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Abstract

Introduction. Parkinson’s Disease (PD) is a highly heterogeneous entity in terms of clinical manifestations, progression, and 
treatment response. This variability has given rise to the hypothesis that different clinical subtypes of the disease exist. 

State of the art. To date, several clinical subtypes have been described, mostly based on different clinical features, and so-
metimes with the support of biomarkers, either fluid, neuroimaging, or neurophysiological. The most homogeneous subtypes 
detected are a ‘benign subtype’, characterised by younger age at onset, mild non-motor symptoms, and a slower rate of disease 
progression, and a ‘malignant subtype’, which features an older age at onset, a higher burden of non-motor symptoms, and 
faster disease progression. 

Clinical implications. Despite extensive research, none of the subtypes identified so far seem to be biologically supported, so 
clinical subtyping does not elucidate PD aetiology and does not allow for the prediction of prognosis or treatment response. 
This study was aimed to review the literature on this topic and to examine the studies on PD subtyping. We also reviewed the 
proposed biomarkers for a biological classification of PD, and outlined the role of genetics and pathology within this context.

Future directions. In light of the recent proposal of a biological classification of PD, which might overcome the limits of the 
clinical diagnosis, PD subtyping should hopefully shepherd researchers towards a biological approach, also aided by recent 
advances in the field of biomarkers. 
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Introduction

Clinical diagnostic criteria for Parkinson’s Disease (PD) 
have been implemented and validated over time to improve the 
diagnostic accuracy of the disorder [1]. Nevertheless, the di-
agnosis remains challenging given that its clinical features can 
overlap with those of other neurodegenerative conditions, and 
reliable tests or biomarkers are lacking. Consequently, clinical 
diagnostic accuracy is still suboptimal [2]. Clinicopathological 
series have reported an overall diagnostic accuracy at an ini-
tial or early stage of 58% [3]. One of the main reasons for the 
complexity of PD is the significant clinical heterogeneity of 
the disease in terms of clinical features, rate of progression, 
and treatment response. This variability suggests the possible 

existence of different clinical subtypes, which differ not only 
in terms of phenotype, but also possibly in terms of underlying 
disease mechanisms [4]. In addition, the discovery of genetic 
forms of the disease, which can differ from idiopathic PD in 
several clinical features, has encouraged research into a biolog-
ical classification of sub-entities within the PD spectrum [5].

Research on PD subtypes has the potential to clarify the 
pathophysiology and natural history of the disease and thus 
eventually to lead to therapeutic development. Accordingly, in 
2014, the National Institutes of Health defined subtype identi-
fication as one of the three main clinical research priorities in 
PD [6]. Several classification systems have been proposed so 
far. Two extreme phenotypes of the spectrum were originally 
suggested in the early 1990s: ‘benign’ and ‘malignant’ PD. 
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These two phenotypes correlate with different demographic, 
clinical, and habits/occupational factors. 

The former subtype is associated with a younger age at 
onset, asymmetric clinical presentation in one limb, regular 
physical exercise, and active smoking. The benign phenotype 
also correlates with higher dopaminergic dose than malignant 
PD, more frequent wearing-off, and dyskinesia [7]. Conversely, 
the malignant phenotype is characterised by more promi-
nent freezing of gait, postural abnormalities, hallucinations, 
depression, and autonomic dysfunction. Another popular 
classification, which partly overlaps with the previous one, has 
identified the ‘tremor-dominant’ versus the ‘postural instabil-
ity and gait difficulty (PIGD)-dominant’ subtypes [8]. PIGD 
patients have been shown to have not only greater postural 
and gait difficulties, but also more severe bradykinesia. In 
addition, they have greater occupational disability, cognitive 
impairment, apathy, depression, and impairment in activities 
of daily living when compared to the tremor-dominant sub-
jects. Tremor-dominant patients have been shown to display 
more severe tremor at rest, and also action-postural tremor, 
but an overall milder disease course [8].

PD subtyping is supposed to allow the prediction of disease 
progression, in terms of the analysis of time to reach a given 
‘disease milestone’, namely any clinically relevant endpoint 
expressing a major disease-related event [9]. This method 
of tracking disease progression, ultimately, might be able to 
estimate response to treatment for possible future upcoming 
personalised management strategies [10]. 

The main challenge here is that clinical subtyping does not 
reflect the underlying biology of the disease process, and so bi-
ological subtyping would be more effective in finding possible 
therapeutic strategies within the context of personalised med-
icine. For this reason, recently, opinion leaders have started 
working on a proposal for a more precise biological classifica-
tion of PD and other synucleinopathies [11]. Notwithstanding 
this, there is at present no consensus regarding a subtyping 
method for PD, neither for research nor for clinical practice. 

The aim of this review was to interrogate the literature on 
disease subtyping in PD, and to examine hypothesis-driven, as 
well data-driven, studies on this topic. We have also reviewed 
the proposed biomarkers for a biological classification of PD 
and outlined the role of genetics and pathology in this con-
text. We conclude this review with our ‘take-home’ message 
derived from reviewing the existing literature, and make rec-
ommendations for the next steps in researching the clinical 
and biological classification of PD.

State of the art

Phenomenologically identified subtypes
Clinical subtypes represent the primary classification 

system used in everyday clinical practice worldwide. Recent 
studies have shown how clinical subtypes may have distinct 

genetic underpinnings (see also our section ‘Genetics’ below 
for further details) [12, 13].

Benign tremulous parkinsonism
A clinical entity known as ‘benign tremulous parkinson-

ism’ has been identified for many years [14, 15]. Patients with 
this phenotype typically show: 
1. Resting tremor as the first or among the first signs, with

this being the most prominent symptom throughout the
course of the disease

2. Other aspects of parkinsonism (i.e., rigidity, bradykine-
sia, stooped posture, difficulty turning in bed, sialorrhea,
hypomimia) that remain mild

3. Absence of gait disturbance, except for reduced arm swing 
or mild stooping

4. Mild progression after 8–10 years, apart from tremor
5. Absence of disability apart from tremor (i.e., gait and

balance remain unimpaired).
This subtype was well described in 2006 in a series of

116 patients seen at the Mayo Clinic over the course of a dec-
ade [16]. The authors reported 16 patients with a diagnosis of 
benign tremulous parkinsonism. Their tremor was often not 
very responsive to levodopa therapy, which was in fact un-
necessary in a number of cases. Most patients had immediate 
family members with a diagnosis of tremor or PD. The neu-
ropathology of benign tremulous parkinsonism is unknown. 
Striatal dopaminergic imaging studies however have shown 
similarities with classic idiopathic PD [16]. Patients with this 
clinical entity are seen in every busy PD clinic.

PD dementia 
Dementia is common in patients with PD, possibly appear-

ing in more than half of cases. In 2007, the MDS (Movement 
Disorder Society) Task Force proposed clinical diagnostic 
criteria for PD and dementia (PDD) [17]. PDD presents typ-
ically an insidious onset and a slowly progressive impairment 
in attention, executive, visuospatial functions and memory, 
with relatively preserved core language functions. Behavioural 
symptoms including hallucinations, delusions, apathy, and 
mood changes are frequent. Dementia in PD is more fre-
quently associated with the PIGD motor phenotype. Imaging 
studies have demonstrated atrophy and hypometabolism, 
more prominent in the temporal and posterior areas. The main 
pathological correlate is Lewy body-type degeneration in the 
cerebral cortex and limbic structures, often with overlapping 
pathology that probably influences the timing and severity of 
the clinical picture. However, there is no ‘gold standard’ for 
the diagnosis in vivo [17]. Dementia with Lewy Body (DLB) 
is one of the most common types of degenerative ԁеmеntiа, 
second to Alzheimer’s Disease (ΑD) [18]. In addition to 
ԁemеntiа, distinctive clinical features include visual halluci-
nations, раrkinsοnism, cognitive fluctuations, dysautonomia, 
sleep disorders, and neuroleptic sensitivity. The pathological 
hallmark is the presence of eosinophilic intracytoplasmic 
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inclusions called Lewy bodies (LB) that contain aggregated 
alpha-synuclein (α-syn). LB are typically present in the deep 
cortical layers throughout the brain, especially in anterior 
frontal and temporal lobes, cingulate gyrus, and insula [19]. 
PDD and DLB share several clinical features, genetics, and 
neuropathology. 

This has led to a debate as to whether DLB and PDD are 
the same disease, or represent different expressions of an LB 
disease spectrum, or are distinct disorders [20]. According 
to current criteria, PDD is diagnosed when cognitive decline 
develops in the setting of well-established PD [17], specifically 
when motor symptoms precede dementia by 12 months or 
more (the so-called ‘one year rule’), whereas DLB is diagnosed 
when dementia occurs before or within one year after the on-
set of parkinsonism [19, 21]. There is a need to more clearly 
distinguish between these syndromes and to understand the 
neuropathological processes leading to each one.

At present, PDD and DLB are considered as the second of 
the three possible phenotypes described above, i.e., as sub/phe-
notypes or two ends of the LB disease spectrum, because there 
is a neuropathological continuum from PD to PDD and on 
to DLB [20, 22]. 

Some authors have advocated for the use of the term ‘Lewy 
body disorders’ [23], wherein the concept of Lewy body disor-
ders would include DLB, Lewy body PD, rapid eye movement 
sleep behavioural disorder (REM SBD), and pure autonomic 
failure. Despite clinical differences, the common occurrence 
of Lewy pathology suggests that all these conditions might be 
treated with similar therapeutic approaches. 

Overall, a proposed classification could be based on pro-
tein pathological deposition (i.e., synucleinopathies including 
PD, DLB, REM SBD, pure autonomic failure, and multiple sys-
tem atrophy — MSA), the type of cellular inclusions (i.e., Lewy 
body disorders including PD, DLB, REM SBD, and pure auto-
nomic failure), and the clinicopathological phenotype (i.e., 
motor-predominant Lewy body disorder including PD) [24].

PD axial dystonia
Dystonia, or a more general hyperactivity of paraspinal 

and non-paraspinal muscles, appears to be the most common 
cause for these peculiar forms of axial disability in PD based 
on findings from electromyographic investigations [25]. 

This hypothesis is supported by three main findings: 
1. The existence of drug-induced camptocormia or Pisa

syndrome
2. The (rare) existence of sensory tricks to alleviate some

postural abnormalities
3. Evidence of misalignment improvement by botulinum tox-

in type-A or lidocaine administration in some patients [25]. 
In addition to the described trunk abnormalities, cer-

vical muscles may also be involved. Antecollis is a forward 
flexion of the head and neck which can be mild as part of the 
stooped posture of PD. Severe antecollis can be associated with 
disproportionate flexion of the head and neck compared to 

the posture of the limbs and trunk. Antecollis is much more 
common in MSA than in PD, with a prevalence of 42.1% vs. 
5.8% [26]. Also Pisa syndrome is much more frequent (42% 
vs. 2.5%) in the MSA parkinsonian subtype (MSA-P) than 
in PD [27].

Camptocormia is an abnormal flexion of the thoracolum-
bar spine during standing and walking that reduces in a re-
cumbent position. There is little epidemiological data on this 
phenomenon. Tiple and colleagues assessed camptocormia 
in PD in a single-centre survey, finding a prevalence of 6.9%. 
This symptom was observed in patients with more severe PD, 
as clinically assessed by both Hoehn–Yahr (H&Y) staging and 
the Unified Parkinson’s Disease Rating Scale (UPDRS) part III 
(motor part), longer levodopa treatment duration and greater 
levodopa daily dose, and the presence of dementia as per the 
DSM-IV definition. As a risk factor, the authors interestingly 
identified previous vertebral surgery [28]. Lateral deviation 
of the trunk which resolves on lying down, also known as 
Pisa syndrome, may be also observed in PD, often associated 
with camptocormia. Schӓbitz and colleagues aimed to inves-
tigate the aetiopathogenesis of camptocormia in PD. In four 
PD patients with camptocormia, paraspinal muscles were 
studied by electromyography (EMG) and axial computerised 
tomography (CT) or by magnetic resonance imaging (MRI) 
scans and muscle biopsy. EMG or imaging studies suggested 
a circumscribed myopathy of the paraspinal muscles that was 
then confirmed by biopsy. None of the patients had evidence 
for systemic neuromuscular disease on clinical or laboratory 
testing. 

According to these findings, in PD patients with pro-
nounced forward flexion of the trunk, myopathy confined to 
the neck or erector spinae muscles must be considered, proba-
bly in a minority of patients, in addition to an imbalance of the 
central motor drive to the ventral or dorsal trunk musculature 
leading to trunk dystonia and a primary vertebrogenic disease 
such as ankylosing spondylitis [29].

PD non-motor or pauci-motor subtypes
PD is characterised not only by its motor aspects, but also 

by numerous non-motor symptoms (NMS) that include cog-
nitive impairment, behavioural changes, sleep disturbances, 
autonomic dysfunction, pain and fatigue [30]. NMS are very 
common in individuals with PD. In two studies, at least one 
NMS was reported by almost 100% of patients [31, 32]. NMS 
also may be the presenting clinical feature of PD in more than 
one in five subjects [33]. NMS are now also recognised to be 
among the most robust prodromal signs of PD [34].

In particular, PD patients present multiple NMS, rather 
than an individual isolated NMS. Moreover, subgroups of 
PD patients tend to present with a combination of NMS, 
which can be identified as NMS clusters [35]. Sauerbier and 
colleagues have hypothesised several non-motor subtypes of 
PD, in relation to the spread of pathology. Specifically, the 
‘Park cognitive’ and the ‘Park apathy’ subtypes are related to 
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a clustering algorithm categorises patients into subtypes on 
the basis of these variables. These models have often included 
motor and non-​motor variables such as cognitive impair-
ment, sleep disorders, autonomic dysfunction, and psychotic 
symptoms [38]. 

Hypothesis–driven studies
In a seminal study, Jankovic and colleagues performed 

a baseline analysis of the DATATOP cohort [39], that com-
prised 800 de novo PD patients. The criteria for the different 
groupings were defined before the data analysis and were 
based on previously reported possible subtypes and on the 
collective clinical experience of the investigators. The authors 
defined a priori: early onset versus late onset phenotype; 
benign versus malignant status; and tremor-dominant versus 
PIGD-dominant subtypes. Early-onset PD patients showed 
a slower progression of disease and better cognitive perfor-
mance than late-onset PD subjects. Bradykinesia and PIGD 
were more common at onset in patients with a rapid rate of 
disease progression (‘malignant PD’ defined as duration of 
symptoms ≤ l year and mean H&Y stage of 2.5) compared 
to those with a slower progression (‘benign PD’; duration of 
symptoms > 4 years). Comparisons of tremor-dominant PD 
type to PIGD-dominant type provided support for the exist-
ence of clinical subtypes. The PIGD group reported signifi-
cantly greater subjective intellectual, motor, and occupational 
impairment than the tremor-dominant group. 

Data-driven studies
Graham and Sagar, in the first data-driven study, identified 

three subtypes of PD: ‘motor-only’, ‘motor and cognitive’, and 
‘rapid progression’. The motor only subtype was characterised 
by motor symptom progression in the absence of cognitive 
decline. The motor and cognitive subtype exhibited the same 
rate of motor symptom progression but presented global 

the neocortical route; the ‘Park fatigue’ and the ‘Park pain’ 
subtypes are related to the olfactory to limbic route; and the 
‘Park sleep’ and the ‘Park autonomic’ subtypes are related to 
the brainstem route.

Non-motor subtyping has relevance for clinical practice, 
because it can influence therapeutic approaches, as well as 
research, as a specific phenotype may be included or excluded 
from a clinical trial [35].

Clinical subtypes are not limited to classic PD but are also 
used in other parkinsonian forms. A recent study [36] eval-
uated 24 patients with post-COVID-19 parkinsonism, with 
a mean onset age of 58 years after a mean of 30 days from the 
COVID-19 onset. Akinetic-rigid (n = 11) and mixed (n = 6) 
subtypes were the most common. Asymmetry was present in 
13/15 patients. Brain MRI was unremarkable in 11/19, whereas 
dopaminergic system imaging was abnormal in 8/8 patients. 
Responsiveness to dopaminergic treatment was observed in 
12/15 patients. The main features of the clinical subtypes are 
set out in Table 1.

Hypothesis-driven and data-driven studies 
on subtypes

Studies on PD subtypes have mainly employed two meth-
ods: a hypothesis-driven approach, or a data-driven method. 
Hypothesis-driven studies have identified subtypes starting 
from an a priori hypothesis, using a single classification varia-
ble, such as age at onset or tremor. The majority of these studies 
have considered classical motor features, detecting subtypes 
with PD as tremor versus akinetic-rigid predominance, or 
tremor-dominant versus PIGD-dominant [37]. 

Conversely, the data-driven method, a hypothesis-free 
approach, uses advanced biostatistical methods such as unsu-
pervised clustering to standardise phenotypic variables, while 

Table 1. Overview of proposed Parkinson’s Disease clinical subtypes

Clinical subtype Main clinical features

Benign tremulous 
parkinsonism

	— Resting tremor as first or among first signs, and that remains most prominent symptom throughout disease course

	— Other aspects of parkinsonism remain mild

	— Absence of gait disturbance except for reduced arm swing or mild stooping

	— Mild progression after 8 years, apart for tremor

	— Absence of disability besides tremor 

PD-dementia 	— Cognitive decline develops in setting of well-established PD

	— Insidious onset and slowly progressive impairment in attention, executive, visuospatial functions and memory, with relatively 
preserved core language functions

	— Behavioural symptoms including hallucinations, delusions, apathy, and mood changes

PD-axial dystonia 	— Antecollis: forward flexion of head and neck

	— Camptocormia: abnormal flexion of thoracolumbar spine during standing and walking that reduces in recumbent position

	— Pisa syndrome: lateral deviation of trunk which resolves on lying down

PD non-motor or pauci-
motor subtypes

	— Predominance of non-motor features (e.g. apathy, fatigue, pain, autonomic dysfunction) over motor symptoms

PD — Parkinson’s Disease
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Table 2. Biomarkers in Parkinson’s Disease 

Biomarker Advantages Disadvantages

α -synuclein species 
(immunoassays)

CSF o-α-syn and p-α-syn: 

Increased levels in PD compared to HC and neurological 
controls

Remarkable discriminatory ability, with some overlap

o-α-syn and p-α-syn: 

Increased levels were not found among people with iRBD

Few studies, still a lack of validation in independent 
laboratories

Tot α-syn: This biomarker alone should not be considered 
for diagnosis of PD

Not applicable to blood: important content of α-synuclein 
in red blood cells with risk for erythrocyte contamination

Pro-aggregating forms of α-syn 
(SAA)

High sensitivity and specificity for diagnosis in CSF 

High diagnostic performance also in prodromal cases (e.g. 
iRBD)

Applicable also to easily accessible matrices (e.g. olfactory 
mucosa)

Qualitative binary response (positive/negative)

Technical issues still to be resolved to achieve 
reproducibility of results 

Alzheimer’s Disease biomarkers Lower CSF Aβ42 levels robustly prognostic regarding 
development of cognitive decline in PD

Data on t-tau and p-tau are not as consistent as those 
about Aβ42 regarding their prognostic value in PD

CSF sample: invasive procedure

Neurofilament light chain May help to discriminate between PD and other 
neurodegenerative disorders

Useful to differentiate PD vs atypical parkinsonism

Levels in PD patients rise over time and with age, and 
correlate with clinical measures of PD severity

Potential biomarker of cognitive decline in PD

Measurable both in CSF and blood

Lack of standardised methods for NfL measurement both 
in CSF and blood 

Cut-off values need to be established 

Neuroinflammatory biomarkers A more proinflammatory profile in early disease seems 
to correlate with cognitive decline and faster motor 
progression, whereas a more anti-inflammatory profile 
may be associated with better cognitive function and 
more stable motor function

Findings need to be confirmed in larger studies

Neurophysiological biomarkers TMS: diffuse malignant subtype had increased cortical 
excitability and reduced plasticity compared to mild 
motor-predominant subtype

Specific changes in cortico-cortical and corticothalamic 
coupling observable in surface EEG recording during 
resting state; associated with loss of dopaminergic 
neurons in PD

Future longitudinal clinical and neurophysiological 
assessments of these findings are needed to test reliability 
of results over time

Ultrasound imaging biomarkers Preliminary findings suggest atrophy of vagus nerve in PD 
which can be detected by ultrasound examination

Non-invasive procedure 

Several confounding factors 

Reliability of technique needs to be confirmed

SAA — seed amplification assay; NfL — neurofilament light chain; PD — Parkinson’s Disease; HC — healthy controls; iRBD — idiopathic REM behaviour disorder; CSF — cerebrospinal fluid; o-α-syn — oligomeric 
alpha-synuclein; p-α-syn — phosphorylated alpha-synuclein; AB42 — amyloid beta 42; t-Tau — total Tau; p-Tau — phosphorylated Tau; TMS — transcranial magnetic stimulation; EEG — electroencephalogram

cognitive impairment as assessed by the Blessed Dementia 
Scale Information–Memory–Concentration Test, which 
provides a global measure of cognitive function. The rapid 
progression subtype presented an older age at disease onset 
plus rapidly progressive motor and intellectual disability [40].

Van Rooden and colleagues later identified PD subtypes 
by a data-driven approach applied to a broad spectrum of 
motor and non-motor features [41]. Data on symptoms was 
collected in 802 patients in two European-prevalent cohorts, 
the PROfiling PARKinson’s disease cohort (PROPARK) [42] 
and the Estudio Longitudinal de pacientes con Enfermedad de 
Parkinson cohort (ELEP) [43]. The subtypes were subsequently 
characterised by clinical and demographic variables. Four 

PD cluster subtypes were detected. Cluster 1 (49% of cases) 
was characterised by mild symptoms, relatively young age at 
presentation with younger age at onset, and lower intake of and 
shorter exposure to levodopa than the other groups. Cluster 
2 (13%) presented severe and frequent motor complications, 
moderately severe sleep problems and depressive symptoms. 
The disease duration was longer, and they had higher intake 
of and longer exposure to dopaminergic medication compared 
to patients in the other clusters. Patients in this subtype were 
comparatively young and had the youngest age at onset. 
Cluster 3 (30%) showed intermediate severity in non-dopa-
minergic domains, while motor complications were mild and 
less frequent than the other subtypes. Patients were relatively 
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old and had a higher age at onset. Cluster 4 (8%) included 
patients severely affected in most domains, although tremor 
was relatively mild. Motor complications were prominent, but 
less severe than in Cluster 2 [41].

Erro and colleagues in another study reported the findings 
of cluster analysis performed by assessing both motor and 
nonmotor symptoms in a large cohort of newly diagnosed 
drug-naïve PD patients [44]. Four groups of patients were 
identified: 
1. Benign pure motor
2. Benign mixed motor-non-motor
3. Non-motor dominant
4. Motor dominant.

These findings suggest the existence of two benign sub-
types (one with prevalent motor impairment and one with 
prevalent non-motor involvement), and two more severe sub-
types of PD (one with dominant motor features and one with 
prevalent non-motor features) [44]. Furthermore, the authors 
evaluated whether dopaminergic dysfunction, as assessed by 
a 123[I]-FP-CIT SPECT scan, could explain, at least partly, the 
observed difference between the clusters. 123[I]-FP-CIT bind-
ing values paralleled the differing burdens of motor disability 
among the three clusters, but not the non-motor symptoms, 
except for depression. According to the authors, these findings 
indicated that the non-motor symptoms complex is only partly 
driven by dopaminergic dysfunction.

Using data from the Parkinson’s Progression Markers 
Initiative (PPMI), Fereshtehnejad and colleagues classified 
different subgroups through cluster analysis of a dataset at 
baseline including clinical features, neuroimaging, biospecimen 
and genetic data [45]. Four-hundred and twenty-one de novo 
drug-naïve patients were analysed. The PPMI population was 
followed longitudinally for a mean of 32.8 ± 9.3 months. They 
described three subtypes of PD patients: ‘diffuse malignant’, ‘mild 
motor-predominant’, and ‘intermediate’. The diffuse malignant 
subtype showed the most severe motor and non-motor manifes-
tations (the highest baseline MDS-UPDRS total score, the most 
pronounced cognitive impairment, the presence of psychiatric 
features and sleep problems, and olfactory and autonomic dys-
functions at baseline). The mild motor-predominant subtype 
exhibited the lowest severity of motor and non-motor features. 
The intermediate subtype had characteristics midway between the 
other two. Regarding biomarkers, people with diffuse malignant 
PD had the lowest level of cerebrospinal fluid (CSF) amyloid-β 
(Aβ42) and Aβ42/total-tau ratio. Data from deformation-based 
magnetic resonance imaging morphometry demonstrated that 
a PD-specific brain network had more atrophy in the diffuse 
malignant subtype, and the least atrophy in the mild motor-pre-
dominant subtype. Patients with diffuse malignant PD showed the 
fastest progression rate (global composite outcome), with more 
significant impairment in cognition and in dopamine functional 
neuroimaging [46].

Another study investigated clinical subtypes of PD using 
comprehensive clinical (motor and non-motor features) data 

retrieved from the PPMI database. Two PD subtypes were 
described, the ‘severe motor-non-motor subtype’ (SMNS) and 
the ‘mild motor-non-motor subtype’ (MMNS). SMNS expe-
rienced symptoms onset at an older age and manifested more 
intense motor and non-motor symptoms than MMNS, who 
experienced symptoms onset at a younger age and manifest-
ed milder PD symptoms. SPECT imaging supported clinical 
findings such as that the SMNS subtype showed lower binding 
values than the mild motor-non-motor subtype, indicating 
more significant neural damage at the nigral pathway. In addi-
tion, SMNS and MMNS showed distinct motor and cognitive 
functioning progression trends. Such differences between 
SMNS and MMNS in both motor and cognitive remained 
stable throughout the three years of follow-up [47]. Based 
on baseline data from the randomised EXPANd (EXercise 
in PArkinson’s disease and Neuroplasticity) controlled trial 
[48], Albrecht and colleagues tried to identify PD subtypes 
using multimodal, unsupervised clustering based on clinical, 
cognitive, motor, and neuroimaging data. They recognised 
three PD subtypes: a motor-cognitive subtype characterised 
by extensive changes in brain structure and function as well 
as impairment in motor and cognitive functions; a cognitive 
dominant subtype mainly impaired in cognitive abilities that 
showed frontoparietal structural and functional alterations; 
and a motor dominant subtype impaired in motor variables 
without major brain alterations [49].

Overall, the most homogeneous subtype identified by 
data-driven studies is a subtype with a poor prognosis, often 
called a diffuse–malignant subtype, characterised by a broad 
pattern of non-​motor and motor features and an unfavourable 
prognosis. 

The main features of this subtype are: 
1. Older age at onset
2. Prevalent non-​motor manifestations from the earliest

stages, particularly RBD, dysautonomia and cognitive
impairment

3. Faster progression to milestones of disease progression i.e.,
dementia, requirement for gait assistance, institutionali-
sation, and death [46, 50, 51].
Cluster analyses have also described an opposite pheno-

type with younger age at onset, a lower grade of non-​motor 
involvement, more tremor predominance, slower progression, 
and a more favourable prognosis as regards cognitive and 
motor aspects [41, 46, 52].

In summary, the hypothesis-driven subtyping system pro-
posed by Jankovic and colleagues has some limitations. Firstly, 
subjects were highly selected participants in a clinical trial, so 
the cohort may be not representative of all PD patients in the 
general population. Secondly, because of the large number of 
subjects, the power may be so great that minor, and perhaps 
clinically insignificant, differences were detected. Finally, since 
all the patients were in the early stages of their disease, some 
may have not yet differentiated into one of the defined (e.g. 
tremor-dominant or PIGD-dominant) categories. The analysis 
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was also based on clinical data collected at a single time point 
(cross-sectionally) and therefore progression of disease could 
only be estimated [8].

Data-driven studies have some weaknesses too. Firstly, 
the validity of clustering depends on the quality of the data 
analysed. The various databases consider different variables, 
leading to an inconsistency of results. A second issue is se-
lection bias. In particular, most studies have specific criteria 
to include and exclude, and so potentially under-represented 
subtypes may be missed. Clustering studies compare patients at 
different stages of the disease; therefore, the clusters might rep-
resent distinct subtypes as well as different phases of the disease. 
Finally, clustering studies describe variability only at a group 
level, without considering individual-level differences [37]. 

Biomarkers-based subtypes

Identifying PD subtypes based on biomarkers alone is still 
challenging because even today the diagnosis of PD remains 
largely clinical. Therefore, biomarkers have predominantly 
been evaluated for their correlation with clinical manifes-
tations or with previously defined clinical subtypes of PD. 
In the following paragraphs, we summarise the role of wet, 
neurophysiological, and neuroimaging markers in supporting 
the subtyping of PD.

Fluid biomarkers 

Αlpha-synuclein
Alpha-synuclein (α-syn) can be measured in CSF by means 

of immunoassays such as ELISA, electrochemiluminescence, 
and seed amplification assay (SAA) [53]. Different species of 
α-syn (total, phosphorylated, oligomeric and misfolded α-syn) 
have been investigated by immunoassays. The concentration 
of CSF total (t-α-syn) was found to be significantly lower in de 
novo PD patients with the non-tremor-dominant phenotype 
compared to the tremor-dominant one [54]. Various studies 
have reported lower levels of oligomeric-α-syn in PD, while 
others have found an association of even higher levels with 
cognitive impairment (PDD and DLB) [55, 56]. CSF phos-
phorylated (p-α-syn) concentrations have been correlated 
with PD severity [57], but not in more advanced stages of the 
disease [58]. The application of the immunoassay techniques 
is limited by the high risk of blood contamination. Indeed, 
red blood cells (RBC) are the overwhelming (> 99%) source 
of α-syn in blood, and their abundance and fragility can lead 
to a notable increase of α-syn in serum or plasma even after 
a low RBC contamination [59]. 

SAAs have been proposed for the diagnosis of PD [60]. 
CSF α-syn--SAAs have a proven high diagnostic performance 
for PD, with 86–96% sensitivity and 97–100% specificity at 
baseline [61]. Numerous studies have reported the successful 

detection of α-syn aggregates in CSF of prodromal cases of 
PD or DLB, including idiopathic RBD (iRBD), mild cogni-
tive impairment (MCI), and pure autonomic failure [62–65]. 
Alpha-syn-SAA has been also applied to other matrices. In 
skin biopsies, α-syn SAAs have exhibited an accuracy similar 
to that of CSF in differentiating patients with PD and DLB from 
controls [66, 67]. In olfactory mucosa, PD and DLB were also 
distinguished from controls, although with a lower sensitivity 
[68]. Also, biopsies from submandibular glands were able to 
differentiate PD and DLB from controls with 100% sensitivity 
and 94% specificity [69], although this technique is somewhat 
invasive. Regarding saliva, SAAs have provided good results 
in discriminating PD and MSA from controls (PD: sensitiv-
ity 76% and specificity 94.4%; MSA: sensitivity 61.1% and 
specificity 94.4%) [70].

However, one of the main challenges is variability in as-
say protocols and experimental conditions, which can lead to 
inconsistencies in results and prevent the reproducibility of 
findings across different studies [71]. 

At present, α-syn SAAs mainly provide a qualitative binary 
(positive/negative) response. A challenge for the future will 
be to provide a quantitative measure of the α-syn present in 
the biological sample, and to assess if this correlates with the 
stage of the disease to see if it can be used to monitor treat-
ment efficacy [72]. Note that α-syn SAA also results positive 
in subjects  with a clinical diagnosis of PSP and corticobasal 
syndrome (CBS) [73], highlighting the crucial role of con-
comitant pathology.

Alzheimer’s Disease biomarkers
The biomarker-based definition of Alzheimer’s Disease 

(AD) validated in 2018 relies on the simultaneous assessment 
of markers of amyloidosis, tauopathy, and neurodegeneration, 
in the so-called A/T/(N) system [74]. These criteria were 
further updated in 2024 [75]. Considering the frequent coex-
istence of AD pathology in PD brains [76, 77], several studies 
have investigated the possible role of AD classic hallmarks as 
biomarkers of PD subtypes. Lower CSF Aβ42 levels have a ro-
bust prognostic value regarding the development of cognitive 
decline in PD. Decreased CSF Aβ42 levels have been associated 
with a higher rate of Mini-Mental State Examination (MMSE) 
test and Montreal Cognitive Assessment (MoCA) decline, 
supporting its role as an independent predictive factor for 
cognitive impairment [78]. Data from the PPMI cohort [79] 
indicated that PD patients with cognitive decline after 2 years 
of follow-up had significantly lower baseline CSF Aβ42 levels 
than those with normal cognitive function. PD patients with 
CSF evidence of amyloidosis (lower levels of CSF Aβ-42) were 
significantly older, had reduced cognitive performance and 
a higher frequency of APOE4 alleles, and displayed reduced 
levels of all CSF measures (total-tau, phosphorylated-tau and 
α-syn) compared to PD patients without CSF evidence of amy-
loidosis [80]. Moreover, they exhibited significantly reduced 
grey matter in orbitofrontal and anterior cingulate regions. 
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Therefore, the authors suggested that cerebral amyloidosis in 
early PD patients may define a distinct PD phenotype, perhaps 
due to a synergic deleterious interaction between amyloid and 
α-syn. Accordingly, Fereshtehnejad and colleagues, exploiting 
data from the above-mentioned PPMI cohort, found that those 
patients with the diffuse malignant PD subtype, who had the 
fastest cognitive decline, showed an AD-like CSF profile with 
low Aβ42 and Aβ42/t-tau ratio [46]. Data on t-tau and p-tau 
are not as consistent as those about Aβ42 regarding their 
prognostic value in PD. Longitudinal studies showed that 
CSF t-tau levels measured at baseline were not predictive of 
cognitive decline in PD [81]. One longitudinal study found 
a significant correlation between p-tau and the rate of cogni-
tive decline, as well as a faster motor progression [82, 83]. In 
another longitudinal study, higher p-tau and p-tau/Aβ42 pre-
dicted subsequent decline on cognitive tasks involving both 
memory and executive functions [83].

Neurofilament light chain
There is growing evidence indicating CSF and plasma neu-

rofilament light chain (NfL) as a sensitive and specific biomarker 
that may help to discriminate between PD and other neurode-
generative disorders i.e., MSA, PSP, CBS, and frontotemporal 
dementia [84]. In particular, CSF levels of NfL have been found 
to be substantially increased in MSA and PSP compared to PD 
[85, 86]. A longitudinal increase in NfL serum concentration 
has been observed also in PD patients compared to controls. 
Serum NfL levels in PD patients rise over time and with age, and 
correlate with clinical measures of PD severity [87]. Considering 
age-dependent normal ranges, plasma NfL may represent 
a biomarker of cognitive decline in PD [88]. Indeed, CSF NfL 
levels at baseline correlate with the mean change per year in the 
Dementia Rating Scale scores [89]. Moreover, they predict the 
risk of conversion into PDD over the following 5–9 years, and 
the prediction accuracy is better when combined with other 
biomarkers such as CSF Aβ42 [90]. However, a standardised 
method for the measurement of NfL is lacking, and cut-off values 
have not been clearly determined so far [91, 92]. 

Neuroinflammatory biomarkers
Growing evidence indicates the involvement of neuroin-

flammation in the pathogenesis of PD [93]. In one positron 
emission tomography (PET) study on PD patients, evidence of 
activated microglia was found in the pons, basal ganglia, and 
frontal and temporal cortical regions [94]. Microglial activa-
tion has been found to correlate positively with the severity 
of motor symptoms [95]. YKL-40, a molecule expressed in 
astrocytes and microglia, both implied in the inflammatory 
processes [96], was found to rise over time in PD in tandem 
with faster cognitive decline [82]. A panel of four inflamma-
tory proteins (IL-12B, CSF-1, CXCL11, and OPG) was able to 
discriminate between PD and healthy controls. The expres-
sion levels of five inflammation-associated proteins (CCL23, 
CCL25, TNFRSF9, TGF-alpha, and VEGFA) increased over 

time in PD. Raised levels of CCL23 (CC chemokine ligand 
23) in PD patients were associated with worse cognitive per-
formance, more severe motor impairment, and APOE4 allele
carriers. CCL23 might be a predictive biomarker for faster
disease progression in PD [97]. Serum levels of TNF-a, IL1-b, 
IL-2 and IL-10 were also found to be higher in PD compared
to controls. A more proinflammatory profile in early disease
correlated with cognitive decline and faster motor progression, 
whereas a more anti-inflammatory profile was associated with 
better cognitive function and more stable motor function [98]. 
Accordingly, a proinflammatory biomarker profile (reduced
apolipoprotein A1 [ApoA1] and raised CRP) was found to
be significantly associated with the severe motor and the
nonmotor disease phenotypes [99]. Various studies have also 
demonstrated that higher serum levels of triglycerides (TG)
and ApoA1 are significantly associated with PD-MCI and
their levels are independent risk factors for developing MCI
in PD patients [100].

Neurophysiological biomarkers
Neural plasticity refers to the capacity of the nervous 

system to modify itself, functionally and structurally, in 
response to experience and/or injury. Using transcranial 
magnetic stimulation (TMS), researchers found that the dif-
fuse malignant subtype had increased cortical excitability and 
reduced plasticity (tested through a TMS paradigm named 
intermittent theta burst stimulation - iTBS) compared to the 
mild motor-predominant subtype. In addition, kinematic 
analysis of motor performance demonstrated that the diffuse 
malignant subtype was significantly ‘slower’ than the mild 
motor-predominant subtype [101]. 

One study tested whether the features of TMS-based neu-
rophysiological measures taken off-medication were associ-
ated with dopaminergic medication-induced clinical effects. 
Motor cortex excitability [short-latency intracortical inhibition 
(SICI), intracortical facilitation (ICF), short-latency afferent 
inhibition (SAI), and input-output (IO) curve], and plastici-
ty-related neurophysiological measures were assessed in 23 PD 
patients OFF-medication. SICI significantly correlated with 
changes in lateralised MDS-UPDRS motor and bradykinesia 
sub-scores, suggesting that patients with stronger basal intra-
cortical inhibition benefit more from dopaminergic treatment 
than do patients with weaker intracortical inhibition. Also, ICF 
significantly negatively correlated with levodopa equivalent 
daily dose, suggesting that patients with stronger intracortical 
facilitation require less dopaminergic medication to achieve 
an optimal therapeutic benefit. The authors suggested that the 
variability of pathophysiological phenotypes was related to in-
tracortical inhibitory and facilitatory mechanisms determining 
clinical response to dopaminergic medication [102]. Another 
study classified PD patients into three phenotypes with distinct 
electrophysiological profiles. These clusters were characterised 
by different levels of alterations in the somato-motor network 
(Δ and β band), the frontotemporal network (α2 band), and the 
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default mode network (α1 band), which correlate with clinical 
profiles and disease courses. These clusters were sub-grouped 
into either moderate (only-motor) or mild-to-severe (diffuse) 
disease. EEG features might predict cognitive evolution of PD 
patients from baseline [103].

Ultrasound imaging biomarkers
According to Braak’s hypothesis, the vagus nerve (VN) is 

a doorway to the central nervous system for α-syn pathology 
[104]. Despite recent criticism of this hypothesis, there are 
experimental findings which support the vulnerability of 
the VN. In animal models of the disease, misfolded α-syn 
spreads through the VN to the brainstem, as well as in the 
opposite direction [105]. In humans, studies on vagotomy have 
demonstrated that vagotomy was not associated with PD risk, 
but there was a suggestion of lower risk among patients with 
truncal, but not selective, vagotomy [106]. 

Current data suggests the presence of atrophy of the vagus 
nerve in PD patients, which can be assessed by ultrasound 
examination [105]. On a transverse scan, VN presents as a hy-
poechogenic structure within the cervical sheath, with an average 
cross-sectional area of 2.4 mm2 for healthy controls and a 16% 
reduction observed in PD patients. VN size has been correlated 
with motor burden, but not with disease duration. This suggests 
that non-severely affected patients might not present a significant 
reduction in VN cross-sectional area (CSA). Moreover, there is 
an association with heart parasympathetic performance. 

Perhaps combining heart rate variability (HRV) with VN 
ultrasound (imaging of the parasympathetic system) and cardi-
ac 123I-metaiodobenzylguanidine scintigraphy (123I-MIBG; 
a biomarker of sympathetic denervation) might help to rec-
ognise a subgroup of patients developing autonomic failure, 
related to a more malignant disease subtype.

However, there are some factors which interfere with 
the reliability of this technique. Firstly, differences in age, 
sex, body mass, comorbid conditions, and the side being 
measured can lead to high interpersonal variability of VN 
diameter. This might contribute to nonsignificant results in 
some studies. Contradictory conclusions have been found 
also in the context of gastrointestinal disturbances. Another 
possible confounder is the presence of systemic diseases that 
may affect the nerve structure, such as diabetes, chronic in-
flammatory demyelinating polyneuropathy, and amyotrophic 

lateral sclerosis. Furthermore, if nerve degradation is con-
tinuous and progressive, as can be supposed, it may justify 
some part of the variation in VN area across studies. Finally, 
in subjects receiving levodopa, nerve damage may be also due 
to increased homocysteine levels and its neural toxicity [105]. 
Advantages and disadvantages of the mentioned biomarkers 
in PD are set out in Table 3.

Roles of genetics, mixed pathology, trigger 
factors

Genetics
Several genes, including SNCA, LRRK2, PRKN, ATP13A2, 

and PINK1 and many others, have been associated with mono-
genic forms of PD [107]. GBA and other more recent genetic 
loci have been associated with an increased risk for developing 
PD [108]. Each genetic variant may lead to a different patho-
genic pathway and be vulnerable to specific molecular targets, 
but whether the clinical features and treatment response of 
PD differ among molecular subtypes is still unknown [109, 
110]. PD patient carriers of GBA variants present a shorter 
but more severe prodromal phase compared to PD patients 
without these mutations [111]. GBA variants are also more 
common among people with RBD than among the general PD 
population. Among patients with iRBD, those with GBA mu-
tations are indistinguishable from those without, but the rate 
of conversion to LB disorders is increased and may be faster 
among severe GBA variant carriers [112]. Severe GBA variants 
are associated with more rapid disease progression, an increased 
risk of dementia, and faster cognitive decline compared to mild 
GBA variants [113, 114]. Regarding the motor aspects, GBA 
variants predict a more rapid progression of motor symptoms 
in patients with PD, with a greater effect on PIGD than tremor 
[114]. Furthermore, among PD subjects carrying GBA1 variants, 
male sex has an additive value in increasing the risk of cognitive 
decline in PD [115]. Conversely, LRRK2 variants, especially the 
G2019S variant, correlate with milder non-​motor symptoms 
[116]. The G2019S mutation in the LRRK2 gene has been as-
sociated with the PIGD subtype [117, 118].

Hyposmia and RBD are not prevalent features in prodro-
mal LRRK2 PD. The mean age at onset in patients with PRKN 
variants is younger compared to people with idiopathic PD, 

Table 3. Opportunities and challenges on clinical application of Parkinson’s Disease subtypes

Opportunities Challenges

Genetic profiles may differ Clinical diagnostic criteria to fulfill are the same

Age at onset is extremely variable Standard MRI is normal in most patients

Disease trajectories differ 123[I]-FP-CIT SPECT is altered in most cases

Life expectancy changes Some degree of dopaminergic response is found in all cases

Need for levodopa is variable Does not reflect disease biology
MRI — magnetic resonance imaging; 123[I]-FP-CIT SPECT — 123I-labelled N-(3-fluoropropyl)-2beta-carbomethoxy-3beta-(4-iodophenyl)nortropane (FP-CIT) single-photon emission computed tomography 
(Dopamine Transporter Scan)
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and they are more likely to have symmetric involvement and 
dystonia at onset; they also have hyperreflexia at onset or 
later, normal olfaction, a low rate of cognitive decline, a good 
response to levodopa therapy, and (with lower limbs promi-
nent) levodopa-induced dyskinesias during treatment [119]. 
Notably, patients with LRRK2, PRKN, and PINK1 may or may 
not have LB pathology at post mortem examination [120–122].

Patients with SNCA variants have a poor prognosis, includ-
ing a poor response to levodopa, a higher risk of dementia, 
psychiatric disorders, pyramidal signs, and rapid progression 
[123–125]. In particular, SNCA rs6826785 noncarriers have 
been significantly associated with PD-MCI [100]. A study 
demonstrated that the variant rs356182GG genotype near 
SNCA provides molecular definition for a clinically important 
endophenotype associated with more tremor-predominant 
motor phenomenology, slower rates of motor progression, and 
decreased brain expression of SNCA [126]. A recent retrospec-
tive study has investigated time-to-postural instability and oth-
er disease-specific milestones in monogenic PD, showing that 
progression-free survival from postural instability (e.g. falls) 
at 10 years after disease onset was longest in ATP13A2 (97%) 
and shortest in SNCA (50%). In between these two extremes 
were PRKN (88%), PINK1 (87%), and LRRK2 (81%), similarly 
to idiopathic PD (72%). Interestingly, young age at onset in 
PINK1, and female sex in LRRK2, were associated with a de-
creased risk of postural instability [127].

The genetic architecture of PD subtypes was also analysed 
recently, not only the particular monogenic mutations [12]. 
A number of genetic variants seem to influence the clinical 
manifestations of the disease, the rate of progression, and the 
prognosis. For example, APOE4 allele and other polymor-
phisms in other genes are related to accelerated cognitive 
impairment; variants in COMT, DRD1, DRD2, DRD3, and 
DDC correlate with the probability of impulse control disorder; 
CRHR1, IP6K2, and PRSS3 polymorphisms are linked with 
more severe axial symptoms following deep brain stimulation. 
The influence of each variant alone appears negligible, but, 
when combined, they allow us to predict the clinical presenta-
tions or adverse effects to a treatment [12].

Mixed pathology
The classification of neurodegenerative disorders is clas-

sically based on neuropathological hallmarks. However, it is 
becoming increasingly evident that the pathology is not always 
‘pure’, and that there is often a composite picture, wherein co-
existence of α-synucleinopathy, tau-pathology, and amyloid-β 
pathology is frequently observed [76, 77]. PD patients who 
develop significant cognitive decline are classified as PDD. This 
subgroup has also a distinct pathological correlate, that is the 
‘typical’ LB pathology associated with the presence of amyloid-​
β deposits in the limbic system [128]. Limbic and neocortical 
LB pathology has been claimed to be the main determinant 
of the development of cognitive impairment in previous stud-
ies, but this assumption has not always been confirmed [99]. 

Compta and colleagues have demonstrated that a combined 
high burden of all three (LB, amyloid-β, and tau) pathologies 
was the most robust neuropathological correlate of patients 
with PDD. In particular, higher cortical amyloid-β scores 
were associated with a faster progression to dementia [129]. 
Amyloid-​β accumulation is believed to promote α-​syn seeding 
and spreading in mouse models [130]. Therefore, co-​existent 
amyloid-​β pathology in PD and DLB could drive subtypes in 
which dementia presents early. Furthermore, the presence 
of vascular alterations contributes to the complexity of the 
pathological features [131].

In living subjects, a proxy of vascular pathology can be the 
presence of white matter hyperintensities (WMHs), namely 
neuroimaging biomarkers characterised by signal enhance-
ment of the T2-weighted sequence in magnetic resonance 
imaging [132]. WMHs can result from blood-brain barrier 
damage; or chronic ischaemia, which is caused by injury to 
the microvascular structure; and/or brain hypoperfusion, due 
to the dysfunction of cerebrovascular autoregulation [133]. 
WMHs have been associated with cognitive decline in the 
general population [134]. Whether WMHs are correlated with 
cognitive impairment in PD is still debated. WMH burden 
could be a neuroimaging marker for PD-MCI conversion to 
PDD [135]. WMHs, but not vascular risk factors, have been 
found to raise the risk of developing PD-MCI [136]. In con-
trast, another study did not identify global or localised WMH 
load as a predictive marker of cognitive decline in de novo 
PD patients [137]. A metanalysis compared the association 
of WMH burden in patients with PD-MCI versus those with 
normal cognition (PD-NC) and in patients with PDD versus 
those without dementia (PD-ND). Results showed that WMH 
burden might be correlated with cognitive impairment in 
patients with PDD. Moreover, the localisation of WMHs pre-
sented specific effects on cognitive function. Specifically, deep 
white matter hyperintensity (DWMHs) and periventricular 
hyperintensity (PVHs) negatively influenced cognitive abili-
ties in PDD. WMH locations correlated with domain-specific 
cognitive dysfunction in PD patients, including executive, 
attention, memory, speed learning, and visuospatial function 
[138]. A more recent metanalysis showed that increased WMH 
burden was associated with worse global cognitive function, 
as well as worse motor performance, in people with PD [139].

Trigger factors
The complex interaction between genetic and environmen-

tal factors might play a role in determining susceptibility to PD, 
and may contribute to the clinical heterogeneity of the disease. 
Despite many efforts to clarify the causes of neuronal death in 
the substantia nigra pars compacta and to detect potential trig-
gers, the exact PD aetiology is still unknown. There is increasing 
evidence for the interplay between nervous and immune systems 
[140]. This interaction seems to underlie neuroinflammation 
which is a common feature of many neurodegenerative disorders 
[141] and may have multiple causes, such as the impairment
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of the regulation of immune responses associated with ageing, 
infectious agents, exotoxins (e.g., pesticides), or deposition of 
insoluble protein fibrils (e.g., α-syn) [142].

It has been postulated that pathological aggregation and 
propagation of α-​syn might first occur in the brain or the 
autonomic and enteric system [104, 143]. These observations 
have driven the hypothesis that PD may be classified into two 
subtypes: a ‘body-first’ (or gut-first) and a ‘brain-first’ subtype 
[144]. In the former, α-​syn pathology is believed to originate in 
the autonomic and enteric nervous system and to spread into 
the CNS via the vagus nerve (VN) and sympathetic connec-
tome; in the latter, α-​syn pathology is believed to start in the 
brain itself, most often in the limbic system, and to descend 
through the brainstem and into the periphery. The former 
is closely associated with RBD during the prodromal phase 
and is characterised by marked autonomic damage before 
involvement of the dopaminergic system. In contrast, the latter 
phenotype does not present RBD during the prodromal phase 
and is characterised by nigrostriatal dopaminergic dysfunction 
prior to involvement of the autonomic peripheral nervous 
system. The existence of these subtypes is supported by in vivo 
imaging studies of RBD-positive and RBD-negative patient 
groups and by histological evidence [145]. 

Ultrasound measurement of the VN has been proposed as 
a helpful technique to track the route of propagation of neu-
rodegeneration [105, 106] (Tab. 2). A recent study has shown 
that the VN CSA, specifically the right VN, exhibited a sta-
tistical correlation with the body-first PD subtype (p < 0.001) 
and some components of PD-related assessment scales [146].

However, the body-​first and brain-​first subtypes should not 
be considered as a definitive classification of PD, but rather as 
a hypothesis on clinicopathological phenotypes that explains 
a large degree of the disease variance. Other important factors, 
such as genetic predisposition and variable selective neuronal 
vulnerability, probably contribute to the clinical variability 
and the different progression patterns [147]. Furthermore, 
the brain-​first/body-​first hypothesis has been tested only in 
a single cohort of patients with PD, and thus requires further 
confirmation [38]. A significant body of evidence suggests 
how PD could be considered as an ‘umbrella’ term used to 
describe a progressive, chronic neurodegenerative syndrome 
with multiple features in which the degree of neurodegener-
ation and disease progression differ across subjects [9, 148]. 

Hence, PD should not be considered a unique disease entity, 
but rather a heterogeneous group of disorders that, while re-
lated by common neurodegeneration, exhibit different genetic, 
biological, and molecular abnormalities with different natural 
history [110, 148]. This interpretation may explain why PD ae-
tiology is still unknown, as there could be many PD aetiologies.

Is alpha-synuclein accumulation and seeding 
the culprit?

The abovementioned pathology-based theories of α-syn or 
amyloid-β toxicity caused by their accumulation and possible 

seeding have been recently criticised for many reasons [148, 
149]. Firstly, the assumption has been disputed that, as SNCA 
multiplication overexpresses α-synuclein, it must be toxic; indeed, 
a study demonstrated that high SNCA expression was associated 
with better motor and cognitive outcomes than cases with low 
SNCA expression [150]. Although most studies have reported no 
changes in behaviour or cell count in young mice knock-out for 
α-syn, the output is different when ageing, the most important risk 
factor for PD, is incorporated into the models. Upon knocking 
down α-syn in aged rats [151] or aged non-human primates [152], 
nigrostriatal degeneration and behavioural changes have been 
reported. Furthermore, it has been suggested that the spreading 
of alpha-syn pathology is not an active mechanism (replication 
in a prion-like manner), but a passive phenomenon (nucleation). 
The theory of α-syn oligomers toxicity has thus been questioned, 
given that some studies found no evidence for toxicity of these 
species [153]. Finally, we must remember that the result of α-syn 
SAA in the laboratory does not elucidate the pathogenesis, stag-
ing, or biology of PD in humans.

As a result, it has been suggested that the accumulation of 
aggregated α-syn is not the cause of the disease but is instead 
the consequence of an upstream biomolecular neurodegen-
erative pathway causing the depletion of the normal soluble 
protein (thus becoming insoluble and aggregated). Moreover, 
misfolded proteins might be sequestered into LB as a protec-
tive mechanism to promote the maintenance of neuronal and 
synaptic function despite coexistent and actively disrupting 
molecular abnormalities [148, 149].

Likewise, a recent meta-analysis has shown how in AD 
an increase and not a reduction of amyloid-​β can improve 
cognitive function, thus supporting a fundamental role of 
soluble amyloid-​β in AD (and, possibly, in turn, also of α-syn 
in PD) [154].

Conclusions and future directions

The impact of identifying PD clinical subtypes on our 
understanding of PD pathogenesis or clinical treatment re-
mains unclear, with limited application in research or clinical 
practice (Tab. 3). In particular, subtype stability over time and 
its prognostic value are largely unknown. 

The feasibility of subtyping as part of routine clinical 
practice is uncertain because of: 
1. The significant extra time required to assign individuals to

subtypes using multi-domain data, beyond that allocated 
to routine clinic visits

2. The lack of an accepted algorithm to classify individual
patients.
The clinical diagnosis and classification of PD has limita-

tions, not only given the low accuracy [2], but also because the 
cardinal motor features do not become evident until 60–80% 
of nigral dopaminergic neurons have been lost [155], making 
early diagnosis highly challenging. 
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Recently, a biological classification and staging system of 
PD has been proposed. According to this proposal, PD should 
be defined on the presence of aggregated α-syn in tissue sam-
ples or CSF (S), evidence of underlying neurodegeneration (N) 
defined by neuroimaging, and documentation of pathogenic 
gene variants (G) that cause or strongly predispose to PD. 
These three components are linked to a clinical component (C), 
defined by a single high-specific clinical feature or by several 
lower-specific clinical signs and symptoms. 

Even though the clinical manifestations of PD reflect the 
stage of the disease and its heterogeneity, in this biological per-
spective they are not considered defining features of the disease 
[11]. The classification in clinical subtypes has a limited role in 
terms of a biological classification of PD, as clinical variability 
does not represent underlying biological or pathophysiological 
differences between individuals. Therefore, future subtyping of 
PD will also need to move towards a biological basis, in order to 
identify subtypes more consistently from a pathophysiological 
and biochemical-molecular perspective.
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