Original research article

“Thickened” ligamentum flavum caused by laminectomy

Fatma Bahar Hacıoğlu Kasım¹, Ozgur Tosun¹,*, Emin Kasım⁴, Karabekir Ercan², Aliye Tosun³, Halil Arslan⁵, Mustafa Karaoğlanoğlu⁷

¹Tekirdağ Private Yaşam Hospital, Department of Radiology, Tekirdağ, Turkey
²Izmir Katip Celebi University, Faculty of Medicine, Department of Radiology, İzmir, Turkey
³Tekirdağ Private Yaşam Hospital, Department of Neurosurgery, Tekirdağ, Turkey
⁴Ankara Ataturk Education and Research Hospital, Department of Radiology, Ankara, Turkey
⁵Izmir Katip Celebi University, Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Turkey
⁶Yıldırım Beyazıt University, Ankara Ataturk Education and Research Hospital, Department of Radiology, Ankara, Turkey
⁷R.T. Erdogan University, Ankara Ataturk Education and Research Hospital, Department of Radiology, Ankara, Turkey

A R T I C L E   I N F O

Article history:
Received 20 February 2015
Accepted 19 March 2015
Available online 11 April 2015

Keywords:
Laminectomy
Magnetic resonance imaging
Ligamentum flavum

A B S T R A C T

Objective: The purpose of this study was to evaluate the effect of a laminectomy on the adjacent ligamentum flavum (LF) by measuring LF thickness using magnetic resonance imaging (MRI).

Materials and methods: A total of 78 patients (31 man, 47 woman) with laminectomy were included in our study. After determination of laminectomy level, measurements were done from the thickest parts of the bilateral LF at the upper level of the laminectomy where bilateral facet joints were evident at the slice.

Results: Ipsilateral ligamentum flavum with laminectomy was significantly thicker than the contralateral ligamentum flavum with laminectomy.

Conclusion: Laminectomy cause thickening of ligamentum flavum. Therefore we assume that it should kept in mind that LFH may develop at the adjacent level to the laminectomy and careful clinical and radiological assessments’ should be done to exclude LFH in cases who complain about the recurrence of complaints during the post-operative period after laminectomy.

© 2015 Polish Neurological Society. Published by Elsevier Sp. z o.o. All rights reserved.

1. Introduction

The ligamentum flavum (LF) covers most of the postero-lateral part of the lumbar spinal canal. LF hypertrophy has been considered as a cause of lumbar spinal stenosis (LSS). Ligamentum flavum hypertrophy (LFH) is mostly caused by mechanical stress and increased physical activity. Degenerative disc diseases and inflammatory changes can also reduce the diameter of the spinal canal which can eventually lead to
the development of spinal stenosis symptoms by compressing the dural sac and nerve roots [1–6].

Lumbar spinal stenosis (LSS) is one of the most common indications for spinal surgery in the elderly. A decompressive laminectomy without fusion is the most commonly used surgical method [5,7]. Local tissue trauma and postoperative spinal instability are among the most common complications. Studies have shown that a total laminectomy increases segmental instability unless a fusion is performed. Segmental instability can also lead to increased mechanical stress [7–12].

There were a few studies that investigate the correlation between LFH and LSS. Park et al. who investigated LF thickness by measuring the thickness of LF in patients with LSS on magnetic resonance imaging (MRI). They found that the mean thickness was 4.44 mm, which was significantly thicker than the LF in the control group without LSS (2.44 mm) [2]. Sakamaki et al. investigate the pathogenesis of LFH in patients with low back or leg pain. They found that LF thickness increased with age [12].

We could not find an article written in English literature that reported on the impact of a laminectomy on LF. Our hypothesis is that a laminectomy may cause LFH due to the mechanical stress produced by post-operative spinal instability. The purpose of this study was to evaluate the effect of a laminectomy on the adjacent LF by measuring LF thickness using MRI.

2. Materials and methods

This study was approved by ethics committee that raise the requirement to get informed consent. Using the picture archiving and communication system (PACS) (Extreme PACS, Ankara), we identified 2845 consecutive lumbar MRI scans of 2693 patients from March 2009 to December 2009 by using the word “laminectomy” in the search engine on the PACS system. A total of 234 patients who had laminectomy surgery were found using the PACS system. These patients were retrospectively examined by consensus of two radiologist ((FBH) with 2 years of experience in neuroradiology, (KBE) with 10 years of neuroradiology experience). The exclusion criteria were the presence of post-operative granulation tissue, severe scoliosis and degenerative changes, absence of posterior elements (spinous process or pedicle), presence of fixation materials and the absence of upper level slices in patients with a laminectomy. After exclusion of 156 patients, a total of 78 patients between the ages of 23–80 years [31 men, 47 women; mean age 48.7 ± 13.1 years; postoperative period ranging from 1 to 16 years] with laminectomy were included in the study.

MRI examinations were performed using a 1.5 Tesla MR system (Philips, Achieva, and Intera Nova, Netherlands). Phased array spine coils were used for all examinations. T1 weighted (W) images (TR/TE interval 400–847/8–9 ms) and T2W images (TR/TE interval 2889–3612/100–120 ms) in the sagittal plane and balanced fast field echo (BFSE) (TR/TE interval 5.5–9/2–4 ms, Flip Angle 45°) sequences in the axial plane were obtained with a 4 mm slice thickness, 0.4 mm interslice gap, 26–28 cm of field of view (FOV), 280–288 × 208–209 matrix, 2–3 NEX value for sagittal images, 2 mm slice thickness, 0.4 mm interslice gap, 15–16 cm FOV, 224 × 199 matrix and 2–3 NEX value for axial images.

After determining the level of operation, thickness of LF was measured in the axial BFSE sequence that was perpendicular to the spinal canal axis and parallel to the laminae from the thickest parts of the bilateral LF at the upper level of the laminectomy where the bilateral facet joints and the entire length of the LF were seen on the slice (Fig. 1a and b). Measurements of the LF thicknesses in this study were grouped as follows: group 1 consisted of patients with a thickness of the LF ipsilateral to the side of the laminectomy, group 2 consisted of patients with thickness of the LF contralateral to the side of the laminectomy. The age and

![Fig. 1 – MRI images in axial planes show (a) laminectomy defect (arrows) and (b) measurements on the MRI of a 45-year-old male patient one year post-surgery in the L3–4 disc space.](image-url)
The LF covers the large portion of the posterolateral wall of the spinal canal and plays an important role in controlling the intervertebral movements, stabilizing the spine while sitting and standing and providing smoothness in the back wall of the spinal canal and neural foramen. Changes in the size of the LF can cause significant neurological problems [13,14].

Some studies show that thickening of the LF is usually caused by buckling of the LF into the spinal canal due to loss of disc space height rather than to hypertrophy. Some previous studies reported that degenerative changes secondary to the aging process and mechanical stress due to spinal instability lead to thickening of LF [4,13,15–18] however in a study by Safak et al. no such association was found, which was also supported by the results of our study [19].

LF thickening plays an important role in the etiopathology of LSS since it covers the vast majority of the spinal canal [20,1,21]. Towne et al. was the first to report on the need to relieve spinal stenosis caused by thickening of the LF after laminectomy surgery in 1931. He demonstrated that compression of lumbosacral nerve roots was present and was caused by thickening of the LF [3]. Laminectomy and flavectomy is a surgical procedure in which a portion of the lamina is resected. It is generally performed to gain access to the intervertebral disc space during a herniated disc surgery and to relieve stenotic segment in stenosis surgery [5,7]. Previous studies have also shown that total laminectomy increases segmental instability [7–11].

It is known that age, mechanical stress and physical activity play a role in the etiopathology of LFH [2–4,7–10,22]. Sairyo et al. reported that the underlying cause of LFH is development of post-inflammatory scar tissue [18]. The majority of the extracellular matrix of the LF consists of elastic fibers. After injury to the LF, the amount of elastic fibers is reduced and replaced by collagen fibers and then with calcification and ossification, which leads to the development of chondroid metaplasia. When the LF is exposed to stress, the...
LF is injured and later when healing occurs, fibrotic scar tissue develops [23–25]. In recently published article Kang et al. reported that degenerated and herniated intervertebral disc provide an important pathomechanism in hypertrophy and ossification of the LF through inflammatory cytokines [25]. We hypothesized that the stability of the vertebral column was being disturbed after laminectomy. This impaired stability increases mechanical stress especially on the LF at the ipsilateral side with the laminectomy. Eventually, increased mechanical stress may cause to release of inflammatory cytokines that could result in thickening of the LF.

We were unable to find an article written in English that reported on the impact of a laminectomy on LF. Therefore, this is the first study written in English examining the impact of laminectomy on the LF using MRI images.

There are some limitations in our study. Firstly, we were unable to obtain the preoperative MRI scans of the patients and measure the preoperative thickness of LF, therefore the amount of LF thickening could not be determined. The second limitation of our study is that we only measured and compared the thicknesses of the LF at one upper level laminectomy. Therefore, we did not determine how the laminectomy influences LF thickness at other levels. Future prospective studies which include the preoperative and postoperative measurements of LF in larger patient populations are needed to understand the effect of laminectomy on LF thickness more accurately.

To conclude, we observed that laminectomy affected the thickness of the ipsilateral LF. This suggests that laminectomy may play a role in the development of LSS. Therefore, it is possible that thickening of the LF may develop at the level adjacent to the laminectomy and that careful clinical and radiological evaluation should be done to exclude LF thickening in patients who have recurrent complaints in the postoperative period after laminectomy.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgement and financial support

We declare that there is no financial disclosure for the manuscript.

Ethics

The work described in this article has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals.

REFERENCES


