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Objective: The aim of this study was to analyze the intra-/interfamilial phenotypic hetero-

geneity due to variants at the highly evolutionary conservative p.Arg1596 residue in the

Nav1.1 subunit.

Materials/participants: Among patients referred for analysis of the SCN1A gene one recurrent,

heritable mutation was found in families enrolled into the study. Probands from those

families even clinically diagnosed with atypical Dravet syndrome (DS), generalized epilepsy

with febrile seizures plus (GEFS+), and focal epilepsy, had heterozygous p.Arg1596 His/Cys

missense substitutions, c.4787G > T and c.4786C > T in the SCN1A gene.

Method: Full clinical evaluation, including cognitive development, neurological examina-

tion, EEGs, MRI was performed in probands and affected family members in developmental

age. The whole SCN1A gene sequencing was performed for all probands. The exon 25, where

the identified missense substitutions are localized, was directly analyzed for the other

family members.

Results: Mutation of the SCN1A p.1596Arg was identified in three families, in one case

substitution p.Arg1596Cys and in two cases p.Arg1596His. Both mutations were previously

described as pathogenic and causative for DS, GEFS+ and focal epilepsy. Spectrum of

phenotypes among presented families with p.Arg1596 mutations shows heterogeneity

ranged from asymptomatic cases, through FS and FS+ to GEFS+/Panayiotopoulos syndrome

and epilepsies with and without febrile seizures, and epileptic encephalopathy such as DS.

Phenotypes differ among patients displaying both focal and generalized epilepsies. Some
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Conclusion: Clinical picture heterogeneity of the patients carrying mutation of the same

residue indicates the involvement of the other factors influencing the SCN1A gene muta-

tions' penetrance.

# 2015 Polish Neurological Society. Published by Elsevier Sp. z o.o. All rights reserved.

n e u r o l o g i a i n e u r o c h i r u r g i a p o l s k a 4 9 ( 2 0 1 5 ) 2 5 8 – 2 6 6 259
1. Introduction

Mutations in the gene SCN1A [MIM 182389] coding for the a1
subunit of the neuronal sodium channel (Nav1.1) have been
associated with various types of epilepsy. Clinical spectrum of
SCN1A mutations ranges from febrile seizures and quite
benign febrile seizures plus (FS or FS+, MIM 604403), genetic
epilepsy with febrile seizures plus (GEFS+, MIM 604403) to
severe epilepsy syndromes such as Dravet syndrome (DS, MIM
607208) and intractable childhood epilepsy with generalized
tonic–clonic seizures (ICE-GTC) [1]. SCN1A mutations have
been also found in single patients with other epilepsy
syndromes (e.g. West syndrome [2], Lennox–Gastaut syndrome
[3], Rasmussen encephalitis [4] and Panayiotopoulos syn-
drome [5]) and in rare cases of Familial Hemiplegic Migraine
(FHM, MIM 6096345) [6] and Familial Autism [7].

So far more than 1200 different mutations in the SCN1A
gene have been identified [according to SCN1A Mutation
Database, http://www.gzneurosci.com/scn1adatabase/]. In the
most severe cases, like Dravet syndrome, mutations mainly
arise de novo (90%), in less severe phenotypes like GEFS+ and
in rare cases of DS are hereditary [1]. Recurrent mutations in
the SCN1A gene are rather rare. Because of that, identification
the groups of patients, especially familial cases, with the same
mutations enable the analysis of the possible phenotypic
heterogeneity due to identical/similar changes. Some compo-
nents of this variability are likely to be related to genetic
factors [8,9]. The heterogeneity in clinical course, especially
observed intrafamilial may help in identification of the
SCN1A-related disorders course modifiers.

Hereby, we present three unrelated families with confirmed
missense mutations – p.Arg1596His and p.Arg1596Cys in the
SCN1A gene, in order to analyze epilepsy phenotype spectrum
in affected individuals due to different changes at this amino
acid residue.
2. Materials and methods

2.1. Subjects

The SCN1A gene analysis was performed in the group of
patients clinically diagnosed with DS/DS-Borderline or GEFS+
syndrome. Three unrelated families with p.Arg1596 His/Cys
missense substitutions were enrolled into this study. Muta-
tions were identified in probands clinically diagnosed as DS,
GEFS+ and focal epilepsy.

Phenotypes of epilepsies were assessed according to
International League Against Epilepsy (ILAE) classification
system [10,11].
When hereditary character of the identified mutations was
confirmed, the detailed clinical history was collected through
interviewing patients' parents and other relatives. Probands
and the other available affected subjects underwent full
neurological examinations performed by neuropediatricians.
Interictal electroencephalograms (EEGs) and magnetic reso-
nance imaging (MRI) were performed in probands and patients
when possible. Clinical course of the remaining subjects was
obtained by reviewing available medical records to extract
information about the seizure onset and history, EEG records,
neurological examination and brain imaging findings as well
as antiepileptic treatment.

Blood samples were collected from 17 affected individuals
and their 8 asymptomatic relatives. All participants (parents
and adult patients) signed the informed consent form.

The Ethics Committee of the Institute of Mother and Child
approved the study protocol.

2.2. Subjects' clinical assessment

Pedigrees of all families are presented in Fig. 1; the main
clinical data are summarized in Table 1

2.2.1. Family 1 (Fam1RC)
Four affected and one asymptomatic individuals being p.
Arg1596Cys mutation carriers were identified in this family.
The proband (III-2) was 6-year-old boy finally diagnosed with
atypical Dravet syndrome. The patient had an uneventful
prenatal history and normal psychomotor development in
the first 3 years of life. He developed generalized tonic–clonic
seizures (GTCS) associated with high fever at 14 months of
age. Seizures recurrence appeared after two years. Since then
he had experienced different types of seizures including
absences, myoclonic, GTCS, focal unilateral, alternating
predominantly on the right and vegetative, frequently in
clusters, associated or not with fever. The status epilepticus
was also observed. The patient was treated with VPA, and then
for short time oxcarbazepine (OXCB), and lamotrigine (LTG)
was added, without clinical course improvement. The seizure
remission was achieved after introduction of levetiracetam
(LEV) added to VPA at the age of 5 years. The improvement of
his cognitive functions was observed (change of IQ from 120 at
4.5 years of age to 140 pts at 6 years, by Wechsler test) during
remission but the Asperger Syndrome and dyspraxia were
developed.

Both proband's father (II-1) and his brother (II-4) had normal
intelligence and were graduated from university. The first one
had suffered from epilepsy with GTCS since the age of 13 years.
He was treated with CBZ and nevertheless he has achieved
remission at the age of 39 years. The second one (II-4), had
his first GTCS at the age of 4 years during physical effort

http://www.gzneurosci.com/scn1adatabase/


Fig. 1 – Pedigree diagrams of the families with the p.Arg1596 residue substitutions p.Arg1596Cys (FAM.1RC) and p.Arg1596His
(Fam.2RH, Fam.3RH). Squares represent males and circles represent females. Arrows indicates probands. Phenotypes are
described for each diagram. In mutation description the one letter amino acid code was used; R = Arg, H = His, C = Cys,
description of the genotypes according to HGVS v.2 nomecnclature should be as follows: p.[Arg1596Cys];[=], p.[Arg1596His];
[=], [=];[=] (HGVS v.2 nomenclature Dunnen JT, Antonarakis SE 2000 [31]). Abbreviations: a.i. – age at investigation; epilepsy
phenotypes: Epi. – epilepsy; GTCS – generalized tonic-clonic seizures; Focal – partial seizures; FS – febrile seizures; FS+ –

febrile seizures plus; DS – Dravet syndrome; PS – Panayiotopulos syndrome.
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(hyperthermia?). He was treated with CBZ replaced then by
OXCB without success. He achieved seizures remission at the
age of 39 years, when the alternative VPA monotherapy was
introduced. Proband's cousin (III-4) with normal cognitive
development was diagnosed with FS+ and treated with VPA.
Slight ataxia and clumsiness were found in his neurological
assessment. Proband's paternal grandmother (I-1) was asymp-
tomatic mutation's carrier of normal intelligence.

2.2.2. Family 2 (Fam.2 RH)
In this family 7 affected subjects, with five being a carrier of p.
Arg1596His mutation, over three generations were identified.
The proband (III-3) diagnosed with FS+ was 4.5-year-old boy
with normal psychomotor and intellectual development. His
first GTCS was associated with high fever at 12 months of life.
Over the next 2 years he experienced a few, both febrile and
afebrile GTCS. The VPA treatment introduced after his first
afebrile seizure was successful. The proband's twin brother
(III-2) displayed similar course of disease.
Proband's older brother (III-2), developed one simple FS at
the age of 12 months. His cognitive development was normal,
but he suffered from migraine without aura and motion
sickness. Proband's father (II-2) was 34 years old, with normal
intelligence. He developed epilepsy with GTCS in the first year
of life (no information upon relation with fever). He was
treated with bitherapy of VPA and carbamazepine (CBZ)
without remission of seizures. Proband's paternal grandmoth-
er (I-1) had suffered from epilepsy with GTCS since 12 years.
She had achieved full remission of seizures at the age of 50
years while being treated with CBZ. Patient II-1 (I-1 son) was 43
years old and had normal intelligence. He experienced one FS
during the first year of life. He has developed a few GTCS since
the age of 41. He received no treatment, as he was addicted to
alcohol. Patient III-1 was 21-year-old daughter of patient II-1.
She was born with severe asphyxia and was mentally retarded.
She experienced a few FS during infection in the first year of
life and then developed refractory epilepsy with GTCS, but
precise data concerning both epilepsy phenotype and AEDs



Table 1 – Clinical characterization of the p.Arg1596Cys and p.Arg1596His mutation carriers in presented families.

p.Arg1596Cys p.Arg1596His

Fam1RC Fam2RH

ID I-2 II-1 II-4 III-2 proband III-4 I-1 II-2 III-2 III-3 proband III-4
Mutation +/� +/� +/� +/� +/� +/� +/� +/� +/� +/�
Gender F M M M M F M M M M
Age at investigation 66 y 42 y 40 y 6 y 7 y 64 y 34 y 12.5 y 4.5 y 4.5 y
Age at seizure
onset/remission

– 13 y/39 y 4 y/39 y 14 m/4 y 3 y/6 y 12 y/50 y 1 y/No 12 m/12 m 12 m/3 y 13 m/No

First seizures type – Afebrile Physical effort
hyperthermia (?)

Febrile
GTCS

Febrile
GTCS

Afebrile Febrile
GTCS

Febrile
GTCS

Febrile
GTCS

Febrile
GTCS

FS – No No Yes Yes ND Yes Yes Yes Yes
Status Epilepticus – No No Yes, clusters of seizures Yes No No No No No
Subsequent
seizures types

– GTCS GTCS Myoclonic, GTCS, focal
unilateral, alternating
predominantly on
the right, vegetative

GTCS GTCS GTCS GTCS GTCS GTCS

Interictal EEG ND ND ND Focal, lateralized and
generalized spikes/
multispikes, spikes-waves
predominantly on
the left site

Normal ND ND Normal Generalized
spike-wave
complexes

Generalized
spike-wave
complexes

Neuroimaging ND ND ND Normal ND ND ND Normal ND ND
Clinical
examination

Normal Normal Normal dyspraxia Ataxia
clumsiness

Normal Normal Normal,
migraine

Normal Normal

Psychomotor/mental
development

Normal Normal Normal Normal but IQ 20 pts.
reduced in disease coursea

Asperger syndrome

Normal Normal Normal Normal Normal Normal

AED previous/AED
current

– CBZ/CBZ CBZ, OXCB/VPA VPA, OXCB, LTG/VPA + LEV VPA/VPA CBZ/No No No VPA/VPA VPA

Epilepsy
phenotype

Asympt. Epilepsy with
GTCS

Epilepsy with
GTCS

Dravet syndrome
(atypical)

FS+ Epilepsy
with
GTCS

Epilepsy
with GTCS
and FS

FS FS + FS +

p.Arg1596His

Fam3RH

ID II-4 II-6 II-7 II-8 III-3 III-4 III-8 IV-3 IV-4 proband IV-5
Mutation +/� +/� +/� +/� +/� +/� +/� +/� +/� +/�
Gender F F M M M F M F F F
Age at investigation 59 y ? adult 51 y 48 y 38 y 30y 14 y 6 y 5 y 5 y
Age at seizure
onset/offset

– infancy 5 y/5 y – 3 y/5 y Infancy 3 y/6 y 14 m/14 m 8 m/5 y 14 m/3 y

First seizures type – FS Febrile
GTCS

– Febrile
GTCS

Febrile
GTCS

Febrile
GTCS

Febrile
GTCS

Afebrile
Tonic (?)

Afebrile CPS
evolving to GTCS

FS No Yes Yes – Yes Yes Yes Yes No Yes
Status Epilepticus No No Cluster of

seizures
No No No No No No Yes

n
 e

 u
 r

 o
 l

 o
 g

 i
 a

 i
 n

 e
 u

 r
 o

 c
 h

 i
 r

 u
 r

 g
 i

 a
 p

 o
 l

 s
 k

 a
 4

 9
 (

 2
 0

 1
 5

 )
 2

 5
 8

 –
 2

 6
 6

 
261



T
ab

le
1

(C
on

ti
n
u
ed

)

p
.A

rg
15

96
H
is

Fa
m

3R
H

Su
bs

eq
u
en

t
se

iz
u
re
s
ty
p
es

–
–

–
–

–
–

–
–

H
em

ic
on

vu
ls
io
n
s

le
ft
-s
id
ed

,
G
T
C
S

C
PS

,
G
T
C
S

In
te
ri
ct
al

EE
G

N
D

N
D

N
D

N
D

N
D

N
D

N
or

m
al

N
D

Fi
rs
t
n
or

m
al
,

n
or

m
al

or
fo
ca

l
on

ri
gh

t

Fo
ca

l
sp

ik
e-
w
av

es

N
eu

ro
im

ag
in
g

N
D

N
D

N
D

N
D

N
D

N
D

N
or

m
al

(C
T
)

N
D

N
or

m
al

(M
R
I)

N
D

C
li
n
ic
al

ex
am

in
at
io
n

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

C
og

n
it
iv
e

d
ev

el
op

m
en

t
N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

N
or

m
al

A
ED

p
re
vi
ou

s/
A
ED

cu
rr
en

t
–

–
–

–
–

–
–

–
V
PA

/L
EV

V
PA

Ep
il
ep

sy
p
h
en

ot
yp

e
A
sy

m
p
t

FS
FS

A
sy

m
p
t

FS
FS

FS
p
lu
s

FS
Ep

il
ep

sy
w
it
h

fo
ca

l
se

iz
u
re
s

Pa
n
ay

io
to
p
u
lo
s

sy
n
d
ro

m
e

a
W

ec
h
sl
er

te
st
.

A
bb

re
vi
at
io
n
:N

D
–
n
ot

d
on

e;
G
T
C
S
–
ge

n
er
al
iz
ed

to
n
ic
-c
lo
n
ic

se
iz
u
re
s,

C
PS

–
co

m
p
le
x
p
ar
ti
al

se
iz
u
re
s,

FS
–
fe
br
il
e
se

iz
u
re
s,

FS
+
–
fe
br
il
e
se

iz
u
re
s
p
lu
s;

A
ED

–
an

ti
-e
p
il
ep

ti
c
d
ru

gs
,C

B
Z
–
ca

rb
am

az
ep

in
e,

O
X
C
B
–
ox

ca
rb
az

ep
in
e,

V
PA

–
va

lp
ro

ic
ac

id
,
LT

G
–
la
m
ot
ri
gi
n
e,

LE
V

–
le
ve

ti
ra
ce

ta
m
.

n e u r o l o g i a i n e u r o c h i r u r g i a p o l s k a 4 9 ( 2 0 1 5 ) 2 5 8 – 2 6 6262
was not available. Patients' II-1 and III-1 DNA was unavailable
for the analysis.

2.2.3. Family 3 (Fam.3RH)
Two girls IV-4 and IV-8, in this family, had come to medical
attention independently from each other, so at that time they
were regarded as probands of two unrelated families. However
it turned out that they belonged to the same four-generation
family with additional 7 clinically affected and 2 asymptom-
atic members being p.Arg1596His mutation carriers.

The patient IV-4 was labelled as a proband for this family.
She was 5-year-old girl with uneventful prenatal history and
normal psychomotor development. At the age of 8 months she
experienced her first afebrile tonic seizure lasted about 3 min,
followed by clouding of consciousness lasting about 1 h. The
next seizure, also afebrile, occurred 4 months later. It was
motor left-sided seizure with disturbances of consciousness
lasting a few minutes. Sleep EEG was normal. Since then,
seizures without hyperthermia had repeated every 2 weeks,
always involving the left side of the body, sometimes with
secondarily generalization. At that time she was diagnosed
with cryptogenic focal epilepsy and VPA treatment was
introduced. After a few months of remission seizures, mostly
afebrile, came back. In fact, only two seizures at the age of
2 and 4 years of age were associated with fever. She had never
experienced status epilepticus, however, once developed
the cluster of three seizures. Her interictal EEG records were
either normal or showed single sharp waves/sharp and slow
waves in both centro-parietal regions, on the right side,
predominantly. The MRI scan was normal. Seizures seized
after introduction of LEV at the age of 3 years as alternating
monotherapy. Her cognitive development was within normal
range (IQ = 81 at the age of 4.3 years). Proband's older sister
(IV-3) with normal IQ had one FS. Their father (III-3) had a few
simple FS, whilst proband's paternal grandmother (II-4) was
asymptomatic.

The patient IV-8 was 5-year girl with uneventful prenatal
history and normal mental development. She was diagnosed
with Panayiotopoulos syndrome. At the age of 14 months she
developed afebrile complex partial seizure with autonomic
signs evolving to tonic–clonic seizures lasting few minutes.
Since then, she had numerous febrile and afebrile clonic
seizures with vomiting, lasting from 10 min to 2 h. Once,
during febrile status epilepticus lasting for 2 h she experienced
long apnoea (required intubation) and right-sided Todd's
paresis. At times, she also complained on paroxysmal
blindness lasting a few minutes. The MRI scan was normal.
EEG interictal showed spike-waves complex in right central
area. After introduction of VPA at the age of 3.3 years, the
patient developed no more seizures. Her mother (III-4) and
maternal grandmother (II-6) had FS in their early childhood.

2.3. Molecular analysis

Molecular analysis was performed on genomic DNA extracted
from subjects' venous blood isolated using Genomic Maxi AX
kit (A&A Biotechonology).

Probands were screened for the SCN1A gene point muta-
tions and exons rearrangements. The direct sequencing of all
26 exons of the gene was performed. Exons were amplified by
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PCR with specific intronic primers (data available on request).
PCR products were sequenced using ABI BigDye v.3.2 termina-
tor sequencing kit (Applied Biosystems). To exclude large-scale
rearrangements of the gene multiplex ligation-dependent
probe amplification (MLPA) was performed using the com-
mercially available MLPA, P-137A2 SCN1A kit (MRC-Holland).

Sequence data were analyzed using MutationSurveyor
V3.24 software (SoftGenetics) in comparison to reference
sequence NM_001165963.1 (NCBI RefSeq; http://www.ncbi.
nlm.nih.gov). The identified variants were labelled according
to numbering of the longest transcript of SCN1A, cDNA
accession number AB093548.

MLPA data were analyzed using the GeneMarker V1.8
software (SoftGenetics) with standard parameters.

Proband's parental and relatives samples were tested by
direct PCR amplification and DNA sequencing of the SCN1A
exon 25.

The impact of discovered p.Arg1596 residue substitutions
on the protein structure and functional changes were analyzed
with the PolyPhen-2/HumVar model software (http://genetics.
bwh.harvard.edu/pph2) [12] and Mutation Taster Software
(http://www.mutationtaster.org) [13] and Align-GVGD (http://
agvgd.iarc.fr), using the A-GVGD method scoring missense
substitutions against the range of variation present at their
position in a multiple sequence alignment [14].

3. Results

Two types of missense substitutions at the p.Arg1596 residue
of the Nav1.1 – p.Arg1596His and p.Arg1596Cys (c.4787G > A
and c.4786C > T) have been identified as recurrent mutations
among patients of Polish origin referred for SCN1A analysis
and with confirmed mutation in the gene. This was one of
the four such SCN1A mutations we described in this cohort
(88 subjects), and the only one, which was heritable and
giving such phenotypic intra-/interfamilial heterogeneity
in our material. The remaining mutations p.Arg712*; Ex12
c.2134C > T (3.4% probands'), p.Arg946His; Ex15 c.2837G > A
(2.3% probands'), p.Lys1846Serfs*; Ex26 c.5536_5539del; (3.4%
probands') all caused the DS phenotype and raised de novo
(confirmed in 75% of probands).

Prediction analysis of the p.Arg1596 substitutions' func-
tional effect, using PolyPhen2/HumVar algorithm revealed,
that both identified variants are probably damaging (score 1.0),
as well as another known substitution – p.Arg1596Leu. These
results were confirmed by Mutation Taster prediction (model:
simple_aae) and all mutations were classified as disease causing
(prob: 0.999). However the Grantham score (GS, range 0.0–215)
differs between different substitutions, for Arg > His GS = 28,
Arg > Cys GS = 180, Arg > Leu GS = 102 reflecting the degree of
differences in physico-chemical characteristic of exchanged
amino acids. Both identified substitutions were described as
pathogenic in Human Gene Mutation Database [HGMD Profes-
sional]; they also cosegregate with FS/Epilepsy phenotypes in
families under consideration.

The substitution p.Arg1595Cys was identified in the Exome
Variant Server database (EVS, http://evs.gs.washington.edu/
EVS) with frequency in European cohort 7.7 � 10�5 (1.1 � 10�4

for European American cohort).
Mutations of the p.Arg1596 were identified in three
families. In one family the substitution p.Arg1596Cys (proband
diagnosed with atypical DS; Fam1RC III-2) was found and in
two families p.Arg1596His (at the beginning in three, but
detailed data and medical/familial history analysis, allowed
to merge two of them), where probands were diagnosed with
FS+ (Fam2RH, II-4) and focal epilepsy (Fam3RH IV-3). In all
cases mutation was heritable, and we were able to correlate
the presence of mutation and FS/epileptic phenotypical
features for the most family members. We observed the
general tendency to evolution from asymptomatic carriers to
symptoms developing patients in the following generation
within all families (Fig. 1).

4. Discussion

We have identified substitutions at the p.Arg1596 residue
as one of the few recurrent mutation in the SCN1A gene in
Polish DS/GEFS+ patients' cohort. Two different nucleotides
substitutions in the 25th exon of the SCN1A gene, c.4787G > A
and c.47865C > T were identified as a causative of missense
mutations at the p.Arg1596 residue – p.Arg1596 His and p.
Arg1596Cys of the Nav1.1 protein respectively. The wild type of
p.Arg1596 is well-conserved amino acid across evolution (96%
homology among mammals) and it is localized in the Nav1.1
D-IV segment at the joint of the transmembrane domain S2
and inner loop S2–S3. The both mutations as well as p.
Arg1596Leu substitution were previously reported as causative
in cases of the SCN1A- related disorders. The p.Arg1596His was
described in paternally inherited GEFS+ syndrome [15] and p.
Arg1595Cys in de novo DS, GEFS+ and focal epilepsy syndromes
[1,16,17]. Another substitution, not identified among our
patients p.Arg1596Leu (c.4787G > T), was described de novo
as causative for DS [15]. In the published case of inherited
p.Arg1596His substitution, no detailed clinical data were
provided, so we are not able to analyze the possible phenotypic
differences between carriers. Interestingly, the substitution p.
Arg1595Cys, among the others, was identified in the Exome
Variant Server (EVS), even reported as pathogenic for epilep-
sies [18]. This finding may indirectly indicate that this
substitution may be not fully penetrant, and its different
expressivity depends on additional modifying genetic factors.
Of course, we must be aware, that EVS was created for
identification of genes not related to epilepsy, so the recruited
subjects were not necessary free of undiagnosed/unreported
seizures (EVS, http://evs.gs.washington.edu/EVS). However,
data we have obtained for all analyzed families show
intrafamilial variability in clinical course of disease, what
indicates the reduced penetrance of Arg substitutions in
position 1596 (asymptomatic carriers) and genetic modifiers
role in final phenotype. The influence of the single nucleotide
polymorphisms, in two others ion channel coding genes
SCN9A and CACN1A, on the disease course of the SCN1A
mutation-positive DS patients has already been postulated
[8,9]. Additionally, there are data indicating the GABRG2
polymorphisms association with susceptibility to FS [19] and
SCN1A, SCN2A in epilepsy susceptibility and drug response
(however controversial) [20,21]. In this context, the work of
Klassen et al. is worth to be mentioned too, as it shows that
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even in monogenic form of epileptic syndromes the individual
patient's ‘‘channotype’’ – the ion channels variation profile
contributes to the excitability phenotype [22].

From the clinical point of view, the epilepsy phenotypes
in presented three unrelated families with Arg1596Cys/His
mutations were within the spectrum of GEFS+ [23] showing
phenotypic intra- and interfamilial variability. The pheno-
types of 20 mutation carriers range from asymptomatic cases,
through febrile seizures, febrile seizures plus, epilepsy with
GTCS either preceded or not by FS, focal epilepsy, atypical
Dravet syndrome and Panayiotopoulos syndrome.

The most interesting, but also the most controversial in
terms of clinical diagnosis was the proband (III-2) in Fam.1RC.
The authors considered whether GEFS+ should have been
diagnosed or borderline DS. Epilepsy course might have
suggested DS. The first psychological exam was done at 4.5
years with IQ = 120, and the next – 140, during seizures
remission at the age of 6 years. Observed facts provide
evidence, that existing epilepsy influenced on cognitive
regression (above 1SD) in patient with high level at starting
point. OXCB and LTG were given during short period of time,
thus probably not having negative impact on ex post detected
cognitive regression. Asperger syndrome features and dys-
praxia appeared in this period additionally. There are a few
descriptions of children with Dravet syndrome in whom IQ
maintained within normal range after achieving seizure
remission [16,24,25]. Having this multifaceted data, the authors
classified his clinical phenotype as borderline Dravet syndrome.
Similar clinical issues in diagnosis one may have in very young,
normal development patients with recurrent seizures and
confirmed mutations in SCN1A. DS is usually diagnosed in these
patients, without full confidence of developmental regression
appearance in the future. There is a chance that future will re-
shape diagnosis stated today, especially that EEG findings show
two patterns: focal and generalized epilepsy in this patient.

The proband of Fam.3RH (IV-4) suffered from focal epilepsy
with mostly afebrile seizures, not heralded by febrile seizures.
Based on epilepsy phenotype alone she had been for the first
time presented to our clinic with diagnosis of focal cryptogenic
epilepsy. However analysis of the family history, which
revealed FS and FS plus in proband's relatives prompted us
to consider channelopathy as the background of seizure
disorders. Molecular diagnosis revealed SCN1A mutation
which confirmed our suspicion of genetic focal epilepsy.

In fact, patients with SCN1A-related partial epilepsies were
described quite rare few years ago. However Lossin et al. found
that patients with focal epilepsies might constitute 1.1%
among the subjects with epilepsy caused by SCN1A mutations
[26]. This indicates that the full spectrum of SCN1A-related
epilepsies include both generalized and partial epilepsies.

Another patient from Fam.3RH (IV-8) with normal intelli-
gence and neuroimaging was presented with constellation of
both afebrile and febrile long-lasting autonomic and complex
partial seizures which let us to consider diagnosis of
Panayiotopoulos syndrome (PS). The girl also complained
from recurrent ictal blindness, which could be visual seizures
occurring in few percent patients with PS [26]. Autonomic
symptoms she suffered were mostly emetic and paleness, but
once during status epilepticus she experienced long-lasting
apnoea required even intubation. In fact, despite benign
course of PS in mostly of patients, cardiorespiratory arrest with
potentially fatal outcome has been reported in four out of
around 1000 cases [26]. It is worth to stress, that recognition
of molecular defect in SCN1A gene in our patient allowed
avoiding treatment with CBZ and LTG, which might have
had deleterious effect on the disease course, especially on
autonomic symptoms. Once she experienced postictal Todd's
paresis which has been observed in some patients with both
symptomatic and idiopathic focal epilepsies, e.g. rolandic
epilepsies [27]. So far we have not found description of
postictal paresis in a child with PS. However, it is well known,
that there is link between PS and rolandic epilepsy and some
clinical and EEG signs of the latter epileptic syndrome can
occur in less typical Panayiotopoulos syndrome, as well as
atypical absences, atonic and inhibitory seizures [27]. In EEG
trace we have found only extra-occipital spikes which do not
exclude diagnosis of PS, as quite typical focal and multifocal
sharp waves are located in the occipital lobe in about two-
thirds of the cases [27]. PS is very rarely described among
patients with SCN1A mutation. Cordelli et al. [28] have found
no SCN1A mutation among 10 children with PS, and then
even advised against routine screening of the SCN1A gene
in patients with focal autonomic seizures triggered by fever. In
our case, sensitivity to fever and positive family history with
FS strongly suggested to perform analysis of this gene. PS and
FS due to SCN1A mutation was additionally identified in
another patient in the cohort under analysis (unpublished
data). Occurrence together the PS and FS (17% of PS patients
[29]) may to point on the SCN1A mutations as a possible
background of symptoms, so following Grosso et al. [30], we
suggest that the molecular analysis of the SCN1A gene might
be taken in account and performed in such cases as a helpful
during treatment consideration.

It is worth to state that all p.Arg1596 mutations carriers had
normal intelligence, and epilepsy phenotypes of probands and
their relatives, although different, had quite benign clinical
course when being diagnosed as sodium channelopathy and
afterwards treated properly. Modification of previous drug
regimen was needed in a few cases, because patients had been
treated with CBZ. Some of them had not achieved remission of
seizures on CBZ, but the others had. How could it be explained
may be their epilepsy was benign enough, that CBZ did not
make much harm, or the lifetime of dysfunctional sodium
channel was over at certain age of a patient. Dlugos et al. for
example, presented a 6-year-old boy with SCN1A p.Arg1596Cys
substitution, who was temporary managed, among the others,
with sodium channel blockers (CBZ and LTG). Despite this his
cognitive development remained normal. He finally achieved
seizures remission on VPA monotherapy [16].

To conclude, the spectrum of SCN1A-related phenotypes
in set of patients with p.Arg1596 mutations ranged from
asymptomatic cases, through FS and FS plus to epilepsies with
and without febrile seizures and epileptic syndromes such as
DS and Panayiotopoulos syndrome. Phenotypes of epilepsies
differ among patients displaying both focal and generalized
epilepsies. Analysis performed for families with different
substitutions at this same protein residue indicates that the
other than just the single SCN1A mutation must be involved
in phenotype of broad-spectrum development. Possibility of
occurrence DS and milder form among relatives (and such
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results are more common with more cases being analyzed),
shows how difficult may be prediction of the disease course –

the type of epileptic syndrome, but also presence of additional
signs as ataxia, migraine or neuropsychiatric diseases (e.g.
Asperger syndrome). This also makes the genetic counselling
for mutation's carrier much more complicated even in familial
cases of SCN1A-related disorders.
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