Case report

Osteolytic clear cell meningioma of the petrous bone occurring 36 years after posterior cranial fossa irradiation: Case report

A. Ben Nsir a,⁎, K. Ben Hamouda b, F. Hammedi c, M. Kilani a, N. Hattab a

a Department of Neurosurgery, Fattouma Bourguiba University Hospital – University of Medicine of Monastir, Monastir, Tunisia
b Department of Neurosurgery, The Tunisian National Institute of Neurology – University of Medicine of Tunis El Manar, Tunis, Tunisia
c Department of Pathology, Fattouma Bourguiba University Hospital – University of Medicine of Monastir, Monastir, Tunisia

A R T I C L E I N F O

Article history:
Received 8 October 2015
Received in revised form
30 January 2016
Accepted 13 April 2016
Available online 26 April 2016

Keywords:
Radiation induced
Clear cell meningioma
Petrous bone
Intensity modulated radiation therapy

A B S T R A C T

Objective and importance: While bone invasion and hyperostosis are frequent phenomena in meningiomas, primary intraosseous meningiomas are rare and their occurrence in the skull base is an extraordinary exception. Moreover, radiation-induced meningiomas represent a unique clinical dilemma given the fact that patients with these tumors had often received a prior full course of radiotherapy.

Clinical presentation: A 42-year-old man presented with a 3-month history of progressively worsening facial asymmetry. His medical history was consistent for a posterior cranial fossa irradiation at the age of 6 years for a non-confirmed brain stem tumor. On admission his Karnofsky performance status was graded as 50% and his neurological examination showed a complete right facial nerve paralysis and hearing impairment. Computed tomography and magnetic resonance imaging demonstrated an osteolytic tumor invading the whole right petrous bone without intracranial involvement.

Intervention: As the tumor reached the external auditory canal, a tissue sample was obtained locally. Pathological examination of the lesion identified a grade II clear cell meningioma and the patient was consequently addressed for an intensity modulated radiation therapy. His condition remained unchanged till the most recent follow-up examination, 8 months later.

Conclusions: To the best of our knowledge, a radiation induced osteolytic clear cell meningioma of the petrous bone has not been previously reported. As little literature exists regarding the use of adjuvant therapies for these tumors, intensity modulated radiation therapy remains an attractive treatment option in case of pervious irradiation and general status alteration.

⁎ Corresponding author at: Department of Neurosurgery, Fattouma Bourguiba University Hospital, Farhat Hached Street, Monastir 5000, Tunisia. Tel.: +216 50 390 077; fax: +216 73460309.
E-mail addresses: atefbn@hotmail.fr (A. Ben Nsir), benhamoudakarim@yahoo.fr (K. Ben Hamouda), faten_hammedi@yahoo.fr (F. Hammedi), kilanineurochirurgien@gmail.com (M. Kilani), nejih.hattab@gmail.com (N. Hattab).

Abbreviations: CECT, contrast enhanced computed tomography; MRI, magnetic resonance imaging; CCM(s), clear cell meningioma(s); IMRT, intensity modulated radiation therapy; SR, stereotactic radiosurgery; FSR, fractionated stereotactic radiotherapy.

http://dx.doi.org/10.1016/j.pjnns.2016.04.003
0028-3843/© 2016 Polish Neurological Society. Published by Elsevier Sp. z o.o. All rights reserved.
1. Introduction

Primary interosseous meningiomas are a subtype of primary extradural meningiomas. With only 24 reported cases to date, their osteolytic form is most uncommon. To the best of our knowledge, a radiation induced osteolytic clear cell meningioma of the petrous bone has not been reported so far. The case presented highlights the possible occurrence of a purely interosseous and aggressive meningioma 36 years after conventional irradiation and searches the relevant literature regarding the possible role of adjuvant therapies in such exceptional situations.

2. Case report

This 43-year-old male was first admitted to the neurosurgery section in June 1979 with a progressively aggravating right bulbar syndrome. A ventriculography by opaque injection was first realized and showed a moderate dilatation of the whole ventricular system. Further investigation by a head computed tomography showed a hypodensity in the right bulbar area (Fig. 1). Although the imaging study was not affirmative, the patient was considered as having a brainstem tumor. Surgery for such lesions was not feasible at that time and the decision was to administer a full dose of radiation therapy without the need of a pathological specimen. Consequently the patient received 40 Gy over his posterior cranial fossa and was discharged home few days later. His condition progressively improved and he became symptom free within 4 months but was lost to view since the mid-80s.

In January 2015, he presented once again for a 1 month history of heaviness, impaired hearing in the right ear, vertigo and a progressively worsening right facial asymmetry.

On examination, his general status was altered with a Karnofsky performance scale graded as 50%. His higher mental functions were normal and his cranial nerves examination was remarkable for a complete right facial nerve paralysis (House–Brackmann grade VI). Moreover, his Rinnie’s test was negative and Weber’s test lateralized to the right side.

Hematological and biochemistry profiles were normal. Contrast enhanced computed tomography of the head (Brillance 64-multislice CT scanner, Philips Medical System, MA) revealed a heterogeneously enhancing osteolytic mass of the right petrous bone. The tumor reached the right external

Fig. 1 – Head CT performed in June 1979 showing a right bulbar hypodensity.

Fig. 2 – Axial CT images of the petrous temporal bones demonstrate a large lytic lesion on the right side with extensive destruction of the mastoid process and lateral petrous region. The external auditory meatus and middle ear cavity are also involved.
Meningiomas are the most common benign intracranial neoplasm and typically arise from meningocytes or “arachnoid cap cells” located within the arachnoid layer of the meninges. Meningiomas without contact with the surface of the arachnoid membrane are labeled “ectopic meningiomas” \([1,2]\) and were first described by Winkler in 1904 \([3]\). While bone invasion and hyperostosis are frequent phenomena in such cases, primary intraosseous meningiomas without any additional soft tissue component are rare and almost all of them are of osteoblastic subtype \([4,5]\). With only 24 reported cases to date, the osteolytic subtype is most uncommon (Table 1) and worth noted, only three localized in the skull base \([1,11,18]\); especially the petrous bone region.

This case is significant not only because it satisfied the criteria of a radiation-induced tumor defined by Cahan in 1948 \([25]\), making it the first radiation induced meningioma of bone; but also an intraosseous clear cell meningioma (CCM) has never been previously reported.

CCM constitutes represents a rare variant of grade II meningiomas accounting for only 0.2% of all meningiomas and is distinct from more typical forms for being more locally aggressive, associated to a recurrence rate as high as 61% and a possible metastatic potential \([26,27]\). These tumors, moreover, have no sex predilection and typically affect young individuals in their mid to late twenties. They also differ from typical forms in their site of occurrence. In fact, the majority of cases of CCM were intradural spinal lesion (50%). Other possible sites of occurrence include the supratentorium (21%), the cerebellomedullary cistern (9%), and the foramen magnum and skull base (7%) \([26]\).

From a clinical standpoint, diagnosing an intraosseous meningioma preoperatively is somehow difficult to clinicians even if the patient’s symptoms include a gradually expanding mass \([5]\). Imaging techniques are comparable to those used for skull metastases, and appearance on MRI and CT is also

Fig. 3 – Axial T1-weighted MRI with contrast enhancement demonstrates a right-sided tumor of the petrous bone without intracranial involvement.

Fig. 4 – Photomicrographs of the tumor specimens showing: (A) Tumor cells having round nuclei with clear cytoplasm. (H&E, original magnification, \(\times 100 \)). (B) Diffuse membranous positivity for epithelial membrane antigen. (Epithelial membrane antigen, \(\times 40 \)).
consistent. Osteogenic tumors of the skull base should include chondroma, chondrosarcoma, dermoid, epidermoid tumor, brown tumor, multiple myeloma, plasmacytoma, giant cell tumor, aneurysmal bone cyst, eosinophilic granuloma, or metastatic cancer [20,28]. But, regard of its distinct histological features, clear cell meningioma needs to be differentiated from other clear-cell neoplasms including metastatic renal-cell carcinoma, pleomorphic xanthoastrocytoma, oligodendroglioma, hemangioblastoma, germinoma, lipid-rich glioblastoma, and clear-cell ependymoma outlining the major role of immunohistochemistry in assessing the differential diagnosis.

It has been already established that Meningiomas are the most common radiation-induced neoplasms of the central nervous system [29,30] and that the risk for development of secondary meningiomas after high-dose cranial irradiation increases with the duration of follow-up [29], reaching a cumulative risk of 8.18% after 25 years [31]. Several authors have also emphasized the relation between the tumor histology and the latency period: a more pronounced proliferative activity, results in a shorter latency and is commonly associated with atypical/anaplastic variants [29]. But these reports are tempered by ones like ours in which a locally aggressive tumor appeared almost 36 years after initial irradiation.

Independently of the presumed radiation induced etiology of our patient’s tumor, understanding how a meningioma can strictly develop in the intraosseous compartment is still unclear and several explanations have been put forward to explain the ectopic origin of primary intraosseous meningio-

Table 1 – Literature review of intraosseous osteolytic meningiomas.

<table>
<thead>
<tr>
<th>Author et al., year</th>
<th>Age</th>
<th>Sex</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearl et al., 1979 [6]</td>
<td>44</td>
<td>W</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Ammirati et al., 1990 [1]</td>
<td>21</td>
<td>M</td>
<td>Skull base</td>
</tr>
<tr>
<td>Koga et al., 1993 [8]</td>
<td>63</td>
<td>M</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Lee et al., 1992 [14]</td>
<td>61</td>
<td>M</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Kaneko et al., 1998 [15]</td>
<td>71</td>
<td>W</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Qasho and Celli, 1998 [16]</td>
<td>46</td>
<td>W</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Okamoto et al., 2000 [17]</td>
<td>78</td>
<td>W</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Rosahl et al., 2004 [18]</td>
<td>38</td>
<td>M</td>
<td>Skull base</td>
</tr>
<tr>
<td>Tokgoz et al., 2005 [19]</td>
<td>44</td>
<td>M</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Agrawal et al., 2007 [20]</td>
<td>70</td>
<td>W</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Shekhkrenzie et al., 2009 [21]</td>
<td>62</td>
<td>M</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Yener et al., 2009 [22]</td>
<td>78</td>
<td>M</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Kim et al., 2012 [5]</td>
<td>68</td>
<td>M</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Bujok and Bienioszek, 2014 [23]</td>
<td>59</td>
<td>W</td>
<td>Calvaria</td>
</tr>
<tr>
<td>Tang et al., 2014 [24]</td>
<td>82</td>
<td>W</td>
<td>Calvaria</td>
</tr>
</tbody>
</table>

meninges can explain the pathogenesis of primary intraosseous meningiomas since multipotential mesenchymal cells have the ability to differentiate into different tissue types, particularly of meningeal subtype. Which is undoubtedly supported by the fact that these tissues have been already found as metaplasia in meningiomas [34]. In the present case, an aggressive meningioma localized within the petrous bone. In this location, we believe it reasonable to assume that arachnoidal cell clusters found regularly at the level of the internal auditory meatus, jugular foramen, at the geniculate ganglion, the Eustachian tube or in association with the greater and lesser superficial petrosal nerves in autopsy specimens of patients without meningioma [34], may probably represent the cells of origin of this meningioma.

Even under the current therapeutic armamentarium, intraosseous meningiomas still represent a real challenge especially when located within the skull base. In addition, the increasing number of survivals of patients with childhood malignancies implies that the prevalence of radiation induced intraosseous meningiomas is likely to increase in the future. The mainstay of treatment remains complete surgical excision since this has been shown to be associated with a better long-term outcome compared with subtotal excision [35]; but an extensive surgical excision is not always feasible like in our case. Moreover, some patients already received the maximum tolerable dose of radiation and conventional radiotherapy is not an option: under these considerations, clinicians may consider patients with such lesions as stronger candidates for adjuvant therapies, depending on the clinical circumstances [5] and the previous irradiation dose. Stereotactic radiosurgery (SR) or fractionated stereotactic radiotherapy (FSR) may be appropriate adjuncts to surgery or may be the alternative to surgery in some high-risk patient independently of the radiation-related relation of these tumors. The seizure of the tumor must also be considered in the management strategy and facing a large tumor nearly invading the whole petrous bone, IMRT can be of great help since it allows dose escalation. Selected volumes can in fact be spared, but only at the expense of higher dose to other areas.

Finally as current therapies are starting to integrate molecular factors in the treatment of radiation induced meningiomas, the role of medical therapies targeting aberrant molecular pathways can be discussed. To date, several agents such as hydroxyurea have been attempted with variable success rates [36]. Interestingly, Bevacizumab, a monoclonal antibody targeting VEGF, has recently been utilized in the management of secondary meningiomas in isolation or following SRS for the prevention of recurrences with a reasonable success [36,37], but its possible future use in strictly intraosseous variants like ours still needs to be assessed.

4. Conclusion

Clear cell meningioma may present as a purely intraosseous osteolytic tumor 36 years after high dose cranial irradiation. Immunohistochemistry plays a major role in the definitive diagnosis to exclude other neoplasms with clear-cell features and a multimodal management protocol taking benefit from the expansion of the available therapeutic armamentarium.
can be of great adjunct in such challenging cases. Finally, as the prognosis depends on the time at diagnosis, a close follow up extending over a long period of time should be indicated in all previously irradiated patients.

Consent

Although, written informed consent is not needed in this paper as illustrations do not permit the recognition of the patient, we have obtained such consent for the publication of this article and the accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of the journal.

Conflict of interest

None declared.

Acknowledgement and financial support

None declared.

Ethics

The work described in this article has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.pjnn.2016.04.003.

REFERENCES

