Vol 6, No 3 (2021)
Original article
Published online: 2021-07-12

open access

Page views 6503
Article views/downloads 1064
Get Citation

Connect on Social Media

Connect on Social Media

Rationale and design of a clinical trial to evaluate the safety and efficacy of gum Arabic in patients with nephrolithiasis and renal cyst simultaneously

Mehrab Dashtdar1, Mohammad Reza Dashtdar, Negar Taheri, Babak Dashtdar
Medical Research Journal 2021;6(3):184-193.

Abstract

The elderly group is one of the most heterogeneous and vulnerable groups of the population in developed countries with a greater risk of suffering from imbalances, deficiencies and nutritional problems. Diet and nutritional status have a great influence particularly on the prevention or treatment of various diseases that affect these groups. Long-term accumulation of waste in the body and age-related changes in metabolism create many problems that shorten their life expectancy. Their diet and gastrointestinal function play a key role in their Urine composition. It seems that the gastrointestinal microbiome has a great influence on the metabolization and absorption of the ingredients of the diet. In this clinical trial, the authors concluded that oral administration of gum arabic dissolved in orange juice could conceivably wash out the renal stones and eliminate renal cysts which in the long-term did not raise any safety concerns. The oral administration of gum arabic reduces kidney failure and slows its progression, which might be ascribed to their antioxidant and free radical-scavenging properties. Gum arabic could be considered as an important natural medicinal compound, actually a fascinating one because of its high therapeutic capabilities. Therefore, a prospective observational study has been designed and aimed to assess the efficacy and safety of treatment with gum arabic in patients with nephrolithiasis and renal cysts.

Article available in PDF format

View PDF Download PDF file

References

  1. Glassberg KI. Renal dysgenesis and cystic disease of the kidney. In: Walch PC, Retlik AB, Vaughan ED, Wein AJ. ed. Campbell Urology. Eighth Edition. Eisevier Science 2003.
  2. Hepler AB. Solitary cysts of the kidney. Surg Gynecol Obstet. 1930; 50: 668–87.
  3. Kern WF, Silva FG, Laszik ZG, Bane BL, Nadasdy T, Pitha JV. Atlas of Renal Pathology. WB Saunders Company, Philadelphia 1999: 235–246.
  4. Walsh-Reitz MM, Toback FG. Kidney epithelial cell growth is stimulated by lowering extracellular potassium concentration. Am J Physiol. 1983; 244(5): C429–C432.
  5. Alpern RJ, Toto RD. Hypokalemic nephropathy-a clue to cystogenesis? N Engl J Med. 1990; 322(6): 398–399.
  6. Torres VE, Young WF, Offord KP, et al. Association of hypokalemia, aldosteronism, and renal cysts. N Engl J Med. 1990; 322(6): 345–351.
  7. Novello M, Catena C, Nadalini E, et al. Renal cysts and hypokalemia in primary aldosteronism: results of long-term follow-up after treatment. J Hypertens. 2007; 25(7): 1443–1450.
  8. Igarashi T, Shibuya K, Kamoshita S, et al. Renal cyst formation as a complication of primary distal renal tubular acidosis. Nephron. 1991; 59(1): 75–79.
  9. Vallés PG, Batlle D. Hypokalemic distal renal tubular acidosis. Adv Chronic Kidney Dis. 2018; 25(4): 303–320.
  10. Vaisbich MH, Fujimura MD, Koch VH. Bartter syndrome: benefits and side effects of long-term treatment. Pediatr Nephrol. 2004; 19(8): 858–863.
  11. Watanabe T, Tajima T. Renal cysts and nephrocalcinosis in a patient with Bartter syndrome type III. Pediatr Nephrol. 2005; 20(5): 676–678.
  12. Moudgil A, Rodich G, Jordan SC, et al. Nephrocalcinosis and renal cysts associated with apparent mineralocorticoid excess syndrome. Pediatr Nephrol. 2000; 15(1-2): 60–62.
  13. Ishikawa I. Uremic acquired renal cystic disease. Natural history and complications. Nephron. 1991; 58(3): 257–267.
  14. Bisceglia M, Galliani CA, Senger C, et al. Renal cystic diseases: a review. Adv Anat Pathol. 2006; 13(1): 26–56.
  15. Peces R, Costero O. The spectrum of cystic kidney disease in adulthood: differential diagnosis and complications. Nefrologia. 2003; 23(3): 260–265.
  16. de Bruyn R, Gordon I. Imaging in cystic renal disease. Arch Dis Child. 2000; 83(5): 401–407.
  17. Marumo K, Horiguchi Y, Nakagawa K, et al. Incidence and growth pattern of simple cysts of the kidney in patients with asymptomatic microscopic hematuria. Int J Urol. 2003; 10(2): 63–67.
  18. Waltkins S, Avner E. Congenital and inherited disease. Renal Dysplasia, Hypoplasia, and Miscellaneous Cystic Disorders. Polycystic Kidney Disease. In: Barrat M, Avner E, Harmon W. ed. Pediatric Nephrology. Lippincott Williams & Wilkins, 415-425 1998: 459–474.
  19. de Bruyn R, Gordon I. Imaging in cystic renal disease. Arch Dis Child. 2000; 83(5): 401–407.
  20. Sakhaee K. Nephrolithiasis as a systemic disorder. Curr Opin Nephrol Hypertens. 2008; 17(3): 304–309.
  21. Garcia Nieto V, Dublán García K, Luis Yanes MI. Are simple renal cysts another manifestation of prelithiasis in infancy? Nefrologia. 2010; 30(3): 337–341.
  22. Williams PA, Idris O, Phillips GO. Structural analysis of gum from Acacia senegal (Gum Arabic). Cell and Developmental Biology of Arabinogalactan-Proteins. 2000: 241–251.
  23. Dashtdar M, Kardi K. Benefits of gum arabic, for a solitary kidney under adverse conditions: A case study. Chinese Medicine and Culture. 2018; 1(2): 88–96.
  24. Ali NE, Kaddam LA, Alkarib SY, et al. Gum arabic (Acacia Senegal) augmented total antioxidant capacity and reduced C-reactive protein among haemodialysis patients in phase II trial. Int J Nephrol. 2020; 2020: 7214673.
  25. Nasir O, Artunc F, Saeed A, et al. Effects of gum arabic (Acacia senegal) on water and electrolyte balance in healthy mice. J Ren Nutr. 2008; 18(2): 230–238.
  26. den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013; 54(9): 2325–2340.
  27. Terpou A, Papadaki A, Lappa IK, et al. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients. 2019; 11(7).
  28. Klimesova K, Whittamore JM, Hatch M. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria. Urolithiasis. 2015; 43(2): 107–117.
  29. Jarrar AH, Stojanovska L, Apostolopoulos V, et al. The effect of gum arabic (Acacia Senegal) on cardiovascular risk factors and gastrointestinal symptoms in adults at Risk of Metabolic Syndrome: a randomized clinical trial. Nutrients. 2021; 13(1).
  30. Ferguson M, Jones G. Production of short-chain fatty acids followingin vitro fermentation of saccharides, saccharide esters, fructo-oligosaccharides, starches, modified starches and non-starch polysaccharides. Journal of the Science of Food and Agriculture. 2000; 80(1): 166–170, doi: 10.1002/(sici)1097-0010(20000101)80:1<166::aid-jsfa512>3.0.co;2-k.
  31. Al Mosawi AJ. The use of acacia gum in end stage renal failure. J Trop Pediatr. 2007; 53(5): 362–365.
  32. Al-Asmakh M, Sohail MU, Al-Jamal O, et al. The effects of gum acacia on the composition of the gut microbiome and plasma levels of short-chain fatty acids in a rat model of chronic kidney disease. Front Pharmacol. 2020; 11: 569402.
  33. Leslie SW, Sajjad H, Nazzal L. Cystinuria. [Updated 2021 Apr 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. https://www.ncbi.nlm.nih.gov/books/NBK470527/.
  34. Edrees B, Rasheed S. Urinary Stone Disease. In: Elzouki AY, Harfi HA, Nazer HM, Stapleton FB, Oh W, Whitley RJ. ed. Textbook of Clinical Pediatrics. Springer, Berlin,Heidelberg. 2012.
  35. Dal Moro F, Mancini M, Tavolini IM, et al. Cellular and molecular gateways to urolithiasis: a new insight. Urol Int. 2005; 74(3): 193–197.
  36. Alon U, Warady BA, Hellerstein S. Hypercalciuria in the frequency-dysuria syndrome of childhood. J Pediatr. 1990; 116(1): 103–105.
  37. Vachvanichsanong P, Malagon M, Moore ES. Urinary tract infection in children associated with idiopathic hypercalciuria. Scand J Urol Nephrol. 2001; 35(2): 112–116.
  38. Garcia-Nieto V, Negrete-Pedraza F, Lopez-Garcia M, et al. Are simple renal cysts in childhood associated with kidney stones? Nephrourol Mon. 2012; 4(4): 596–598.
  39. Funck-Brentano JL, Vantelon J, Lopez-Alverez R. The progressive accidents of polycystic kidney disease: 154 personal observations. Presse Med. 1964; 30: 1583–1588.
  40. Sakhaee K, Adams-Huet B, Moe OW, et al. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002; 62(3): 971–979.
  41. So A, Thorens B. Uric acid transport and disease. J Clin Invest. 2010; 120(6): 1791–1799.
  42. Compan V, Baroja-Mazo A, López-Castejón G, et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity. 2012; 37(3): 487–500.
  43. de Vries JE. Immunosuppressive and anti-inflammatory properties of interleukin 10. Ann Med. 1995; 27(5): 537–541.
  44. Moore KW, O'Garra A, de Waal Malefyt R, et al. Interleukin-10. Annu Rev Immunol. 1993; 11: 165–190.
  45. Dayer JM, Choy E. Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor. Rheumatology (Oxford). 2010; 49(1): 15–24.
  46. Rho YH, Chung CP, Oeser A, et al. Inflammatory mediators and premature coronary atherosclerosis in rheumatoid arthritis. Arthritis Rheum. 2009; 61(11): 1580–1585.
  47. Saxena A, Cronstein BN. Acute phase reactants and the concept of inflammation. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR. ed. Textbook of Rheumatology. Vol 1. 9th. PA: Elsevier / Saunders, Philadelphia : 818–829.
  48. Raison CL, Borisov AS, Majer M, et al. Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol Psychiatry. 2009; 65(4): 296–303.
  49. Cerini C, Geider S, Dussol B, et al. Nucleation of calcium oxalate crystals by albumin: involvement in the prevention of stone formation. Kidney Int. 1999; 55(5): 1776–1786.
  50. Atmani F, Khan SR. Quantification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in vitro in the urine of healthy controls and stone-forming patients. Urol Int. 2002; 68(1): 54–59.
  51. Perl-Treves D, Addadi L. A structural approach to pathological crystallizations. Gout: the possible role of albumin in sodium urate crystallization. Proc R Soc Lond B Biol Sci. 1988; 235(1279): 145–159.
  52. Sevillano AM, Gutierrez E, Morales E, et al. Multiple kidney cysts in thin basement membrane disease with proteinuria and kidney function impairment. Clin Kidney J. 2014; 7(3): 251–256.
  53. Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017; 2017: 8416763.
  54. Bhattacharyya A, Chattopadhyay R, Mitra S, et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014; 94(2): 329–354.
  55. Fedail J, Ahmed A, Musa H, et al. Gum arabic improves semen quality and oxidative stress capacity in alloxan induced diabetes rats. Asian Pacific Journal of Reproduction. 2016; 5(5): 434–441.
  56. Flyvbjerg A, Denner L, Schrijvers BF, et al. Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes. 2004; 53(1): 166–172.
  57. Vasavada N, Agarwal R. Role of oxidative stress in diabetic nephropathy. Adv Chronic Kidney Dis. 2005; 12(2): 146–154.
  58. Lobo V, Patil A, Phatak A, et al. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010; 4(8): 118–126.
  59. Al-Majed AA, Abd-Allah ARA, Al-Rikabi AC, et al. Effect of oral administration of Arabic gum on cisplatin-induced nephrotoxicity in rats. J Biochem Mol Toxicol. 2003; 17(3): 146–153.
  60. Abd-Allah ARA, Al-Majed AA, Mostafa AM, et al. Protective effect of arabic gum against cardiotoxicity induced by doxorubicin in mice: a possible mechanism of protection. J Biochem Mol Toxicol. 2002; 16(5): 254–259.
  61. Trommer H, Neubert RHH. The examination of polysaccharides as potential antioxidative compounds for topical administration using a lipid model system. Int J Pharm. 2005; 298(1): 153–163.
  62. Park EY, Murakami H, Matsumura Y. Effects of the addition of amino acids and peptides on lipid oxidation in a powdery model system. J Agric Food Chem. 2005; 53(21): 8334–8341.
  63. Ali BH, Al-Husseni I, Beegam S, et al. Effect of gum arabic on oxidative stress and inflammation in adenine-induced chronic renal failure in rats. PLoS One. 2013; 8(2): e55242.
  64. Caravaca F, Villa J, García de Vinuesa E, et al. Relationship between serum phosphorus and the progression of advanced chronic kidney disease. Nefrologia. 2011; 31(6): 707–715.
  65. Kestenbaum B, Sampson JN, Rudser KD, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005; 16(2): 520–528.
  66. Chue CD, Townend JN, Moody WE, et al. Serum phosphate but not pulse wave velocity predicts decline in renal function in patients with early chronic kidney disease. Nephrol Dial Transplant. 2011; 26(8): 2576–2582.
  67. Marchais SJ, Metivier F, Guerin AP, et al. Association of hyperphosphataemia with haemodynamic disturbances in end-stage renal disease. Nephrol Dial Transplant. 1999; 14(9): 2178–2183.
  68. Sekiguchi S, Suzuki A, Asano S, et al. Phosphate overload induces podocyte injury via type III Na-dependent phosphate transporter. Am J Physiol Renal Physiol. 2011; 300(4): F848–F856.
  69. Halbesma N, Kuiken DS, Brantsma AH, et al. Macroalbuminuria is a better risk marker than low estimated GFR to identify individuals at risk for accelerated GFR loss in population screening. J Am Soc Nephrol. 2006; 17(9): 2582–2590.
  70. van der Velde M, Halbesma N, de Charro FT, et al. Screening for albuminuria identifies individuals at increased renal risk. J Am Soc Nephrol. 2009; 20(4): 852–862.
  71. Fabris A, Ferraro PM, Comellato G, et al. The relationship between calcium kidney stones, arterial stiffness and bone density: unraveling the stone-bone-vessel liaison. J Nephrol. 2015; 28(5): 549–555.
  72. Shavit L, Girfoglio D, Vijay V, et al. Vascular calcification and bone mineral density in recurrent kidney stone formers. Clin J Am Soc Nephrol. 2015; 10(2): 278–285.
  73. Rodgers A, Barbour L, Pougnet B, et al. Urinary element concentrations in kidney stone formers and normal controls: the weekend effect. J Trace Elem Electrolytes Health Dis. 1994; 8(2): 87–91.
  74. Komleh K, Hada P, Pendse AK, et al. Zinc, copper and manganese in serum, urine and stones. Int Urol Nephrol. 1990; 22(2): 113–118.
  75. Lorenzo V. Chronic renal failure outpatient clinic. A 12 years’ experience. Nefrologia. 2007; 27(4): 425–433.
  76. Ruggenenti P, Perna A, Remuzzi G, et al. GISEN Group Investigators. Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int. 2003; 63(6): 2254–2261.
  77. Taal MW, Brenner BM. Predicting initiation and progression of chronic kidney disease: Developing renal risk scores. Kidney Int. 2006; 70(10): 1694–1705.
  78. Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol. 2006; 17(11): 2974–2984.
  79. Jafar TH, Stark PC, Schmid CH, et al. AIPRD Study Group. Angiotensin-Converting Enzymne Inhibition and Progression of Renal Disease. Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int. 2001; 60(3): 1131–1140.
  80. Ruggenenti P, Perna A, Mosconi L, et al. Urinary protein excretion rate is the best independent predictor of ESRF in non-diabetic proteinuric chronic nephropathies. "Gruppo Italiano di Studi Epidemiologici in Nefrologia" (GISEN). Kidney Int. 1998; 53(5): 1209–1216.
  81. McClellan WM, Flanders WD. Risk factors for progressive chronic kidney disease. J Am Soc Nephrol. 2003; 14(7 Suppl 2): S65–S70.
  82. Cirillo M, Laurenzi M, Panarelli W, et al. Urinary sodium to potassium ratio and urinary stone disease. Kidney International. 1994; 46(4): 1133–1139.
  83. Kleeman CR, Bohannan J, Bernstein D, et al. Effect of variations in sodium intake on calcium excretion in normal humans. Proc Soc Exp Biol Med. 1964; 115: 29–32.
  84. McCarron DA, Rankin LI, Bennett WM, et al. Urinary calcium excretion at extremes of sodium intake in normal man. Am J Nephrol. 1981; 1(2): 84–90.
  85. Muldowney FP, Freaney R, Moloney MF. Importance of dietary sodium in the hypercalciuria syndrome. Kidney Int. 1982; 22(3): 292–296.
  86. Sabto J, Powell MJ, Breidahl MJ, et al. Influence of urinary sodium on calcium excretion in normal individuals. A redefinition of hypercalciuria. Med J Aust. 1984; 140(6): 354–356.
  87. Shortt C, Flynn A. Sodium-calcium inter-relationships with specific reference to osteoporosis. Nutr Res Rev. 1990; 3(1): 101–115.
  88. Blackwood AM, Cappuccio FP, Sagnella GA, et al. Epidemiology of blood pressure and urinary calcium excretion:importance of ethnic origin and diet. J Hum Hypert. 1999; 13: 892–3.
  89. Hall WD, Pettinger M, Oberman A, et al. Risk factors for kidney stones in older women in the southern United States. Am J Med Sci. 2001; 322(1): 12–18.
  90. Kohri K, Garside J, Blacklock NJ. The role of magnesium in calcium oxalate urolithiasis. Br J Urol. 1988; 61(2): 107–115.
  91. Zuckerman JM, Assimos DG. Hypocitraturia: pathophysiology and medical management. Rev Urol. 2009; 11(3): 134–144.
  92. Marangella M, Vitale C, Bagnis C, et al. Crystallization inhibitors in the pathophysiology and treatment of nephrolithiasis. Urol Int. 2004; 72 Suppl 1(2): 6–10.
  93. Baumann WC, Casella R. Prevention of calcium nephrolithiasis: the influence of diuresis on calcium oxalate crystallization in urine. Adv Prev Med. 2019; 2019: 3234867.
  94. Shenoy C. Hypocitraturia despite potassium citrate tablet supplementation. MedGenMed. 2006; 8(3): 8.
  95. Wang YH, Grenabo L, Hedelin H, et al. Citrate and urease-induced crystallization in synthetic and human urine. Urol Res. 1993; 21(2): 109–115.
  96. Krieger NS, Asplin JR, Frick KK, et al. Effect of potassium citrate on calcium phosphate stones in a model of hypercalciuria. J Am Soc Nephrol. 2015; 26(12): 3001–3008.
  97. Anderson DM. Evidence for the safety of gum arabic (Acacia senegal (L.) Willd.) as a food additive--a brief review. Food Addit Contam. 1986; 3(3): 225–230.