The influence of obesity on in-hospital clinical outcomes after recanalisation of chronic total occlusions

ABSTRACT

Objectives: Recanalisation of chronic total occlusions (CTOs) in interventional cardiology is one of the most challenging and complex procedures. Currently, no data are available about the impact of BMI on success rates among CTO patients undergoing percutaneous coronary intervention. The aim of this study was to investigate the impact that BMI has on success rates, complications, and procedure characteristics among a large group of CTO patients who underwent percutaneous coronary intervention.

Methods: The present study retrospectively included 420 patients who underwent percutaneous coronary intervention for at least one chronic total occlusion. Patients were subdivided into groups according to their BMI. BMI groups were based on the World Health Organization’s definitions: From 18.5 to 24.9 kg/m² = Normal weight; From 25 to 29.9 kg/m² = Overweight; From 30 to 34.9 kg/m² = Obesity; Greater than or equal to 35 kg/m² = Very obese. In order to subdivide the patients according to the complexity of the CTO-PCI, the Japanese-CTO (J-CTO) score was used prior to the interventions. Statistical analyses were performed using the SPSS 20.0 software. The value of p < 0.05 was considered as statistically significant.

Results: There was a significant difference in procedure duration, volume of used contrast medium and other procedural characteristics in higher BMI categories. There was no statistically significant difference across all body mass index categories in terms of procedure success, complication rates, and outcomes (p > 0.05).

Conclusion: This retrospective study indicates that BMI has no impact on in-hospital outcomes in patients with chronic total occlusion after percutaneous coronary intervention.

Key words: obesity, chronic total occlusion, percutaneous coronary intervention, coronary artery disease

Introduction

Recanalisation of chronic total occlusions (CTOs) in interventional cardiology is one of the most challenging and complex procedures [1]. Coronary artery CTOs can be identified in around one in every five patients who show clinical indications for coronary angiography [2]. Recanalisation of CTOs is indicated in cases of progressing angina symptoms, with evidence of significant myocardial ischaemia [3]. After recanalisation in these patients, an increase in left ventricular function can be expected [4]. Due to the emerging methods in interventional cardiology and the use of new CTO equipment, CTO recanalisation success rates have increased steadily in recent years [5]. Moreover, coronary artery bypass grafts (CABG) can be avoided, which can result in lower complication rates [6].

Worldwide obesity levels have increased in recent decades [7]. Obesity and, in particular, severe obesity are linked to a heightened risk of cardiovascular disease (CVD) [8] because BMI is a strong predictor of cardiovascular mortality [9].

Despite the heightened risks, the in-hospital outcomes after CTO percutaneous coronary interventions (PCI) remain unstudied in this population. Accordingly, this study retrospectively evaluates the impact of BMI on success and complication rates, as well as procedure characteristics among a large group of CTO patients undergoing PCI.
Method and materials

Study population

A total of 420 patients who underwent CTO-PCI at the Lithuanian University of Health Sciences of Kaunas were included in this study. Criteria for inclusion were a positive test for angina pectoris and/or positive result for functional ischaemia from a stress echocardiography or magnetic resonance imaging test. Patients were subdivided into groups according to their BMI. BMI groups were based on the World Health Organisation’s definitions [10]:
- From 18.5 to 24.9 kg/m² = Normal weight
- From 25 to 29.9 kg/m² = Overweight
- From 30 to 34.9 kg/m² = Obesity
- Greater than or equal to 35 kg/m² = Very obese

CTO-PCI procedure

Either radial or femoral access was chosen according to operator choice. The diameter of guiding catheters was either 6 or 7F. Heparin was administered at the start of interventions, guided by a clotting time of greater than 300 seconds, in order to prevent thromboembolic complications. All PCIs were performed via anterograde approach. In most cases, dual injections were made to define the length of the lesion and for the conformation that the PCI guide wire is in the true lumen. In case of femoral access, the puncture site was sealed using manual compression or various vascular closure devices.

Coronary wires ranged from tapered polymer soft-tip guide wires at the start to super-stiff guide wires at the end. In almost all cases, drug-eluting stents were implanted in the occluded segments. Stent apposition and expansion was optimised by post-dilatation.

In order to subdivide the patients according to the complexity of the CTO-PCI, the Japanese-CTO (J-CTO) score was used prior to the interventions [11]. This combined the following parameters:
- Lesion classification degree.
- Bending in excess of 45 degrees in the CTO segment.
- Blunt proximal cap.
- Occluded segment length (> 20 mm).
- Previously failed recanalisation.

The definition of success in the procedure was a restoration of TIMI grade 3 flow and recanalisation of CTO. Each patient undergoing the procedure had a composite safety endpoint evaluation. This summarised severe complications including stroke, cardiac tamponade, vascular complications, or in-hospital death.

Results

Demographics

Males (62%) made up the majority of patients, with a mean age of 68 years (± 5.4 years). Male patients were younger than female patients (67 ± 7.1 years vs. 72.2 ± 4.4 years; p < 0.001). Mean BMI was 26.8 kg/m² (± 6.5 kg/m²). From the 420 patients the following BMIs were recorded:
- Normal weight – 42 (10%)
- Overweight – 252 (60%)
- Obese – 100 (23.8%)
- Very obese – 26 (6.2%)

Risk factors

There was a positive correlation between rising BMI categories and cardiovascular risk elements such as arterial hypertension, diabetes mellitus, and family history of coronary artery disease. Compared to patients with a BMI greater than 25 kg/m², patients with normal weight showed higher HDL cholesterol (p < 0.05) and lower triglycerides (p < 0.05). Very obese patients had a higher incidence of diabetes mellitus compared to other subgroups (p = 0.015). Overweight patients had a higher rate of chronic obstructive pulmonary disease and lower peripheral arterial disease prevalence.

Procedural characteristics

Procedural and CTO characteristics are displayed in Table 1. All BMI categories had a similar J-CTO score (p > 0.05). The amount of contrast medium used increased as the BMI increased (p = 0.012). The fluoroscopy time tended to increase proportionally with rising BMI (p = 0.03). Procedure duration of normal patients was lower as compared to patients with non-normal BMIs (p = 0.024). Success rates were similar across all BMI categories (p = 0.622; Fig. 1).
Table 1. Procedural and angiographic characteristics

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Overweight</th>
<th>Obese</th>
<th>Very obese</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTO in LAD</td>
<td>28.6 % (12)</td>
<td>28.6 % (72)</td>
<td>32 % (32)</td>
<td>34 % (9)</td>
<td>0.65</td>
</tr>
<tr>
<td>CTO in LCX</td>
<td>23.8 % (10)</td>
<td>31.7 % (80)</td>
<td>18 % (18)</td>
<td>27 % (7)</td>
<td></td>
</tr>
<tr>
<td>CTO in RCA</td>
<td>47.6 % (20)</td>
<td>39.7 % (100)</td>
<td>50 % (50)</td>
<td>38.5 % (10)</td>
<td></td>
</tr>
<tr>
<td>1-vessel disease</td>
<td>26.2 % (11)</td>
<td>20.7 % (52)</td>
<td>35 % (35)</td>
<td>26.9 % (7)</td>
<td>0.84</td>
</tr>
<tr>
<td>2-vessel disease</td>
<td>28.6 % (12)</td>
<td>31.7 % (80)</td>
<td>29 % (29)</td>
<td>26.9 % (7)</td>
<td></td>
</tr>
<tr>
<td>3-vessel disease</td>
<td>45.2 % (19)</td>
<td>47.6 % (120)</td>
<td>36 % (36)</td>
<td>46.2 % (12)</td>
<td></td>
</tr>
<tr>
<td>J-CTO score ≥ 3</td>
<td>59.5 % (25)</td>
<td>65 % (164)</td>
<td>63 % (63)</td>
<td>57.7 % (15)</td>
<td>0.58</td>
</tr>
<tr>
<td>Amount of contrast (ml)</td>
<td>220 (80–320)</td>
<td>260 (100–500)</td>
<td>290 (120–650)</td>
<td>350 (200–800)</td>
<td>0.012</td>
</tr>
<tr>
<td>Procedure time (min)</td>
<td>60.5 (30–109)</td>
<td>126.1 (60–190)</td>
<td>160.7 (60–230)</td>
<td>190.2 (90–260)</td>
<td>0.024</td>
</tr>
<tr>
<td>Fluoroscopy time (min)</td>
<td>25.6 (6–40)</td>
<td>30.1 (12–60)</td>
<td>35.4 (15–94)</td>
<td>40.2 (20–95)</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Figure 1. Percentage of success depending on BMI

Figure 2. In-hospital outcomes

Complication rates

There was no statistically significant difference in procedural complications, which rarely occurred (p = 0.12). There were no acute skin lesions witnessed as radiation doses increased with higher BMI categories (p < 0.001). The complications that did occur were mostly vascular. In three cases cardiac tamponade occurred. Similarly, three patients were diagnosed with acute stroke after CTO-PCI. No in-hospital deaths were recorded (Fig. 2).

Discussion

The study highlights some important aspects. Firstly, successful procedures and complications in the hospital proved to be independent of BMI categories. This finding seems quite remarkable, given that we are already aware of overweight and obese patients from Western countries having a higher likelihood of getting a wound infection following CABG [12]. This suggests that CTO-PCIs might be a safer alternative to CABG in very obese patients.

Secondly, patients in higher BMI categories had an increase in prevalence of cardiovascular risk factors, such as arterial hypertension, diabetes mellitus, dyslipidaemia, triglyceride, and HDL-cholesterol levels. These co-morbidities are related to the metabolic syndrome and are in line with current literature on the subject [13].

Thirdly, there was a significant difference in the procedure duration, volume of used contrast medium, and other procedural characteristics in higher BMI categories. Obese patients had higher doses of radiation (p < 0.001) and longer procedure times (p = 0.026). Dermal ulcerations could be a serious consequence of such procedures, although there are no supporting data from our study due to the short follow-up period. Nevertheless, it has been proven by Lia et al. that dermal ulcerations can occur during PCIs, especially in CTOs because there is an increase of these lesions with higher...
radiation doses [14]. Thus, given a longer follow-up period, higher radiation-associated complication rates could be expected in obese patients.

There are divergent opinions on the relationship between BMI and outcomes in CAD patients. The ‘obesity paradox’ is that despite obesity being a strong CVD risk factor, mortality rates for obese and very obese patients are low. One possible reason for this paradox is that obese patients may be observed more and therefore receive faster medical intervention. Also, obese patients tend to be younger when the acute cardiovascular event occurs. This could imply that there is benefit regarding age [15].

A Korean study published in 2012 revealed that the relationship between BMI and mortality was U-shaped, with the nadir among overweight or obese patients, and underweight and normal-weight patients having the highest risk [16]. Their definition of obese, however, was a BMI greater than 25 kg/m², not 30 kg/m², as in highest risk [16]. Their definition of obese, however, was a BMI greater than 25 kg/m², not 30 kg/m², as in previous data that suggested that very obese patients were at greater risk following PCI [20].

Contrasting trials, in line with our own, have failed to indicate a relationship between BMI and PCI survival. For instance, data presented from over 5000 patients led Diletti et al. to conclude that, following coronary artery interventions, BMI had no impact on the long-term clinical outcomes [18].

Another method of treatment considered as a substitute for CTO patients could be CABG. Some data indicate that mortality was not increased by obesity in the short-term perspective; however, this is associated with an increase in late mortality rates [19].

We can demonstrate that there is no dependence between in-hospital clinical events and BMI. This is in contrast to previous data that suggested that very obese and lean patients are at greater risk following PCI [20].

Conclusion

Our ex post facto study indicates that obesity has no impact on in-hospital outcomes in CTO-PCI patients.

Conflict of interest statement: None

References


