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a b s t r a c t

Although neurons are themain source of neurotrophins in the healthy brain, neurotrophins

can also be expressed in the immune system. We have previously shown that in relapsing-

remitting multiple sclerosis (RRMS) lower immune-cell neurotrophin levels are associated

with brain atrophy and cognitive impairment. The aim of the present study was to assess if

immune-cell neurotrophin expression is impaired in MS as compared with the healthy

controls, and to describe if these levels change in treatment-naïve RRMS patients, following

one year of immunomodulation.

Fifty treatment-naïve RRMS patients were assessed at baseline and after one year of

immunomodulation (beta-interferons/glatiramer acetate). The control group included 39

healthy subjects matched according to age and gender. Peripheral blood mononuclear cells

(PBMCs) were isolated from heparinized blood using Ficoll-Histopaque gradient. The levels

of brain-derived-neurotrophic-factor (BDNF), beta-nerve-growth-factor (beta-NGF), neuro-

trophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) were measured in PBMC lysates with ELISA.

BDNF levels were significantly lower in MS than in the healthy controls (median 613 vs.

1657 pg/mg protein, p < 0.001). After one year of immunomodulation, BDNF expression did

not change significantly ( p = 0.06) on the group level. In 70%of patients therewas no increase

in BDNF level, and in 30% it increased. We observed no differences between treatment

ophins were detected in a minority of MS samples (as opposed to the
controls).
groups. Other neurotr
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To conclude, we have shown that immune-cell production of neurotrophins is impaired

inMS patients. In our MS cohort standard immunomodulation failed to restore normal BDNF

levels in PBMCs within one year of therapy.

© 2018 Polish Neurological Society. Published by Elsevier Sp. z o.o. All rights reserved.
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1. Introduction
Multiple sclerosis (MS) is an autoimmune disorder of the
central nervous system (CNS), in which both, neuroinflamma-
tory and neurodegenerative components, are responsible for
endpoint disability in patients. So far it has not been
established to which degree neurodegeneration can be
independent of inflammation in MS. The interrelationship
between the two components is complex. Although in MS
inflammation drives neurodegeneration bymeans of oxidative
stress and mitochondrial dysfunction [1], it can also exert
neuroprotective effects, such as provided by immune-cell
production of neurotrophic factors [2].

Neurotrophic factors are a family of polypeptides involved
in neuronal development [3], survival [4] and synaptic
plasticity [5]. They include neurotrophins, namely brain-
derived neurotrophic factor (BDNF), nerve growth factor
(NGF), neurotrophin 3 (NT-3) and neurotrophin 4/5 (NT-4/5).
Neurons are the main source of neurotrophins in the healthy
brain. However, when faced with MS-related damage, the
additional supply of neurotrophins by peripheral blood
mononuclear cells (PBMCs), which enter the brain via
disrupted blood-brain barrier (BBB), could be essential in
neuroprotection, especially in the periplaque area. It was
previously shown, both in vivo and in vitro, that oligoden-
drocytes and astroglial cells serve as cellular targets for
neurotrophins via trk receptors [6]. Neurotrophins, especially
NT-3, were shown to regulate oligodendrocyte differentiation,
which is the key process in remyelination [7]. Therefore, itmay
be hypothesized that in the periplaque area, where neuroin-
flammatory activity is the highest and so is the need for
oligodendrocyte-mediated remyelination, immune cell-de-
rived neurotrophic factors are key mediators of neuroregen-
eration and neuroprotection.

Following the concept of neuroprotective autoimmunity,
we have previously shown that in relapsing-remitting MS
(RRMS) patients neurotrophin levels are associated with
general measures of brain atrophy, including brain paren-
chymal fraction (BPF) and corpus callosum cross-sectional
area [8], and cognitive impairment [9]. We concluded that
among RRMS patients, impaired immune-cell production of
neurotrophins could be reflected by worse clinical outcome,
as measured with brain atrophy and cognitive dysfunction
parameters. Both these studieswere of cross-sectional design
and did not relate PBMC expression of neurotrophins in MS
with the one in the healthy individuals. Therefore, one could
not have assumed that allMSpatients had impaired immune-
cell production of neurotrophins. So far, only few studies
measured neurotrophin expression within PBMCs in MS
patients, mostly with regards to BDNF, while there is a
number of papers assessing serum levels of neurotrophic
factors. Serum BDNF levels, however, have not been consid-
ered reliable correlates of disease activity [10],mostly because
the majority of serum BDNF stems from platelets, and not
from immune cells [11]. As for immune cell source of
neurotrophins, in one study BDNF was shown to be produced
at lower levels than in PBMCs of the healthy controls [12]. In
another study BDNF production by PBMCs was found to be
increased during relapse phase, as compared with the
remission and secondary progression [13]. On the contrary,
Gielen et al. showed that BDNF expression (here assessed by
mRNA levels, andnotprotein expression)was increased inMS
as opposed to healthy controls and other neurological
diseases [14].

The aim of the present study was to establish whether
immune-cell production of neurotrophins is indeed impaired
in treatment-naïve RRMSpatients. Also,wewanted to assess if
standard immunomodulatory treatment ofMS could influence
neurotrophin expression.
2. Methods

2.1. Patient population

Fifty-four patients diagnosed with relapsing-remitting multi-
ple sclerosis according to the 2010 revised McDonald criteria
[15] were screened and fifty were included in the study. The
flow diagram of the study progress is presented in Fig. 1. All
patientswere treatment-naïve at the time of inclusion into the
study. Theywere recruited consecutively in the Department of
Neurology at the time of initiation of their immunomodulatory
treatment, within 12 months of recruitment period. The study
protocol was approved by the Internal Review Board at the
Poznan University of Medical Sciences. All patients consented
to the study in writing.

The study group consisted of 30 females and 20males, with
the mean age of 37 � 9 years (min 18, max 64), median disease
duration of 0.58 years (min 0.08, max 12.42 years) and median
Expanded Disability Status Score (EDSS) of 2.0 (min 0.0, max
4.0). Clinical examination and blood sampling were performed
at baseline, which was before therapy initiation, and after one
year from treatment onset. All patients received standardfirst-
line immunomodulatory drugs, namely beta-interferons (in 38
subjects) or glatiramer acetate (in 12 subjects). At follow up all
patients were assessed clinically, including calculation of the
Rio Score [16] and the complete set of study variables was
assessed in 35 subjects.

The control group consisted of 39 healthy control subjects
matched according to age and gender to MS study group.
Written informed consent was obtained from control subjects,
as well. Asymptomatic CNS pathology, especially radiological-
ly isolated syndrome (RIS), was excluded in the healthy
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Fig. 1 – Flow diagram of the study progress. Abbreviations: MS – multiple sclerosis, PPMS – primary progressive MS.
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controls with the use of standard magnetic resonance
imaging.

Exclusion criteriawere as follows: any history of psychiatric
disorders, the use of antidepressants or other psychotropic
drugs, alcohol abuse, malignancies, previous immunomodu-
latory treatment inMS subjects, intravenous steroid treatment
within 2 months from blood sampling, other chronic diseases.

2.2. Laboratory protocol

Peripheral blood mononuclear cells (PBMCs) were isolated
from patients' heparinized blood using Ficoll-Histopaque
(Sigma–Aldrich) gradient method. Samples were kept frozen
at �80 8C until further analysis. Before measurement of
neurotrophin concentrations, PBMCs were resuspended in a
lysis buffer (NaCl, Tris–HCl, EDTA) with Triton X-100 (Sigma–
Aldrich) and a proteinase inhibitor cocktail (Sigma–Aldrich).
The protein content was determined using the Lowry method
[17]. BDNF, beta-NGF, NT-3 and NT-4/5 levels were measured
in PBMC lysates with the use of ELISA method, according to
manufacturer's instructions (MultiNeurotrophin Rapid
Screening ELISA Kit: Human, Biosensis Pty Ltd, Australia).
Neurotrophin concentrations were expressed as relevant
weight units per one milligram of the protein.

2.3. Statistical analysis

Statistical analysis was performed with the use of MedCalc
Statistical Software version 15.8 [MedCalc Software bvba,
MedCalc statistical software, Ostend, Belgium (2015) https://
www.medcalc.org]. Distribution of variables was evaluated
using d'Agostino-Pearson normality test. The values were
expressed as the mean and standard deviation (SD) for
normally distributed variables and median and interquartile
range (IQR) for parameters without normal distribution.

To compare the values between groups, t-test was used for
variables with normal distribution and the nonparametric
Mann–Whitney U test was used for variables with non-normal
distribution. The p-value ≤0.05 was considered statistically
significant.

https://www.medcalc.org/
https://www.medcalc.org/
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Fig. 2 – Comparison of immune cell BDNF levels in relapsing-remitting multiple sclerosis patients and in the healthy controls.
(A) Box and whiskers plots for PBMC BDNF levels. (B) ROC curve analysis of discrimination between RRMS patients and
healthy controls based on BDNF level in PBMCs. Abbreviations: RRMS – relapsing-remitting multiple sclerosis, PBMC –

peripheral blood mononuclear cells, AUC – area under the curve, BDNF – brain-derived neurotrophic factor.
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Receiver operating characteristic (ROC) curve analysis was
applied to discriminate between MS and healthy controls,
using neurotrophin concentrations. Calculated sensitivity and
specificity pairs for each concentration threshold were used to
create the ROC curve. The area under the curve (AUC) was
calculated. Sensitivity, specificity and positive and negative
predictive values were calculated for maximum accuracy
threshold.

In order to assess the change in neurotrophin levels after
one year of immunomodulation, the Wilcoxon signed-rank
test was used.
3. Results

3.1. Comparison of PBMCs neurotrophin expression in MS
and in the healthy controls

BDNF expression was detected in all MS and healthy controls
PBMCs samples.

BDNF levels were significantly lower in MS than in the
healthy control group (median 628 pg/mg protein,min 34,max
3815 vs. 1657 pg/mg protein,min 417,max 5858 pg/mg protein,
p = 0.0002), see Fig. 2A.
Table 1 – Detection level of different neurotrophins in multiple

BDNF NGF

Baseline After 1 year
of therapy

Baseline After 1 year
of therapy

MS 100% 100% 33% 29%

HC 100% n/a 92% n/a

Abbreviations: MS – multiple sclerosis, HC – healthy controls, BDNF – brain
neurotrophin 3, NT-4/5 – neurotrophin 4/5.
NGF and NT-4/5 were detected in significantly fewer MS
PBMCs samples (33% for NGF and 35% for NT-4/5) than in the
healthy controls (92% for NGF and 81% for NT-4/5).

NT-3 was detected in 37% of MS samples and in 30% of
healthy subjects PBMCs samples.

The detection pattern of different neurotrophins in MS,
including baseline and follow-up data, and in the healthy
controls cohorts is presented in Table 1.

We used ROC curve analysis to establish optimal accuracy
of our cutoff BDNF level value to discriminate between MS
patients and healthy controls, which was 1023 pg/mg protein
(sensitivity 0.65, specificity 0.78, area under the curve, AUC
0.75, p < 0.001), see Fig. 2B.

3.2. PBMCs neurotrophin expression in MS patients before
and after one year of immunomodulation

After one year of immunomodulation (beta-interferons or
glatiramer acetate) BDNF expression did not change signifi-
cantly (median 627.92 vs. 268.14 pg/mg protein, p = 0.06) on the
group level. On the individual level, in 70% of patients there
was no increase in BDNF level, and in 30% the level of BDNF
increased. In comparison to the healthy control group, it was
still significantly lower (p < 0.0001).
sclerosis and healthy controls study cohorts.

NT-3 NT-4/5

Baseline After 1 year
of therapy

Baseline After 1 year
of therapy

37% 33% 35% 45%

30% n/a 81% n/a

-derived neurotrophic factor, NGF – nerve growth factor (NGF), NT-3 –



n e u r o l o g i a i n e u r o ch i r u r g i a p o l s k a 5 2 ( 2 0 1 8 ) 4 8 3 – 4 8 9 487
Weobserved no differenceswith regards to BDNF change in
different treatment group (p = 0.12 for glatiramer acetate and
p = 0.57 for beta-interferons).

Also, no changes were observed in the detection of other
neurotrophins (after one year NGF was detected in 29% of
samples, p = 0.29; NT-3 in 33% of samples, p = 0.96, and NT-4/5
in 45% of samples, p = 0.77).

3.3. Correlation analysis for PBMC neurotrophin
expression and clinical parameters in MS patients

Correlation analysis was conducted only when neurotrophin
detection was higher than 75%, which was the case for BDNF
expression only.

We found that BDNF PBMC concentration at baseline did
not correlate with any of the clinical parameters, including
EDSS (Spearman r = �0.11, p = 0.47), disease duration (Spear-
man r = �0.05, p = 0.73), or age (Spearman r = �0.09, p = 0.57). It
did not correlate with annualized relapse rate after one year of
immunomodulation (Spearman r = �0.17, p = 0.27), or with Rio
Score calculated after one year of therapy (Spearman r = �0.28,
p = 0.1).

3.4. Comparison of clinical outcomes in subgroups of
patients with BDNF increase and non-increase after one year
of immunomodulation

We found that annualized relapse rate and Rio Score were
higher in BDNF non-increase subgroup, however, these
findings failed to reach statistical significance (median Rio
Score 0,min 0, max 1 for BDNF increase vs.median Rio Score 1,
min 0, max 2 for BDNF non-increase subgroup, p = 0.07).

4. Discussion
In the present study we confirmed our hypothesis, based on
our previous findings [8,9] that immune-cell production of
neurotrophins is impaired inMS patients.We found that BDNF
was expressed in all samples of the study and control cohorts,
however, its level was significantly lower in MS than in the
healthy controls. While the detection of NGF and NT-4/5 was
significantly lower in MS patients than in the controls, NT-3
was poorly expressed in both, MS and healthy subjects
samples. Such discrepancy between NT-3 and other neuro-
trophins might be related to sample size, which was relatively
small. However, it may also be due to different biology of NT-3,
which is produced by T and B cells, but seems absent in
macrophages [18], while BDNF, beta-NGF and NT-4/5 are
secreted by all immune cells [19].

In our MS cohort standard immunomodulation failed to
restore normal BDNF levels in PBMCs within one year of
therapy. Importantly, immunomodulation did not affect PBMC
ability to produce neurotrophins, either. While it would be
encouraging to see that immune-cell BDNF production is
enhanced by standard immunomodulatory treatment, one
has to appreciate that it does not impair BDNF expression any
further. By definition, immune-directed therapies are
designed to restore the natural balance between pro- and
anti-inflammatory components of the immune response in
MS. Such mode of action could theoretically decrease the
protective potential of autoimmune reaction, as well. Howev-
er, our results deny this hypothesis.

In our study we analyzed patients receiving standard
injectable immunomodulation, namely beta-interferons and
glatiramer acetate. There is a large body of evidence that
glatiramer acetate exerts a neuroprotective effect both, in vitro
and in vivo. It was previously shown that glatiramer acetate
could lead to enhanced BDNF expression in animal models
[20,21]. Several studies provided conflicting results with
regards to glatiramer acetate impact on BDNF expression in
MS [22,23]. Whether this effect is clinically relevant in humans
remains to be established. In our cohort there were only 12
patients treated with glatiramer acetate, which is too small a
sample to draw definite conclusions. As for beta-interferons,
they were also shown to influence BDNF levels in vivo.
Mehrpour et al. found increased serum BDNF levels in MS
patients on beta-interferons, as opposed to patients on
mitoxantrone or receiving no immunotherapy [24]. Moreover,
they found that higher BDNF levels were associated with
smaller disability in their MS cohort. Another group found that
T-cell BDNF production and trkB expression was enhanced in
MSpatients receiving beta-interferons, in comparisonwith the
untreated group [25].

Similar findings were observed in other studies [26,27]. Our
results do not confirm positive influence of first-line therapies
on BDNF levels, however, they need to be interpreted with
caution, as the sample size is relatively small. It is worth
emphasizing that among clinical studies on MS patients, and
not animal models, our study is one of the very few that
analyze the whole spectrum of neurotrophins, including NGF
(only 2 studies published with regards to beta-interferons
[28,29] and nonewith regards to glatiramer acetate), NT-3 (one
study with regards to glatiramer acetate [21], none with beta-
interferons) and NT-4/5 (two studies for interferons [28,30],
and one with glatiramer acetate [21]). Although we present
detection data for NGF, NT-3 and NT-4/5, and direct level
measurements for BDNF only, our study manages to present
novel findings with regards to immune-cell neurotrophin
expression in RRMS patients.

The limitations that we need to recognize are a relatively
small sample size, which did not allow adequate comparison
of different immunomodulatory therapies, and a relatively
short follow-up period (12 months). This could be the reason
for the fact that we did not observe any correlations between
BDNF expression and clinical parameters in our MS group.
Also, it would be interesting to supplement our study with
assessment of BDNF polymorphisms in the studied subjects.

Undoubtedly, the advantages of our study include its
prospective design, availability of longitudinal data, and
treatment-naïve cohort that represents the early phase of
MS course (median disease duration is 0.58 years).

Our data, suggesting that BDNF production is indeed
impaired in MS patients, are especially relevant in the context
of BDNF being a potential regulator of the number of
oligodendrocyte progenitor cells, thus influencing the re-
sponse to demyelination at acute lesion site [31,32]. If this was
the case, immune-cell production of BDNF could be a
compensatory response to white matter injury resulting from
acute demyelination. As we have suggested previously,
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heterogeneity among MS patients in the ability to upregulate
immune neurotrophin production, could correspond with
heterogeneity in disease severity, with high neurotrophin
producers being protected from periplaque damage in the long
term. Moreover, it has been indicated that BDNF molecular
target can be influenced by small molecules that improve
remyelination in injury models [33]. Such approach could be
potentially useful in treatment of MS relapses.
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