of EEG discharges are
localized, affecting well-delineated brain regions [22,23]. Spike
focus is unilateral in 60% and may shift from side to side over
time or may be bilateral in 40%, with bilateral discharges
occurring synchronously or asynchronously. Discharges occur
in clusters, with a frequency of 1.5–3 Hz. Exemplary EEG
records are shown in Figs. 2–7.

CTS are not specific for BECTS and may be present in 2% of
healthy children, of whom less than 10% develop BECTS [24,9].
Age-dependent CTS may occur in cerebral tumors, Rett
syndrome, fraX syndrome, focal cortical dysplasia, Continuous
Spike Waves during Sleep (CSWS), Landau–Kleffner syndrome
(LKS), atypical benign partial epilepsy, headaches, speech,
behavioral and learning difficulties, ASD, and Attention Deficit
Hyperactivity Disorder (ADHD) [25].

4. Evolution and the outcomes
BECTS is well known for having various paths of development.
Majority of patients run a typical, mild course with very good
outcomes. Nevertheless, during the active phase of the disease
development of reversible, linguistic cognitive and behavioral
problems may be observed. Symptoms tend to be more
noticeable when the disease starts before age of 8 years,
and when EEG displays high rate of multifocal EEG spikes
occurrence (focal EEG spikes may impair long-term learning
and memory consolidation in sleep) [20]. The prognosis
remains excellent, and with less than 2% of cases developing
absence seizures or generalized tonic–clonic seizures (GTCS) in



Table 1 – Summary on the genetics data in BECTS.

Mutated
molecule/
proteins

Gene location Molecular mechanism Disorders with this mutation Targeted therapy

ELP4 11p13 – one area
showed strong and
compelling
evidence for
linkage to CTS [35].

The Elongator Complex (also called PAXNEB) –
especially Elp 4,5,6 maintain translational
fidelity via regulation of tRNA modifications.
Noncoding mutation in ELP4 gene impairs
brain development, resulting in susceptibility
to seizures and neurodevelopmental disorders.
ELP4 is associated with the pathogenesis of
BECTS and has a strong effect on risk for CTS in
BECTS families [35–40].

Familial dysautonomia (FD), intellectual
disability (ID), amyotrophic lateral sclerosis
(ALS), BECTS [39] and other disorders followed
by CTS presence, i.e. speech disorder,
developmental coordination disorder, attention
deficit-hyperactivity disorder [37], general
developmental delay, speech and language
disorders, autism spectrum disorders [40].

Currently not available.

GRIN2A 16p13.2 [41]. Glutamate ionotropic N-methyl-D-aspartate
(NMDA) receptor type subunit 2A is a known
ion-channel having a strong impact on brain
development and function [41]. GRIN2A
encodes the GluN2A subunit of the NMDAR,
that plays critical role in normal neuronal
development, synaptic plasticity and memory
[42]. GRIN2A mutation is higher in the severe
end of the BECTS/Atypical BECTS, though it is
still the most relevant gene for BECTS [43].
Mutation of receptor-coding genes or
antibodies directed against receptor peptides
may lead to epilepsy, developmental delay and
autoimmune encephalitis [44].

Epilepsy-aphasia syndrome (EAS) [42]:
BECTS and subtypes which are believed to be
more severe BECTS variants i.e. LKS, ESES/
CSWS, ABPE [44,45], Atypical BECTS [40],
mental retardation, speech dyspraxia, autism,
families with a history of centrotemporal
spikes (CTS).
GRIN2A mutations among epilepsies of the
EAS, are observed in frequency from 2.1% in
BECTS to 20% in CSWS [38] or 4.9 to 17.6% [46].

Memantine – NMDA receptor blocker – the potential for
personalized genomics and therapeutics [45].
GluN2A-selective positive allosteric modulator to
rescue the phenotype of mutations with reduced
glutamate potency [42].
Patients with epilepsy and GRIN2A mutation may be
candidates for immunotherapy [41].

BDNF 11p13 (its locus
lays in close
proximity to ELP4
gene, which
enhances the
possibility that
BDNF and ELP4 act
together in BECTS
[36].

Brain-derived neurotrophic factor – involved in
development, degeneration and differentiation
of central nervous system. It appears to play an
important role in epileptogenesis in the
hippocampus specifically as an effector of
recurrent epileptic seizures in the dentate
gyrus [35,36]. The concentration of BDNF in
serum is associated with disease severity in
people with epilepsy, as decreases in serum
BDNF are correlated with seizure frequency
[35].

Hyperexcitability (epilepsy). Currently not available.
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Table 1 (Continued )

Mutated
molecule/
proteins

Gene location Molecular mechanism Disorders with this mutation Targeted therapy

KCNQ2, KNCQ3 20q.30.13 – KNCQ2
[47].
8q24 – KNCQ3
[48].

Potassium voltage-gated channel subfamily Q
members 2 and 3. They represent the
molecular basis of the M-current (IKM), with a
critical role in spike frequency adaptation and
control of neuronal excitability, which defects
are responsible for BFNC (benign familial
neonatal convulsions) BFNC type 1 is said to
later develop to BECTS in some cases [47,49].
Among epileptic conditions linked to
channelopathies, potassium channel subunits
mutations represent the largest category, most
of which were found in KCNQ2 [50].

Pathologic reduction in KCNQ2/3 channel
activity is involved in different classes of
seizures, including BECTS, neuropathic pain,
migraine, anxiety, attention deficient-
hyperactivity disorder, schizophrenia, mania,
and bipolar disease [51,52].
Both loss-of-function and gain-of-function
KCNQ2 variants can lead to various forms of
neonatal epilepsy, majority are loss-of-
function [53].

Protein arginine methyltransferase 1 (Prmt1) opens
KCNQ by methylation, preventing neuronal
hyperexcitability and seizures [50].
Retigabine (RTG)/Ezogabine (EZO) – a KCNQ agonist and
Flupirtine, its closely-related analog (nonopioid
analgesic), the only KCNQ openers approved for human
use by the U.S. Food and Drug Administration (FDA),
but has recently been limited due to rising concerns
regarding its adverse effects [54,55].
RL648_81 new specific KCNQ2/3 activator, mutated
from RTG, 15 times more potent and also more
selective than retigabine [52].
Over-expressing calmodulin protein opens KCNQ,
tending to hyperpolarize neurons and decrease
excitability [56].

DEPDC5 22q12.2-q12.3 –

mutation in 22q12
causes familial
focal epilepsy with
variable foci-1
(FFEVF1) [57–59].

DEP Domain-Containing 5 gene also known as
KIAA0645. Responsible for neuronal signal
transduction [58]. Forms a part of the GATOR1
(GAP activity toward rags) complex, a negative
regulator of the mammalian target of
rapamycin (mTOR) pathway. Loss-of-function
mutations in DEPDC5, an inhibitor of the mTOR
pathway could conceivably contribute to
hyperexcitability.
DEPDC5 mutations are the most frequent cause
in familial focal epilepsies, and differ from any
other mutations in ion channel encoding genes
by the presence of cortical malformations [60].
To date it is the most common cause of familial
focal epilepsies.

Various mutations ranging from apparently
nonlesional focal epilepsies to malformation-
associated focal epileptic syndromes, i.e. focal
cortical dysplasia (FCD) and
hemimegalencephaly.
Families may show patterns that are effectively
subsets of FFEVF, individuals with BECTS have
also been described [59,60].

Targeted mTOR therapies – DEPDC5 agonists would
likely be anti-epileptogenic and more selective than
currently available mTOR inhibitors [5,61].

RBFOX1/3 16p13 – RBFOX1
[62].
17q25.3 – RBFOX3
[63].

The RNA-binding Fox (Rbfox) family of splicing
factors is comprised of three members, Rbfox1
(Fox-1 or A2BP1), Rbfox2 (Fox-2 or RBM9), and
Rbfox3 (Fox-3, HRNBP3 or NeuN).
Deletion of the RBFOX1 gene results in
heightened susceptibility to spontaneous and
kainic acid-induced seizures, displayed
electrophysiologically in the dentate gyrus
[63–66].

BECTS (RBFOX 1 and 3), ASD, mental
retardation, epilepsy, CTS without seizures,
mental retardation, seizures, hypotonia,
uneven gait, mild facial dysmorphism,
fluctuating liver enzymes, and features of
autism [62,66,67].

Currently not available.
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adult life. Adults who had recovered from BECTS did not have
general negative outcomes in the field of development,
education, employment, and social adaptation [26].

Atypical BECTS is less common, the seizures occur only in
the daytime, Todd's paralysis may be prolonged or even
transform into status epilepticus. It is more prone to develop
unfavorable syndromes with neuropsychological impair-
ments, such as LKS or CSWS containing EEG pattern known
as Epileptic encephalopathy with status epilepticus in sleep
(ESES) [5,11]. On the other hand CSWS and LKS can evolve from
typical too BECTS in 1.3–4.6% cases [1,27]. Slowing or
regression of cognitive development in children with epilepsy
is primarily due to neural network malfunction caused by
seizures and abnormal interictal activity (cortical or subcorti-
cal or both) [2,22]. In BECTS learning difficulties can persist
even after a long-lasting seizure free period. Progressive
cognitive dysfunction predominates the clinical symptoms
among the group called epileptic encephalopathies (BECTS,
LKS, CSWS) [28]. The most crucial features were summarized
in Table 2.

Rolandic area is thought to be associated with ADHD,
particularly impulsivity [11,29]. Children with rolandic
spikes present lower result of neuropsychological assess-
ment and exhibit more symptoms of hyperactivity impul-
sivity than those without EEG discharges [30]. Seizures in
ADHD are more often focal than generalized and appear in 6
to 53% cases [31].

Highly prevalent cognitive limitations in RE, present in 40%
of patients during the active phase of disease, are reading
disability (RD), speech sound disorder (SSD) and language
impairment [3]. These symptoms may be common in families
of BECTS patients and may be preceding seizures [20,32]. SSD
resolves around 5–6 years of age. RD is commonly associated
with BECTS and might have a pervasive impact on school
outcome and merits early recognition and intervention.

Among other problems which may be seen in these
patients are neurobehavioral problems, visuomotor impair-
ments, spatial perception impairments, orientation problems,
psychiatric disorders, dyscalculia and dyslexia [1]. BECTS
patients perform significantly worse than controls at tasks of
expressive language, verbal learning efficiency, motor and
psychomotor speed and dexterity [6,21], prompting a re-
evaluation of the ‘‘benign’’ nature of this epilepsy. Implemen-
tation of the treatment should be considered in an early phase
of the disease to suppress IEDs and prevent further progres-
sion of deficits.

5. Therapy management and drug selection
Seeing as the course of the disease is oftentimes benign, the
need for treatment implementation has been debated for
decades. Children do not need AED when seizures are
infrequent, mild or nocturnal only. Treatment also seems to
be unnecessary when disease onset is close to the natural
range of remission, which is said to be after 2–4 years from
onset and before the age of 16 years [4,19]. Most patients will
not require anticonvulsant therapy except for the patients
who develop daytime seizures, very frequent nocturnal
seizures, as well as patients who evolve to ESES or develop
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Fig. 2 – Centrotemporal spikes occurring bilaterally shifting to the left side.

[(Fig._3)TD$FIG]

Fig. 3 – discharges occurring on the left side with the phase return over the central temporal area, single SW (spike-and-wave)
complexes.
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[(Fig._4)TD$FIG]

Fig. 4 – discharges in left central temporal and central area, single SW (spike-and-wave) complexes.

[(Fig._5)TD$FIG]

Fig. 5 – Bilaterally and independently on the left and right side, synchronically, with the phase return over the central
temporal and central region, SW complexes with left side dominancy.
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[(Fig._6)TD$FIG]

Fig. 6 – Right sided discharges with the phase return over the cantral temporal and central area, single SW complexes.

[(Fig._7)TD$FIG]

Fig. 7 – Right sided discharges with the phase return over the cantral temporal and central area.
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Table 2 – Summary on epileptic encephalopathies.

BECTS CSWS LKS

Incidence � 8–25% of childhood epilepsies
� Male to female ratio 3:2

� 0.2–0.5% of childhood epilepsies
� Male to female ratio 3:2

� Rare (>300 described cases)
� Male to female ratio 2:1

Age of onset
(peak)

� 3–15 years
(peak 7–10 years)

� 2 months–12 years
(peak 4–5 years)

� 2–10 years
(peak 5–7 years)

Clinical symptoms � Majority have mild infrequent seizures, 10–20%
have only one seizure ever, 20% have frequent
seizures, mostly nocturnal (parents and children
often do not realize that the child is having
seizures)
� Neuropsychological deficits are visible during the
active phase of the disease (i.e. speech sound
disorder, reading disorder, linguistic problems)
which may affect development and bring
educational problems
� Rarely anxiety, depression
� No neuroradiological abnormalities, or subtle
cortical volume losses in particular areas

� Seizures are initial symptoms in 80% of patients,
they occur in vast majority of the patients
� Neuropsychological disturbances are initial
symptoms in 20%
� Decline in intellectual performance happens
during the ESES period
� Rarely psychotic episodes can be present
� Common neuroradiological abnormalities (33–
50% of the patients), mostly thalamic prenatal/
perinatal injuries (hemorrhagic/ischemic),
furthermore unilateral or diffuse atrophy,
porencephaly, pachygyria, cortical development
disorders, perisylvian polymicrogyria,
hydrocephalus

� Seizures are initial symptoms in 60%, they occur
in 70–80% of patients, 20–30% do not have seizures
at all
� Aphasia is initial symptom in 40%, acquired
childhood aphasia (loss of receptive and later
expressive language) in previously normal children
who developed age-appropriate speech. The most
often is verbal agnosia. Behavioral disturbances are
common (50–70%), usually are connected to the
language, intellect is unimpaired
� Rarely acute anxiety can be present
� No brain lesions or very subtle, volumetric
changes seen in MRI - volume reduction in the
temporal cortex

Seizure characteristics � Sensorimotor symptoms including face
unilaterally oropharyngolaryngeal symptoms,
speech arrest and hypersalivation. Generalized
tonic–clonic seizures sometimes with consequent
Todd's hemiparesis.
� Infrequent nocturnal seizures, and rare daytime
seizures, benign and self-limited

� Generalized tonic–clonic, simple partial motor,
absence or atypical absences, unilateral status,
atonic seizures leading to falls
� Numerous seizures a day, often nocturnal,
benign and self-limited

� Generalized clonic, simple partial motor, atypical
absences, unilateral status, no atonic seizures,
subtle seizures (motor or sensory)
� Infrequent seizures, often nocturnal, benign and
self-limited

EEG features � Usually normal background activity, rare
generalized SWs, central in 30%, low central 70%,
centrotemporal focal or multifocal discharges,
unilateral or/and bilateral, activated by non-REM
sleep

� Usually normal background activity, frequent
generalized SWs (SW index >85%) – more or less
unilateral or focal, ESES pattern (SW index of 85–
100%), frontotemporal and frontocentral focus of
discharges, persisting on three or more recordings
over a period of at least 1 month, EEG patterns
occurs during night as soon as the patient falls
asleep (non-REM)

� Usually normal background activity, rare
generalized SWs, mainly temporal,
posterotemporal and parietooccipital focus of
discharges, paroxysmal EEG abnormalities that
increase during sleep (REM) - increase in discharge
rate and a wider spread of the paroxysmal
activities, pattern may also present features of ESES

Drug response � Seizures are easily controlled, some patients may
not need the treatment at all
� Rarely BECTS is resistant for medication
� Rarely reversible, linguistic, cognitive and
behavioral problems during active phase,
symptoms are more noticeable when disease
starts earlier
� Prognosis is very good

� Seizures are easily controlled
� Carbamazepine, phenytoin and phenobarbital
can precipitate CSWS in some children
� Recovery is possible spontaneously and after
treatment (drugs, steroids, IgG, subpial
transection)
� Prognosis is poor after long duration of ESES (>3
years)

� Seizures are easily controlled
� Outcome is worse if the deficits emerge earlier
than seizures
� Carbamazepine and phenytoin may aggravate
seizures, even lead to ESES
� Recovery is possible spontaneously and after
treatment (drugs, steroids, IgG, subpial transection)
� After months to years aphasia stabilizes and
usually improves before adulthood
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status epilepticus. These groups of patients need special
attention instead of ‘‘wait-and-see’’ strategy [1].

Which drug should be chosen as initial treatment is not
easy to determine. According to Pediatric expert consensus
survey drugs of first choice are oxcarbazepine and carbamaz-
epine. International League Against Epilepsy (ILAE) recom-
mend carbamazepine and valproic acid [33]. NICE
recommends carbamazepine (CBZ), lamotrigine (LTG), levetir-
acetam (LEV), oxcarbazepine (OXC) and valproic acid (VPA) as a
first-line monotherapy [18,19]. In light of the relatively few
adverse effects during drug therapy with LEV, many clinicians
use it as the first-line medication. International practice
diverges widely: Sulthiame (which is said to be deteriorating
cognitive functions) is considered as a first-line in Germany,
Austria, Japan and Israel. VPA respectively in France, and LEV
in USA. Polish recommendations include carbamazepine and
lamotrigine as the first-line treatment, and levetiracetam and
oxcarbazepine as a second line [34]. Children with bilateral
findings on EEG a similar, good response to treatment with
either sodium valproate or carbamazepine or oxcarbazepine.
However children with unilateral findings on EEG were found
to respond better to Carbamazepine or Oxcarbazepine [4].

Whether regular AED treatment overall mitigates or
exacerbates the frequent cognitive and attentional comorbid-
ities is still a matter of debates [19]. Seizure-free patients
(seizures cessation for at least 12months) have greater cortical
thinning in MR imaging, exhibit higher baseline IQ scores and
socioeconomic status (reflected in parental education) when
compared to the nonremitted subgroup [21].

6. General conclusion
Knowledge about BECTS is growing in thanks to the efforts of
clinicians to assess comorbities of the syndrome. Until recent
years management was mostly wait-and-see strategy. Aside
from seizures, cognitive and behavioral comorbidities cause
substantial impact affecting about 2/3 children with this
syndrome. BECTS children can avoid AED, becausemost of the
abnormalities undergo long-lasting remission during adoles-
cence with accompanying EEG improvement. Recent genetic
discoveries of BECTS origins bring hope for targeted antiepi-
leptic therapy and improvement of life quality of the patients.
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