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Introduction: Gliomas are commonly associated with the development of epilepsy; in some

cases the two conditions share common pathogenic mechanisms and may influence each

other. Brain tumor related-epilepsy (BTRE) complicates the clinical management of gliomas

and can substantially affect daily life.

State of the art: The incidence of seizures is high in patients with slow growing tumors

located in the frontotemporal regions. However, recent studies suggest that epileptogenesis

may be more associated with tumor molecular genetic markers than tumor grade or

location. Although the exact mechanism of epileptogenesis in glioma is incompletely

understood, glutamate-induced excitotoxicity and disruption of intracellular communica-

tion have garnered the most attention.

Clinical management: Management of BTRE requires a multidisciplinary approach involving

the use of antiepileptic drugs (AEDs), surgery aided by electrocorticography, and adjuvant

chemoradiation.

Future directions: Insight into the mechanisms of glioma growth and epileptogenesis is

essential to identify new treatment targets and to develop effective treatment for both

conditions. Selecting AEDs tailored to act against known tumormolecular markers involved

in the epileptogenesis could enhance treatment value and help inform individualized

medicine in BRTE.

Published by Elsevier Sp. z o.o. on behalf of Polish Neurological Society.
1. Introduction
Epileptic seizures often develop in patients with gliomas
(40–70%) and approximately 30% are pharmacoresistant even
after glioma resection [1,2]. Brain tumor-related epilepsy (BTRE)
is characterized by symptomatic seizures due to the presenceof
a brain tumor, manifesting as focal aware or focal impaired
awareness, generalized tonic–clonic, or focal to bilateral tonic–
clonic seizures [3–5]. The incidence of seizure is higher in
* Corresponding author at: Department of Neurology, Mayo Clinic, 450
E-mail address: Feyissa.Anteneh@mayo.edu (A.M. Feyissa).

https://doi.org/10.1016/j.pjnns.2018.06.001
0028-3843/Published by Elsevier Sp. z o.o. on behalf of Polish Neurolo
patients with slow growing, low-grade tumors located in the
frontal and temporal lobes [2]. However, recent studies suggest
that epileptogenesis may be more associated with molecular
genetic markers than tumor grade or location [1,3].

Although glioma-related seizures have favorable effects on
the overall survival of glioma patients, increased seizure
burden and refractory seizures affect quality of life, causes
cognitive deterioration, and significant morbidity [2]. To date,
there is no standard of care for the management of BTRE.
Despite tremendous progress in the field of neuro-oncology,
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the pathogenesis of BTRE is also incompletely understood.
Insight into the mechanisms of glioma growth and epilepto-
genesis will provide the opportunity to develop interventions
that target the dysregulated processes [1]. The aim of this
review article is to discuss key topics in BTRE including
epidemiology, epileptogenesis, and management with focus
on adult glial-based tumors.
2. Epidemiology

2.1. Prevalence

Globally, cerebral gliomas of all grades account for 28% of all
brain tumors and have an incidence of 3–6 per 100 000 per year,
with nearly 80 000 new cases of primary CNS tumors in the
USA estimated to be diagnosedwithin the year 2018 [6,7]. BTRE
is estimated to occur in 40–70% of patients with glioma and
pharmacoresistence occurs in 8–40% [6–10].

2.2. Risk factors

Identification of predictors of epileptic seizure in patients with
glioma is valuable as epilepsy carries a substantial degree of
morbidity and mortality [8,9]. The lifetime risk of epileptic
seizures in patients with primary brain tumors varies by age,
tumor grade, location, and size [8–16]. The incidence of
preoperative seizure is lower in high grade brain tumors such
as glioblastoma and primary CNS lymphoma, but higher in
some lower grade tumors [8–10,17]. The probability of
developing epilepsy ranges from 10% in primary lymphomas
to 100% in dysembryoblastic neuroepithelial tumors (DENTs)
[8,16,17]. Epilepsy has been reported to occur in up to 90%
patient with low-grade gliomas [8,9]. Seizures also occur more
commonly in patients with tumors located in cortical regions
as opposed to subcortical areas, with a seizure frequency of
56% compared with 15%, respectively [8–11]. A summary of
seizure prevalence and prognosis by tumor type is provided in
Table 1.

Preoperative seizure incidence is highest in gliomas located
in the frontal and temporo-insular regions [8,10,17]. Recent
Table 1 – Seizure prevalence and prognosis in brain tumor-rela

Seizure frequen

Glioneuronal tumors
Dysembryoblastic neuroepithelial tumor 90–100%
Ganglioglioma 60–95%

Low-grade glioma
Astrocytoma 50–75%
Oligodendroglioma 75–85%
Diffuse gliomasb 60–80%
Anaplastic gliomasc 45–60%
Glioblastoma multiforme 30–45%
Meningioma 30–40
Primary CNS lymphoma 10–15%
Brain metastasis 20–35%
a With gross-total resection and AEDs.
b Diffuse astrocytoma, diffuse oligodendroglioma, oligoastrocytomaa, ple
c Anaplastic astrocytomas, anaplastic oligodendroglioma, and anaplastic
studies, however, suggest that epileptogenesismay havemore
to do with tumormolecular genetic markers than tumor grade
or location [1,13]. Gliomas with an isocitrate dehydrogenase-1
(IDH1) mutation or an over expression of p53 overexpression
(>40%), have a higher rate of seizures [13]. Similarly, secondary
glioblastoma (i.e. those emerging from lower-grade gliomas)
carries an increased likelihood of IDH1 mutation and seizures
[13]. Other factors influencing preoperative seizure occurrence
include premorbid epilepsy, tumor recurrence, and concomi-
tant oncologic therapy [1,12].

Postoperative seizure control follows tumor activity and
tumor progression begets seizures while adjuvant chemo-
radiotherapy can reduce seizure burden [14]. In low-grade
gliomas, favorable prognostic factors for postoperative seizure
control are presence of pre-operative generalized seizures,
surgery within one year after presentation, gross tumor
resection, and successful preoperative control by AEDs [16].
To date, the exact biological and clinical factors that predis-
pose to the development of postoperative seizures in brain
tumor patients have not been established [18].

3. Clinical presentation
Seizures are commonly a presenting feature of supratentorial
gliomas; however seizures could also emerge late in the
disease course or as a result of oncologic treatments [1,2].
Seizure semiology mainly reflects the location of the lesion
and would manifest as focal aware, focal impaired aware,
generalized tonic–clonic, or focal to bilateral tonic–clonic
seizures [2]. In a recent study patients with low-grade glioma:
23.7% had focal motor aware, 6.6% focal with impaired
awareness, and 69.7% focal to bilateral tonic–clonic seizures
[19]. In contrast, patients with high grade glioma had a later
average age of onset with 38% focal motor aware seizures, 40%
focal to bilateral tonic–clonic seizures, and 14% mixed focal
and generalized onset seizures [19]. Patients can also present
with clinical or subclinical status epilepticus (more common
with high-grade gliomas) [20,21].

Preoperative seizures have favorable effects on the overall
survival of glioma [11,17]. Some patients will continue to have
ted epilepsy.

cy Seizure freedom rate with optimal therapya[4_TD$DIFF]

70–100%
60–90%

60–75%
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50–75%
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40–80%
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seizures after glioma resection, whereas some only start to
experience seizures following surgery [17]. As a sign, seizures
may accompany localizing and non-localizing symptoms
including focalmotor or sensory symptoms, irritability, altered
mental status, and dizziness. Seizures and their sequelae
could mimic tumor progression and prompt unwarranted
interventions. Seizure could also masquerade signs of in-
creased intracranial pressure, such as diplopia, nausea,
headache and decreased visual acuity. A recurrence or
worsening of seizures following first-line antitumor therapy
typically heralds progression of tumor [14,16].
4. Pathophysiology

The pathogenesis of BTRE remains poorly understood but
appears to be multifactorial [1–5]. Local inflammation, hypox-
ic-ischemic injury,metabolic changes anddisruption of blood–
brain barrier (BBB) have been suggested to promote epilepto-
genesis [22]. Disturbances at the cellular level including
alterations in synaptic andneuronal function and connectivity
and excitotoxicity and alterations in the expression of specific
genes and proteins relevant to intracellular communication is
one proposed mechanism that has recently gained traction
[1,22] (Fig. 1). The mechanism of preoperative seizures is likely

[(Fig._1)TD$FIG]

Fig. 1 – Proposed mechanisms of epileptogenesis in BTRE. BBB, b
Cl, chloride; CX43, connexin 43; cXT, cysteine-glutamate antiport
dehydrogenase 1; KCC, potassium chloride cotransporter; NKCC
beta 1; VEGF, vascular endothelial growth factor.
different from those of postoperative seizures [18,21,23]. In the
latter, surgical and effects of chemoradiotherapy are thought
to contribute to epileptogenesis.

4.1. Local direct effect

Historically, mechanistic theories to explain glioma-related
seizures have included architectural distortion of surrounding
cortex, vascular compression, cerebral ischemia, or lesional
hemorrhage [22,23]. The peritumoral microenvironment may
contribute to epileptogenicity via a multitude of avenues.
Increased vascular permeability from disruption of the BBB
may occur through tumoral down-regulation of transmem-
brane junctional proteins such as claudin-1, occludin, vascular
endothelial growth factor (VEGF), and transforming growth
factor-b (TGF-b) [24]. The ensuing increased peritumoral
edema could lead to alterations in the tumor microenviron-
ment, which may promote epileptic activity through the
activation of glutamatergic transmission [24]. The tumor itself
may also directly promote epileptogenesis by out-stripping of
its vascular supply, leading to hypoxia, tissue necrosis,
aberrant extracellular ionic concentrations, and acidosis
which could result in alterations in neuronal metabolism,
worsening of peritumoral edema, and release of inflammatory
mediators that foster epileptogenesis [22–24]
lood–brain barrier; BDNF, brain-derived neurotrophic factor;
er; EAAT, excitatory amino acid transporter; IDH1, isocitrate
, Na+–K+–ClS transporter; TGF, transforming growth factor
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4.2. Cortical hyperexcitability

4.2.1. Glutamatergic modulation
Glutamate appears to have a pivotal role in BTRE, with
elevated concentrations found within the peritumoral micro-
environment corresponding to a higher risk for seizure
development and recurrence [25–29]. Extracellular glutamate
concentrations are regulated in part by the cysteine-glutamate
antiporter (xCT) and the excitatory amino acid transporter
reuptake system (EAAT1 and EAAT2) [1,29–31]. Within glioma
tissue, xCThas been found to be upregulated, and is thought to
render a survival advantage by minimizing oxidative damage
through elevated glutathione levels in the relatively hypoxic
peritumoral microenvironment [27–31]. EAAT2 and glutamine
synthetase have also been found to be downregulated, and
further increase the extracellular glutamate concentration
[25–31]. The excess glutamate could result in excitotoxic
damage promoting epileptogensis [28,29].

Gathering evidence suggests that tumor growth stimulates
seizures and that seizures encourage tumor growth suggesting
the two conditions share common pathogenic mechanisms
and influence each other [33–35]. A close link exists between
seizures and glioma growth in that elevated extracellular
glutamate levels promote over-activation of a-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-
methyl-D-aspartate (NMDA) receptors in both conditions
[33,34]. The aberrant activation of NMDA and AMPA receptors
could promote tumor progression through influence on the
mGluR, mitogen-activated protein signal related kinase
(MAPK), phosphoinositide 3-kinase (PI3K/AKT) and the mam-
malian target of rapamycin (mTOR) pathways [33,35]. Activa-
tion of the PI3K andmTOR pathways leads to the expression of
the synaptic protein neuroligin-3 (NLGN3), which promotes
glial precursor cell differentiation and glioma growth [33].
Recently Venkatesh and collegues have elegantly demonstrat-
ed that excitatory neuronal activity promotes high grade
proliferation and growth in vivo by using optogenetic control
of cortical neuronal activity in a patient-derived pediatric
glioblastoma xenograft model [33]. However, further studies
are needed to reconcile this phenomenon with the rate of
seizures by glioma grade (higher with slow growing glioma),
location, genetic markers, and ongoing therapies.

4.2.2. g-Aminobutyric acid (GABA) modulation
GABA receptors are anionic ligand-gated channels, perme-
able most readily to chloride anions mainly promoting
neuronal inhibition [36]. Important in the modulation of
chloride homeostasis is the potassiumchloride cotransporter
(KCC2)which transports chloride anions into the extracellular
space [36–39]. Elevated extracellular glutamate concentra-
tions are known to downregulate KCC2 leading to elevated
intracellular chloride concentrations causing hyperpolariza-
tion of GABAergic neurons and leading to reduced network
inhibition [38]. Although GABA levels were higher in peritu-
moral tissue than in the tumor core, GABAergic synaptic
density onnearbypyramidal cellswas reduced. This leads to a
cumulative reduction in inhibitory postsynaptic potential,
which could foster epileptogenesis [37,38]. The dysregulation
of intracellular chloride and GABAergic activity has also been
suggested to promote glioma cell mitosis and migration,
further supportive of a shared mechanism between seizures
and glioma growth [40].

4.2.3. Changes in neuroplasticity
Gliomas could enhance axonal branching and synaptic
formation, creating hyperxecitablity and predisposition for
seizures [41,42]. This could potentially result in the alterations
of the neuronal network creating a conducive environment for
seizure propagation. One proposed mechanism is through
elevated peritumoral concentrations of matrix metallopepti-
dase 9 (MMP-9), promoting the conversion of pro-brain derived
neurotrophic factor (BDNF) to mature-BDNF [41,42]. This
results in increased activation of tropomyosin receptor kinase
B, which likely promotes axonal branching and results in
hyperexcitable circuits [40,42]. These two processes are further
augmented by chronic activation of NMDA receptors in the
setting of elevated extracellular glutamate. These pathways,
together with abnormal neuronal morphology and pathologic
synaptic plasticity, may further promote epileptogenesis [41].

4.3. Genetic alterations

Several molecular biological factors including IDH1, p53, O6
[1_TD$DIFF]-

methylguanine DNA methyltransferase (MGMT), MMP-9,
BDNF, and adenosine kinase (ADK) have been recognized in
the epileptogenesis of brain tumors [42–46]. Patients with IDH
enzyme 1 and 2, specifically codons R132 and R172, have been
reported to have an increased likelihood of developing
seizures [13,47]. The non-mutated (wild type) enzyme cata-
lyzes the conversion of isocitrate to a-ketoglutaratewhile in its
mutated form, it reduces a-ketoglutarate to D-2-hydroxyglu-
tarate (D2HG) [ [6_TD$DIFF]48,49]. The overproduction of D2HG may act
similarly as glutamate on NMDA receptor fostering epilepto-
genesis [47]. Additionally, loss of heterozygosity on chromo-
some 19q,<40% p53 overexpression, and the lack of Ki-67 have
been suggested to be associated with improved seizure
frequency and control [42–46]. On the other hand, astrocyto-
mas with a higher expression of adenosine kinase (ADK) have
been shown to have lower physiologic extracellular concen-
trations of the inhibitory neurotransmitter adenosine and
increased aquaporin-4 channel expression, which are thought
to reduce seizure threshold [45,46].
5. EEG in BTRE

5.1. Scalp EEG

EEG changes observed in gliomas result mainly from dis-
turbances in bordering brain parenchyma, as tumoral tissue is
electrically silent [50]. Findings from scalp EEG may include
normal, focal or generalized slow activity, focal attenuation of
background activity, interictal epileptiform discharges (IEDs),
and ictal discharges [52]. For patients with glioma, the
presence of IEDs within the tumor site as well as seizure
semiology may suffice for establishing an anatomic connec-
tion between the tumor and the origin of the seizure [51].
Hence, very few centers order long-term video EEGmonitoring
(LTM) in patients with glioma. However, LTM can be useful
for various reasons including distinguishing epileptic from



n e u r o l o g i a i n e u r o c h i r u r g i a p o l s k a 5 2 ( 2 0 1 8 ) 4 3 6 – 4 4 7440
nonepileptic events, identifying subclinical seizures as the
cause of an unexplained change in cognitive state, and in the
management of status epilepticus [20,21,51]. The detection of
subclinical seizures in patients with glioma could be indicative
of progression or recurrence of the disease [23,24].

5.2. Intraoperative electrocorticography

Patients with BTRE rarely undergo extraoperative intracranial
monitoring with subdural grid and strip electrodes. Instead,
some patients undergo intraoperative electrocorticography
(ECoG), typically during awake craniotomy [52–55]. The
primary role of ECoG during brain tumor surgery is to confirm
the absence of after-discharges during electrical cortical
stimulation [52]. Craniotomies tailored to limit cortical
exposure, even without localization of language sites, could
permit most gliomas to be aggressively resected with minimal
postoperative deficit [54–58]. Often, the epileptogenic cortex is
not perfectly circumscribed and ECoG could help determine
Table 2 – Commonly used antiepileptic drugs in brain tumor-r

Mechanism of
action

Dosage
(maintenance)

Drug
inter

Levetiracetam (LVT) Modify presynaptic
protein SVA2

750–1500 mg BID None

Valproic acid (VPA) Multiple
mechanisms

250–1000 mg BID Mild enz
inhibitio

Lacosamide Slow inactivation
of voltage gated
sodium channels

100–200 mg BID Not clin
significa

Perampanel AMPA receptor
antagonist

8–10 mg daily Mild enz
inhibitio

Lamotrigine (LTG) Fast inactivation of
voltage gated
sodium channels

100–200 mg BID Minimal
with con
VPA use

Zonisamide (ZNS) Multiple
mechanisms

100–300 mg daily Minimal

Oxcarbazepine Fast inactivation of
voltage gated
sodium channels

150–600 mg BID � Mild en
inhibitio
� Pharm
interacti

Topiramate Multiple
mechanisms

100–200 mg BID � Mild en
inhibitio
� Pharm
interacti

Enzyme inducing
antiepileptics
(EAIADs)

Fast inactivation of
voltage gated
sodium channels

Variable � Strong
enzyme

AE; adverse events; BID; twice daily; CYP450; cytochrome; IV, intravenou
with high specificity the epileptogenic focus location and ictal
spread pathways, aiding in either presurgical planning or
intraoperative guidance for optimization of the resection [56].
High-frequency oscillations seen during EcoG have recently
been shown to determine epileptogenicity of gliomas and help
tailor surgical resection [57]. Along the same lines, several
groups have reported favorable seizure outcomes using ECoG-
guided tailored resection [54–56]. Lastly, ECoG can help
recognize electrographic or subtle clinical seizures that may
not otherwise be recognized intraoperatively [57,58]. Figs. 2–4
highlight illustrative cases where ECoG was used in the
management of patients with BTRE.
6. Management of BTRE

Conclusive evidence based guidelines for the management of
BTRE is not currently available [59–61]. The overall manage-
ment of BTRE requires an interdisciplinary approach with
elated epilepsy.

–drug
actions

Pros Cons and major AEs

� Safety and tolerability
� Potential concomitant
antineoplastic efficacy
� Large data on efficacy
available

� Worsening NPAE in
frontal lobe gliomas
� Requires dose
adjustment in renal failure
and dialysis

yme
n (LTG)

� Potential anti-tumor
effect
� Large data on efficacy
available

� Thrombocytopenia
� Unsafe in a reproductive
aged women

ically
nt

� Efficacious regardless of
tumor activity
� Synergism with LVT use
� Favorable
pharmacokinetic profile

� Diplopia and dizziness
especially when combined
with LTG
� Caution in patients with
AV block

yme
n

� Once daily dosing
� Potential anti-tumor
effect

� Homicidal ideation and
threats; psychosis;
delirium
� No IV formulation

except
comitant

� Good tolerability and
efficacy
� Low drug interactions
� Synergism with VPA or
ZNS use

� Allergic skin reactions
� Slow up-titration
� No IV formulation

� Class A evidence on
efficacy

� No IV formulation
� Weight loss, negative
impact on cognition

zyme
n
acokinetic
ons

� Potential concomitant
antineoplastic effect

� Hyponatremia (2–5%)
� No IV formulation

zyme
n
acokinetic
ons

� Potential concomitant
antineoplastic effect

� No IV formulation
� Weight loss, negative
impact on cognition

CYP 450
inducers

� Class A evidence for
efficacy (phenytoin and
carbamazepine)

� Osteoporosis, Diplopia,
and Ataxia
� Lower efficacy of
antineoplastic agents

s; NPAE, neuropsychiatric adverse events.
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considerations for antiepileptic drugs (AEDs), concomitant
chemotherapeutics and radiotherapy, as well as surgical
intervention [61].

6.1. AEDs

AEDs are often the first line therapy in BTRE [60]. The
introduction of an AED should be made upon the first clinical
seizure, as prophylactic or perioperative AEDs are not
recommended regardless of tumor type [62–65]. Those pre-
senting with a first-time seizure and a glioma warrant AED
initiation, as there is increased likelihood of future seizures
[65]. The final choice of AED in BTRE is typically based on
several individual patient characteristics including age, sex,
weight, seizure type, comorbidities or co-therapies that
increase the risk of drug interaction [61,65]. There is a general
agreement to avoid enzyme inducing AEDs (EIAEDs) (e.g.
phenytoin, carbamazepine, phenobarbital) in spite of their
[(Fig._2)TD$FIG]

Fig. 2 – A 57 year old with focal aware sensory seizures with/with
revealing a non-enhancing left parietal operculum glioma. (C) MR
a neoplasm. (D) Intraoperative photo showing a high density 8 T

electrocorticography prior to tumor resection showing frequent p
area (E) with resolution of peritumoral frequent periodic epilepto
good anticonvulsant efficacy, as they can alter the pharmaco-
kinetics of anti-neoplastic agents [60]. Monotherapy is
preferred first-line, though polytherapy may be required in
most [64]. The duration of therapy for patientswith BTRE is not
guideline based but is likely dependent upon tumor histo-
pathologic andmolecularfindings [64]. For example, low-grade
gliomas that are amenable to resection will not likely need
chronic AED therapy and AED wean after 2 years of seizure
freedom post-operatively could be considered [63,64]. In
contrast, those with high-grade gliomas have a shortened life
expectancy and tend to be resistant to surgical and medical
therapy, therefore, these patients are likely to remain on AED
therapy indefinitely [61,65].

6.1.1. Commonly used AEDs
There is no evidence that specific AEDs aremore effective than
others in BTRE [66–68]. However, levetiracetam is the most
commonly used given its clinical efficacy, low rate of
out aphasia. (A) Coronal FLAIR and (B) post-contrast T1 MRI
-spectroscopy showing elevated choline peak suggestive of
8 grid overlying the tumor. Intraoperative
eriodic epileptogenic discharges involving the peritumoral
genic discharges post-resection (post-operative ECoG, E).
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medication interactions, availability of parenteral dosing, and
safety profile [67]. Levetiracetam is considered as an attractive
option, both as monotherapy and in combination [69].
Numerous studies administering levetiracetam either as
monotherapy or add-on therapy have reported seizure
freedom ranging from 60 to 100% [69,70]. The use of
levetiracetam in combination with a range of AEDs including
Valproic acid and lacosamide may produce enhanced antiepi-
leptic activity (pharmacodynamic synergism) [70]. Neverthe-
less, neuropsychiatric adverse event (NPAEs) monitoring is
crucial with levetiracetam use particularly in those with
frontal gliomas, since these patients are at higher risk of
NPAEs. NPAEs in this setting could lead to suboptimal
compliance and poor seizure control [71].

The rational for the use of valproic acid monotherapy is
supported by a large experience and efficacy profile in BTRE
showing seizure freedom in 30–78% patients with low-grade
glioma or GBMs [72]. However, VPAmay cause thrombocytope-
nia (particularly in combinationwith chemotherapy), increased
appetite, and tremor. Unlike levetiracetam, valproic acid

[(Fig._3)TD$FIG]

Fig. 3 – A 22 year old with generalized tonic–clonic seizures. (A)
subcortex and right superior and middle frontal gyri. (C) Cortica
using a 22-contact circular grid. (D) Intraoperative electrocorticog
induced electrographic focal seizure [5_TD$DIFF]during cortical mapping. Co
identified the motor cortex (not shown).
requires closemonitoring of serum levels [70]. If seizure control
is insufficient with monotherapy of levetiracetam or valproic
acid, polytherapy with both drugs combined is preferred over
sequential trials of AED monotherapy [67]. When seizures are
resistant to first line therapy, we suggest adding a second AED
with a differing/unique mechanism of action (rational poly-
pharmacy) than just replacing the existing agent. Subsequent
AEDs that represent justifiable choices include lacosamide,
lamotrigine, zonisamide, parampanel, or oxcarbazepine. De-
spite these options, however, the occurrence of pharmacore-
sistance is seen in 8–40% of patients with BTRE [64,73–75]. A
summary of the commonly used AEDs is provided in Table 2.

6.1.2. Anti-tumoral properties of AEDs
The use of levetiracetam and valproic acid in patients with
GBMs has recently drawn attention because of their potential
beneficial antitumor activity leading to increased survival
[69,70]. Levetiracetam may have anti-tumoral effect by
increasing the efficacy of temozolomide (TMZ) through
epigenetic silencing of the enzyme MGMT [69]. VPA is also
Axial T1 and (B) coronal FLAIR MRI showing a mass in the
l mapping using an Ojemann stimulator (*) while recording
raphy showing stimulation artifact and a stimulation
ld irrigation aborted the seizure while further stimulations



n e u r o l o g i a i n e u r o ch i r u r g i a p o l s k a 5 2 ( 2 0 1 8 ) 4 3 6 – 4 4 7 443
suggested to have anti-tumoral effect and may provide a
survival advantage for patients undergoing concomitant
treatment with TMZ through histone deacetylase enzyme
inhibition, enhancement of cellular redox reactions in combi-
nation with chemotherapy and reduced clearance of TMZ
through P450 interactions [72,76,77]. Those AEDs with anti-
glutamatergic mechanisms (such as perampanel and talam-
panel) have also been shown to have antitumoral effect [32,78].
Lastly, in vitro and animal models have suggested anti-tumor
effects with topiramate and phenytoin [60,63–65].

6.1.3. Prophylactic AED use
Most neurosurgeons will introduce AED monotherapy follow-
ing tumor resection in patients without a history of seizures as
a primary preventative strategy [62]. The American Academy
of Neurology (AAN) and multiple studies have recommended
against prolonged prophylactic or perioperative AEDs regard-
less of tumor type due to lack of proven benefit [62,79,80].
However,we suggest the consideration of prophylactic AEDs in
patients without history of seizures in the presence of
additional risk factors related to the tumor genetic marker
(e.g. IDH1 mutant) and location (e.g. temporal lobe) of the
[(Fig._4)TD$FIG]
Fig. 4 – A 62 year old with glioma without history of seizure und
(B) post-contrast T1 coronal and (C) post-contrast T1 axial MRI s
temporal lobes. Note increased cerebral blood volume correspon
(D) and postero-superior (E) margins. Intraoperative electrocortic
22-contact circular grid revealed a focal subclinical seizure disch
using an Ojemann stimulator (not shown).
tumor and occurrence of IEDs on EEG. Given our growing
understanding of the relationship between tumor genetic
markers and epileptogencity as well as the prospect of
individualized medicine, it is tempting to speculate that in
the near future we may be able to identify those with the
highest risk of developing seizures (for example IDH1 mutant
temporal lobe GBM) and initiate prophylactic AED therapy
early. Perhaps, the early initiation of AEDs with antitumoro-
genic properties (e.g. perampanel) in these patients could not
only prevent seizures but may also potentially suppress of
glioma growth.

6.2. Surgical treatment

Brain tumor surgery aimsnot only to improve survival through
reduction of tumor burden, but also by achieving seizure
freedom [81,82]. For patients with BTRE, gross-total tumor
resection, including the peritumoral epileptogenic foci pro-
vides the greatest chance of seizure freedom and reduced AED
requirement [81–84]. Patients undergoing tumor resection
need to have a preoperative functional magnetic resonance
imaging (MRI) and intraoperative ECoG for preservation of
ergoing intraoperative cortical mapping. (A). Sagittal FLAIR,
howing a ring-enhancing mass of the left parietal and
ding to contrast enhancement along the inferomedial
ography prior to cortical stimulation mapping using a
arge (F) which was aborted by a 4 mA cortical stimulation
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eloquent structures andminimizing postoperative deficits [82].
Gross total resection reportedly resulted in seizure freedom
rates ranging from 65 to 77% [81,83,84]. High grade gliomas
typically require tumor resection followed by radiation therapy
with concomitant and adjuvant chemotherapy with seizure
freedom rates ranging from 40 to 77% [84]. Evidence is
supportive of total surgical resection for low grade gliomas
within the insula if seizures become intractable [85]. Complete
resection, lack of pre-operative seizures, seizures other than
focal seizures, tumor recurrence and previous seizure response
to pharmacotherapy has been associated with improved
postoperative seizure control [84,86]. Less favorable postopera-
tive seizure freedom outcomes were found in patients with
short disease duration, total resection, parietal lobe based
tumors, and preoperative focal to bilateral seizures [18]. Brain
MRI may also serve as a prognosticative tool for postoperative
seizure risk. Nodularity and/or blurring of tumor borders and
mass effect on T2weighted fluid attenuated inversion recovery
(FLAIR) or contrast-enhanced T1 weighted brain MRI sequence
may reflect tumor growth and increased seizure propensity
[87,88]. We have provided illustrative cases to highlight various
imaging findings in BTRE in Figs. 2–4.

6.3. Chemotherapy and radiotherapy

Radiotherapy contributes to better seizure control with
reported seizure freedom ranging from 38 to 75% at 12months
in one study [89,90]. The reduction in seizure burden appears
to worsen with time to treatment, with focal radiotherapy
being performed early in the therapeutic course being more
beneficial [89,90]. Treatment with TMZ or procarbazine-
lomustine-vincristine also provided a reduction in seizure
frequency, varying between 48% and 100% [90].

6.4. Immunotherapy

Immunotherapy of gliomas holds great promise but largely
lacks evidence of efficacy from clinical trials [91]. A wide
variety of immunotherapeutic agents have been introduced
for the treatment of primary brain tumors. Bevacizumab, a
humanized monoclonal antibody against VEGF which is FDA
approved for recurrent GBM [92], may speculatively reduce
peritumoral vasogenic edema and reduction of peri-tumor
microenvironment epileptogenicity. Additionally, a peptide
vaccination against IDH1 mutations being developed could
hypothetically help reduce seizure burden in BTRE.

7. Conclusions
Epileptic seizures are common (40–70%) in patients with brain
tumors, with seizure control being an important part of overall
clinical management and preservation of quality of life.
Although the exact mechanism of epileptogenesis in glioma
is incompletely understood, glutamate-induced excitotoxicity
and disruption of intracellular communication have garnered
themost attention. The diagnosis of BTRE benefits from routine
and prolonged video EEG monitoring. The latter is particularly
useful in distinguishing epileptic from nonepileptic events,
identifying subclinical seizures as the cause of an unexplained
change in cognitive state, and in the management of status
epilepticus. Management of BTRE requires a multidisciplinary
approach involving the use of antiepileptic drugs (AEDs),
surgery aided by electrocorticography, and adjuvant chemor-
adiation. Although there are not conclusive guidelines for AED
use in BTRE, the use of agents with favorable pharmacokinetic
(e.g. levetiracetam) and antitumoral properties (e.g. vaproic
acid) as well as avoidance of EIAEDs (inspite of their good
anticonvulsant efficacy) is recommended. With the ever-
growing understanding of BTRE pathogenesis, novel treatment
strategies are being examined. However, further studies are
needed to help elucidate the shared mechanisms of glioma
growth and epileptogenesis in order to identify new treatment
targets and develop effective treatment for both conditions.
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