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a b s t r a c t

The role of blood brain barrier (BBB) is to preserve a precisely regulated environment for

proper neuronal signaling. In many of the central nervous system (CNS) pathologies, the

function of BBB is altered. Thus, there is a necessity to evaluate a fast, noninvasive and

reliable method for monitoring of BBB condition. It seems that revealing the peripheral

diagnostic biomarker whose release pattern (concentration, dynamics) will be correlated

with clinical symptoms of neurological disorders offers significant hope. It could help with

faster diagnosis and efficient treatment monitoring. In this review we summarize the recent

data concerning exploration of potential new serum biomarkers appearing in the peripheral

circulation following BBB disintegration, with an emphasis on epilepsy, traumatic brain

injury (TBI) and stroke. We consider the application of well-known proteins (S100b and

GFAP) as serum indicators in the light of recently obtained results. Furthermore, the utility of

molecules like MMP-9, UCHL-1, neurofilaments, BDNF, and miRNA, which are newly recog-

nized as a potential serum biomarkers, will also be discussed.

© 2018 Polish Neurological Society. Published by Elsevier Sp. z o.o. All rights reserved.
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1. Introduction

The brain is one of the most vulnerable organs in the body.
Direct contact between the blood and cells of the central
nervous system could be dangerous for this organ. To avoid
such contact, brain endothelial cells form specific barriers that
can separate brain tissue from the blood. It is estimated that
* Corresponding author.
E-mail address: jszyndler@yahoo.com (J. Szyndler).

https://doi.org/10.1016/j.pjnns.2018.02.002
0028-3843/© 2018 Polish Neurological Society. Published by Elsevier S
blood–brain barrier is a result of 4–500 million years of
vertebrate evolution, associated with concomitant neural
tissue centralization [1]. However, invertebrates like Drosoph-
ila melanogaster also developed vertebrate-like chemoprotec-
tive mechanism of central nervous system (CNS) [2]. There are
three barriers that protect the neural tissue against uncon-
trolled exchange of various substances with the blood or
cerebrospinal fluid. First is the blood–brain-barrier (BBB),
p. z o.o. All rights reserved.
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formed by the cerebro-vascular endothelial cells and endfeet
of astrocytes that isolate blood and brain interstitial fluid (ISF).
Second is the choroid plexus epithelium that comprises barrier
between blood and ventricular cerebro-spinal fluid (CSF).
Finally, the third one is the arachnoid epithelium that
separates blood and subarachnoid CSF [3]. The most important
function of the brain barriers is to protect the micro-
environment of the neural cells from unfavorable agents that
circulate in the blood. In fact, BBB forces the transcellular route
of traffic because the tight junctions between endothelial cells
are impermeable for most substances circulating in the blood
[4]. Nevertheless, the BBB is easily permeable for the small
molecules such as oxygen or other lipophilic agents like
ethanol, valproic acid or many antipsychotic drugs. It is
important to note that in the circumventricular organs the
endothelium is leaky [3]. That attribute of the BBB is forced by
the function which neurons play in circumventricular organs
as they are specialized for neurosecretion (posterior pituitary,
pineal gland) or chemosensitivity (area postrema, subfornical
organ). The access to the brain is not only physically limited by
BBB. The enzymes and specific transporters including pepti-
dases, nucleotidases, monoamine oxidase, p450 cytochromes,
P-glycoprotein (p-GP), multidrug resistance proteins (MRPs),
and many others provide the ‘‘metabolic barrier’’ [5]. The
active protection is achieved by inactivation of toxic com-
pounds or by active efflux from endothelium back to
circulation. The hydrophilic molecules, especially when they
are large, such as peptides and proteins, can be transferred by
specific receptor-mediated or adsorptive-mediated transcyto-
sis. Many agents circulating in the plasma or secreted by the
cells are able to change the BBB permeability. For example,
among agents that can disturb the tightness of BBB (increase
its permeability) may be ranked: bradykinin, ATP, ADP,
adenosine, TNFa or interleukins (IL-1, IL-6) [6].

Changes in the functioning of BBB, especially an increase in
permeability, are also seen in many pathological conditions.
The most typical ones are a massive increase in the
permeability that occurs in meningitis or brain inflammation.
Similar changes, although not so evident, are observed in
many other pathological conditions such starvation (e.g.
increase in the glutamate transporters localized on abluminal
membrane), traumatic brain injuries, stroke, epilepsy, neuro-
degenerative disorders (e.g. Alzheimer and Parkinson disease),
multiple sclerosis, brain neoplasms or hypoxia [7]. Thus, there
is an unmet need to look for therapeutic methods or drugs that
are able to reverse the BBB dysfunction.

On the other hand, increased expression of transporters
localized on the BBB is a significant problem in the treatment
of some diseases. It is postulated that hyperexpression of
these transporters (e.g. p-GP) may reduce availability of the
therapeutic drug in the brain tissue, thus limiting effectiveness
of treatment of epilepsy or brain neoplasms [8,9]. Some
authors postulate, for example, that the problem of drug
resistant epilepsy originates from the changes in BBB function
and limited availability of the antiepileptic drugs in brain
tissue (in epileptic focus) [8]. Therefore, in some clinical
conditions it might be more advisable not to seal up the
damaged BBB, but rather make it more permeable. It is crucial
in the treatment of brain tumors, where appropriate penetra-
tion of cytotoxic drugs is one of the critical conditions of
effective treatment. One example of such an approach may be
intracarotid infusion of a hypertonic arabinose or mannitol
solution in patients with metastatic or primary brain tumors to
increase drug penetration [10].

BBB is a structure that not only limits access to brain tissue
but also inhibits the transfer of brain-specific proteins,
peptides and neurotransmitters to the blood. Some of those
compounds are specific only for the brain and their
appearance in the circulation may be a proof of a damage
in the brain tissue and of an increased permeability of BBB.
For many years, a lot of effort has been put to identify the
peripheral markers of neurological disorders, whose con-
centrations correlate with the extent of neuronal damage and
could help to differentiate particular neurological disorders
and also to predict clinical outcomes in a particular patient.
Among the candidates for that purpose were for example
S100b protein and GFAP (Glial fibrillary acidic protein) [11,12].
In this short review we concentrate on biomarkers that
appear in the peripheral circulation as a result of distur-
bances in the BBB integrity during specific pathological
conditions, with special attention paid to epilepsy, traumatic
brain injury (TBI) and stroke. Due to rules regarding the
length of a manuscript we have decided to focus our
consideration on new biomarkers, and those with a long
history of research which introduction to the clinics may
significantly improve diagnosis and treatment of the most
common neurological disorders. However, we bear in mind
the existence of many interesting indicators which could
play a role in dealing with other neurological disorders and
psychiatric diseases as well e.g. c-Tau in Alzheimer and
Parkinson's disease, NSE in stroke, MAP2 in Creutzfeldt–Jacob
disease and stroke or BDNF in depression.

2. Review of potential peripheral biomarkers
for BBB disintegration

2.1. S100b

S100b is a member of S100 protein family responsible for
cytoskeleton structure, Ca2+ homeostasis, cell proliferation,
protein phosphorylation and degradation. S100b is present
mostly in the cytoplasm and the nucleus of astrocytes and gets
extravasated into the bloodstream only when the BBB is
disrupted [13]. Changed concentration of S100b in peripheral
blood has been linked with many diseases in the CNS with an
emphasis on conditions with BBB leakage.

S100b is the most extensively studied protein in the context
of its potential utility in diagnosis and treatment of various
conditions of the CNS, TBI especially. There are excellent
reviews summarizing current knowledge regarding revealed
advantages and limitations of S100b use [14,15]. For this reason
a detailed review of results discussed before in many scientific
papers will not be a subject of our consideration. However, it
has to be mentioned that after many years of research and
establishing a cut off concentration of 0.1 mg/ml in the first 6 h
after accident, the Scandinavian Neurotrauma Committee
(SNC) introduced assessment of plasma S100b in guidelines for
adult head injury. It has been shown that proper analysis of
S100b results in patients with mild TBI without extracranial
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trauma and other risk factors, reduce the number of computed
tomography scan (CT scan) by up to 30% [11].

S100b may be perceived as a reliable candidate to become a
peripheral marker of BBB disintegration because of its low
mass, easy detection and stability in the bloodstream.
However, S100b may be produced by extracerebral tissues
and cells like adipose tissue, chondrocytes, lymphocytes, bone
marrow cells, or melanocytes and obtained results have to be
interpreted with great caution [16]. Additionally, many studies
do not show association between serum S100b level and
clinical symptoms. In children, for example, higher concen-
tration has not correlated with worse outcome and complete
neurological recovery was observed [17]. For this reasons
S100b itself has a rather limited clinical application today.
However, recent data highlight the inclusion of S100b in the set
of markers specific for each neurological condition, which in
combination could contribute to better diagnosis, monitoring
and treatment of CNS conditions [18,19].

2.2. GFAP

The next protein that could be considered as biomarker of BBB
disruption is GFAP. GFAP is a filament protein abundantly
expressed in cytoskeleton of mature astrocytes, where it
maintains shape and structure, coordinates cells mobility and
contributes to the transduction of molecular signals [20]. GFAP
is a well-established astrocyte marker. Its expression
increases in tissues with neurodegenerative disorders [21],
neurological diseases [22] and after brain injury [23,24].
Astrocytes disintegration leads to BBB disruption and facilities
GFAP release from tissue to the bloodstream. Potential
usefulness of the GFAP in the diagnosis and treatment of
neurological disorders has been widely investigated for years
and revealed some limitations. Recent data, however, shed
new light on the possibility of applying GFAP as a diagnostic
tool.

GFAP has been proposed as a marker for ischemic stroke
and intracerebral hemorrhage (ICH) distinction. Twenty four
hours after symptoms onset, GFAP concentration was below
the limit of detection in patients with ischemic stroke [25,26].
Furthermore, the level of GFAP was higher in ICH compared to
ischemic stroke patients [12,25,27–29]. In ischemic stroke
patients serum GFAP level has been increasing over time,
mirroring progress of cell necrosis and was correlated with the
size of brain lesions [30]. Measurement of serum GFAP
concentration may rule out ICH from heterogeneous stroke
population very early on after symptoms onset. Proper and
fast diagnosis of patients with stroke-like symptoms has a
beneficial impact on treatment efficacy.

GFAP was also considered as a marker for TBI. Concentra-
tion of serum GFAP was found to increase after TBI [31–35].
GFAP levels were higher in patients with focal mass lesions
than in those with diffuse injury [34]. Its higher peripheral
values corresponded to worse health condition manifested by
low points number in Glasgow Coma Scale (GCS) after
admission [34] and with poor outcome by Glasgow Outcome
Scale (GOS) assessed 6 months after brain damage [33,34,36].
GFAP level was increased in patients with CT positive scans for
intracranial lesions compared to CT negative scans after mild
TBI. Additionally, in patients after TBI treated with hypother-
mia, a high level of GFAP at admission decreased gradually
each day. Observed changes were induced by reduced cerebral
metabolism, diminished oxygen consumption, and stabiliza-
tion of BBB following decreased body temperature [31]. It
indicates that assessment of GFAP concentration may have
application in the controlling of different methods of treat-
ment efficiency after TBI. Furthermore, GFAP may be a
favorable marker to distinguish patients with intracranial
lesions from lesions free patients [37].

Summarizing, GFAP is highly specific for brain protein and
biochemically stable in the blood. Recent studies emphasize
its potential role as a marker in conditions other than those
highlighted in this review, like diagnosis and prognosis of
patients with glioblastoma multiforme [38,39]. More research
is needed to evaluate the role of GFAP use in medicine. For
now, especially promising are reports about the role of GFAP in
distinguishing ICH from strokes of different etiology and
positive correlation between serum concentration and injury
volume in patients after TBI.

2.3. MMP-9

MMP-9 is zinc-calcium dependent endopeptidase included in
the family of matrix metalloproteinases [40]. The main source
of MMP-9 are white blood cells and neutrophils. Oligodendro-
cyte precursor cells, astrocytes, neurons, microglia and
endothelium also have the ability to synthetize MMP-9 [41].
MMP-9 is responsible for modification of extracellular matrix
(ECM) as a response to many physiological and pathological
stimuli [42]. MMP-9 degrades ECM proteins: collagen IV, V,
laminin, fibronectin and proteins creating tight junction in
endothelium of BBB: ZO-1 and occludins. Thus, MMP-9
contributes to BBB remodeling and disruption [41]. Elevated
MMP-9 serum levels were demonstrated in some pathological
conditions of CNS connected with BBB leakage like multiple
sclerosis (MS) [43], ischemic stroke [44] and TBI [45]. Therefore
it is considered as a potential serum biomarker of BBB
disruption. Additionally, some effort has been made to
correlate MMP-9 serum release pattern with symptoms of
neurological disorders.

In the hypoxic brain, MMP-9 is a relevant proteinase
involved in the degradation of microvascular structures of the
BBB and was considered as a marker for stroke [46]. In patients
after acute ischemic stroke, an increased serum MMP-9 level
was observed. Furthermore, MMP-9 correlated with clinical
stroke severity as assessed by The National Institutes of Health
Stroke Scale (NIHSS) 24 h after symptoms onset [47]. It has
been shown that higher MMP-9 were associated with an
increased death risk and major disability after stroke [48,49].
Furthermore, during the first 24 h plasma MMP-9 concentra-
tion correlated with S100b, suggesting an association between
MMP-9 and the rate of brain injury [48]. Thus MMP-9 may be
perceived as a reliable marker of stroke severity and outcome.

Elevated concentrations of MMP-9 have been noted in
serum of epileptic patients. It was found that peak levels of
serum MMP-9 occur after the first few hours and then it
decreases slowly to the control level 3 days after seizures.
However, so far no relationship has been found between
increased MMP-9 levels and pathogenesis or etiology of
seizures [50]. Further studies are needed to associate periph-
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eral MMP-9 concentration with clinical symptoms in epilepsy
in order to improve diagnosis and settlement of treatment.

In patients after TBI, serum MMP-9 concentrations were
increased [45,51] thus MMP-9 was taken into account as a
serum marker of BBB disruption in that condition. Plasma
MMP-9 were elevated after TBI before induction of hypother-
mia as a treatment. After hypothermia onset levels of MMP-9
in the blood returned to the initial level [45]. These data
suggest increased synthesis and release of MMP-9 as an effect
of brain trauma. Furthermore, MMP-9 may be perceived as a
reliable marker of treatment efficacy after TBI.

The role of MMP-9 in remodeling of BBB in stroke, epilepsy,
TBI and other neurological diseases is well established.
Reviewed research points to a new role of MMP-9 in the
diagnosis and monitoring of CNS condition. Nevertheless,
further studies are needed to evaluate utility of MMP-9 as
serum marker of neurological diseases.

2.4. Neurofilaments

Neurofilaments are specific for neuron intermediate filaments
forming cytoskeleton. Neurofilaments are particularly abun-
dant in axons, where they play an important role in the growth
of axons during development, the maintaining of shape and
size of axons, and the transmission of electrical signals. There
are four subunits of neurofilaments in the CNS: heavy
neurofilaments (NF-H; 200 kDa), medium neurofilaments
(NF-M; 150 kDa), light neurofilaments (NF-L; 70 kDa) and a-
internexin (66 kDa) [52]. Each of them contains from 6 to 8
tandemly repeated sequences of three amino acids: lysine–
serine–proline. Specific phosphorylation of serine residues
which is carried out in the axons protects the protein from
proteases [53]. It has been shown that neurofilaments in native
and phosphorylated form could cross the BBB and serve as a
marker of axonal loss.

The potential utility of neurofilaments in native and
phosphorylated form (pNF) has been researched in patients
after TBI. Serum NF-L level was increased in TBI patients
compared to healthy controls [54,55]. Initially elevated NF-L
level predicted poor clinical outcome. Furthermore, serum NF-
L correlated with pupil reactivity and Marshall CT classifica-
tion scores [54]. A positive correlation has been found between
elevated NF-L and the size of axonal injury [55]. Serum pNF-H
level was also elevated in patients after TBI and was negatively
correlated with GCS after admission and 7 days after injury –

higher pNF-H level with lower GCS scores. Furthermore, an
increased blood pNF-H concentration correlated with greater
brain lesions and mortality after 3 months [56]. Peripheral
release pattern of neurofilaments is associated with multiple
clinical symptoms after TBI.

Neurofilaments were considered as markers for other
neurological conditions. In children with febrile seizure, longer
seizure duration was associated with higher serum pNF-H
values interpreted as a clinically irrelevant axonal loss [57]. NF-
L has been found to be useful in monitoring the treatment
efficacy and axonal damage in MS patients [58,59]. Further
studies are needed to reveal clinical utility of neurofilaments
as markers. However, neurofilaments are able to cross the BBB
and their peripheral concentrations are associated with
neurological symptoms, which prompts us to further consider
their potential utility in the diagnosis and treatment in the
future.

2.5. UCH-L1

Ubiquitin carboxy-terminal hydrolase L1 (UCHL-1) is a cyto-
plasmic enzyme from ubiquitin carboxy-terminal hydrolases
family, expressed mainly in neurons and to a lesser degree in
the gonads. UCHL-1 is a small molecule, weighting 24 kDa and
representing 5% of soluble protein in the nervous tissue [60]. It
is an important element of axonal transport and, by a strong
interaction with cytoskeleton proteins, plays an important role
in the axons integrity [61]. A faulty UCHL-1 function has been
shown to contribute to the pathology of many CNS diseases.
Furthermore, UCHL-1 can cross the disrupted BBB. In the
recent years, a growing interest in the use of UCHL-1 as a
serum biomarker for BBB disintegration is observed.

After TBI, increased serum UCHL-1 concentrations have
been shown [35,36,62,63]. UCHL-1 concentration was elevated
in moderate to severe TBI compared to mild TBI patients
[35,36,62]. Furthermore, UCHL-1 level was higher in patients
with CT assessed abnormalities than in patients with normal
CT scan results [35,37]. It has been revealed that UCHL-1 level
above 40 pg/mL detects patients with acute intracranial
lesions confirmed by CT scans [37]. It is believed that serum
UCHL-1 assessment could diminish the number of negative CT
scans. High prognostic value of UCHL-1 for poor outcome
assessed 3 months [35] and 6 months after TBI was observed
[62]. However, some limitations associated with the use of
UCHL-1 as a marker were also noted. UCHL-1 does not add
predictive value to commonly used prognostic tools like GCS
[36].

The utility of UCHL-1 measurement in diagnosis and
treatment of epilepsy has also been considered in the research
up to date. In epileptic patients, an elevated concentration of
plasma UCHL-1 after 12 h from seizure was noted. It is believed
that an increased plasma UCHL-1 concentration in early time
frame mirrors BBB disruption during acute phase after seizure.
UCHL-1 level correlated with seizure number and severity [64].
Results suggest that UCHL-1 may reflect neurons injury after
seizures and indicate BBB leakage. It may help clinicians to
monitor treatment efficacy and make better therapeutic
decisions.

UCHL-1 is a relatively small protein highly expressed in
neurons. It has been shown that an increased release to the
peripheral compartment indicates neuron damage and BBB
disruption. More research is needed to combine UCHL-1
release to the peripheral compartment with clinical symptoms
and disease progression monitoring.

2.6. BDNF

Brain-derived neurotrophic factor (BDNF) is a member of
neurotrophic factors family. BDNF regulates neuronal cell
morphology, synaptogenesis and has a neuroprotective role as
well. The role of BDNF, besides its physiological impact, has
been described in many pathological conditions, such as
epilepsy or neurodegenerative disorders, including amyo-
trophic lateral sclerosis (ALS) [65,66]. BDNF is widely
researched for its potential role as a therapeutic target. BDNF



Table 1 – Serum biomarkers with a role in the diagnosis and treatment of CNS diseases.

Protein Source Disease Potential utility Reference

S100b Astrocytes TBI Reduction of the CT scans in the diagnosis of TBI [11]
GFAP Astrocytes Stroke ICH differential diagnosis [12]

TBI Correlation with injury volume [34]
pNF-H Axons TBI Correlation: negative with GCS and positive with brain lesions [56]
UCHL-1 Neurons Epilepsy Reflection of neuron injury [64]

TBI High prognostic value for poor outcome [35,62]
BDNF Neurons Epilepsy Disease severity indicator, seizures differential diagnosis [67,69]
miRNA Astrocytes, neurons,

cerebro-vascular
endothelial cells

Epilepsy Indicator of drug resistant epilepsy [75]
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crosses the BBB and in the recent years a correlation between
its release to the serum and clinical symptoms has been
searched.

Blood level of BDNF was decreased in epilepsy patients
compared to healthy control and in patients with psychogenic
nonepileptic seizure [67]. It has been shown that serum BDNF
correlated with disease severity [68]. Serum level of BDNF
mirrored epilepsy duration, white matter integrity, and poor
cognitive function in temporal lobe epilepsy (TLE) patients [69].
BDNF may be a good marker for differentiating epileptic
seizures from nonepileptic ones. Furthermore, it may be a
valuable marker of epilepsy severity.

Potential clinical relevance of BDNF is still being evaluated.
Interestingly, serum BDNF was found to be a promising marker
in psychiatric disorders. In patients with major depressive
disorders, initially low serum BDNF became normalized after
antidepressant treatment [70]. Furthermore, in meta-analysis
of 52 studies, serum BDNF was an indicator of disease activity
in bipolar disorder [71]. The research exploring potential
usefulness of BDNF as a diagnostic tool may also contribute to
revealing new data on its previously unexplored role in
neurological and psychiatric diseases.

2.7. miRNAs

miRNAs are small noncoding RNA involved in posttranscrip-
tional gene expression [72]. They have been recognized as a
therapeutic target and a diagnostic tool in multiple neurologi-
cal disorders. miRNA can be detected in the blood after
crossing BBB in a form of miRNA containing exosomes [73].
Serum miRNA concentration has been analyzed in humans
with epilepsy [74]. It revealed that miRNA has been differen-
tially expressed in epilepsy patients compared to healthy
control [75]. Furthermore, one of the miRNAs, named hsa-miR-
106b-5p, was established as a high sensitivity and specificity
marker for epilepsy diagnosis. In drug resistant epilepsy, five
miRNAs serum have changed their concentration in epilepsy
patients compared to healthy participants, showing hsa-miR-
301a-3p as having the biggest diagnostic value for drug
resistant epilepsy [75]. miRNA was also assessed as a potential
marker for epileptogenesis after different initial triggers like
TBI. Rno-miR-9a-3p has been proposed as a potential marker
for intensified differentiation of normal neurons into epileptic
ones. However, further studies, especially the human one, are
needed to evaluate the role of miRNA in epileptogenesis
detection [76].
There is a growing body of evidence pointing to potential
usefulness of serum miRNA as a diagnostic and therapeutic
target in neurological conditions. Besides epilepsy, serum
miRNAs were evaluated in MS, where diminished expression
of miR-572 was observed in MS patients [77], in migraine patients,
where miR-382-5p were increased in pain-free period [78], and in
ischemic stroke, where miRNA-221-3p and miRNA-382-5p serum
concentrations were elevated compared to healthy control [79].
Furthermore, miRNAs are thought to be a useful marker for
diagnosis and monitoring of progression of neurodegenerative
disorders like Alzheimer and Parkinson's diseases [80,81]. Studies
considering introduction of miRNA to clinical diagnosis are a
novel and unrevealed area. However, existing data seems to be
very promising and extra effort has to be made to evaluate the
role of miRNA in the diagnosis and treatment of CNS diseases.

2.8. Biomarker panel assay

Serum indicators as a single have a limited application today.
Therefore, in order to increase diagnostic value of peripheral
biomarkers, the application of a set of molecules – panel assay,
has been proposed. In ischemic patients, applying panel assay
(MMP-9, BNF – brain natriuretic factor, D-dimer, S100b)
resulted in 86% sensitivity in detecting all strokes and 94%
sensitivity in differentiation diagnosis of ICH [82]. For ischemic
stroke, five markers study (S100b, B-type neurotrophic growth
factor, von Willebrand factor, MMP-9, and monocyte chemo-
tactic protein-1) provided 92% sensitivity detection in samples
collected within 6 h of symptom onset [83]. It has been shown
that multiple protein assay in patients with suspected stroke
increased the percentage of correct diagnosis from 77%,
according to CPSS (Cincinnati Prehospital Stroke Scale), to
86% after application of both tests results [18]. Advantages of
applying multiple biomarker assay has been revealed in
patients after TBI. The improved intracranial injury diagnosis
was observed, which in turn facilitated better definition of TBI
severity [19]. Given the heterogeneity of CNS disorders, a single
biomarker application may not be able to handle a given task.
Thus, more attention has to be paid to research associated
with application of multiple molecule assays.

Summary

Disrupted BBB is a hallmark of many diseases in the CNS.
Therefore, there is a need to evaluate a non-invasive, fast and
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specific assay methods for control of brain neurovascular unit
condition. Recent studies have identified several potential
biomarkers whose appearance in the bloodstream mirrors the
state of BBB. There are promising data showing multiple
correlations between release of the brain-specific biomarkers
and clinical symptoms (Table 1). However, the complexity and
heterogeneity of CNS system diseases urge us to think that
clinically useful information may be obtained only from a
panel of biomarkers specific for each neurological condition.
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