Vol 6, No 1 (2021)
Review article
Published online: 2021-03-11

open access

Page views 938
Article views/downloads 1017
Get Citation

Connect on Social Media

Connect on Social Media

Non-invasive assessment of endothelial function — a review of available methods

Przemysław Musz1, Przemysław Podhajski2, Klaudyna Grzelakowska3, Julia M. Umińska4
Medical Research Journal 2021;6(1):53-58.

Abstract

The key role of the endothelium in vascular-dependent diseases led to an increase in scientific interest in examining the endothelial function as a tool for screening, as well as for monitoring of the disease and its treatment. In the period from 2016 till 2019, a high level of scientific interest in the assessment of endothelial function has been observed, as expressed in the number of published clinical trials between 369 and 477 per year with the total number of subjects between 49,634 and 75,934. Currently, none of the known methods of assessing vascular endothelial function is widely used in clinical practice. This may be a result of various factors: scientific (lack of standardization in terms of quantitative indicators of endothelial function), formal (lack of official recommendations for endothelial assessment), financial (the best-validated methods and devices are costly, which renders it unsustainable to use them in screening diagnostics) and technological (high susceptibility of many measurement methods to errors). Nevertheless, it can be expected that non-invasive methods for the early detection of endothelial dysfunction in screening programs will gradually gain importance.

Article available in PDF format

View PDF Download PDF file

References

  1. Obońska K, Grąbczewska Z, Fisz J. Ocena czynności śródbłonka naczyniowego — gdzie jesteśmy, dokąd zmierzamy? Folia Cardiologica Excerpta. 2010; 5: 292–297.
  2. Obońska K, Grąbczewska Z, Fisz J, et al. , Cukrzyca i dysfunkcja śródbłonka — krótkie spojrzenie na złożony problem, Folia Cardiologica Excerpta. 2011; 6: 109–116.
  3. Koziński M, Kubica J. [Inflammatory response after coronary angioplasty - mechanisms and significance]. Kardiol Pol. 2006; 64(7): 771–4; author reply 775.
  4. Grabczewska Z, Kubica J. In search of understanding the endothelium. Cardiol J. 2008; 15(4): 229–232.
  5. Grabczewska Z, Thews M, Góralczyk K, et al. Endothelial function in patients with chest pain and normal coronary angiograms. Kardiol Pol. 2007; 65(10): 1199–206; discussion 1207.
  6. Lampka M, Grąbczewska Z, Jendryczka-Maćkiewicz E, et al. Circulating endothelial cells in coronary artery disease. Kardiol Pol. 2010; 68(10): 1100–1105.
  7. dela Paz NG, D'Amore PA. Arterial versus venous endothelial cells. Cell Tissue Res. 2009; 335(1): 5–16.
  8. Chatzizisis YS, Coskun AU, Jonas M, et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007; 49(25): 2379–2393.
  9. Anderson T. Assessment and treatment of endothelial dysfunction in humans. Journal of the American College of Cardiology. 1999; 34(3): 631–638.
  10. Furchgott RF, Cherry PD, Zawadzki JV, et al. Endothelial Cells as Mediators of Vasodilation of Arteries. Journal of Cardiovascular Pharmacology. 1984; 6: S336–S343.
  11. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980; 288(5789): 373–376.
  12. Furchgott R. Endothelium-Derived Relaxing Factor: Discovery, Early Studies, and Identification as Nitric Oxide. Bioscience Reports. 1999; 19(4): 235–251.
  13. Lorenzo S, Minson CT. Human cutaneous reactive hyperaemia: role of BKCa channels and sensory nerves. J Physiol. 2007; 585(Pt 1): 295–303.
  14. Papaioannou TG, Stefanadis C. , Vascular Wall Shear Stress: Basic Principles and Methods, Hellenic J Cardiol. 2005; 46: 9–15.
  15. Shahzad KA, Qin Z, Li Y. The roles of focal adhesion and cytoskeleton systems in fluid shear stress-induced endothelial cell response. Biocell . 2020; 44(2): 137–145.
  16. Inoue T, Matsuoka H, Higashi Y, et al. Flow-Mediated Vasodilation as a Diagnostic Modality for Vascular Failure. Hypertension Research. 2008; 31(12): 2105–2113.
  17. Goch A, Goch JH. , Wybrane parametry funkcji śródbłonka u chorych na niepowikłane nadciśnienie tętnicze z czynnikami ryzyka miażdżycy oraz bez nich, Nadciśnienie Tętnicze. 2005; 9: 118–125.
  18. Atzeni F, Sarzi-Puttini P, Sitia S, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 2010; 9(12): 830–834.
  19. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005; 111(3): 363–368.
  20. Teragawa H, Ueda K, Matsuda K, et al. Relationship between endothelial function in the coronary and brachial arteries. Clin Cardiol. 2005; 28(10): 460–466.
  21. Hadi HAR, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005; 1(3): 183–198.
  22. Foody JM. , Preventive Cardiology: Insights Into the Prevention and Treatment of Cardiovascular Disease, Humana Press, New Jersey. ; 2006: 253–255.
  23. Gębicki J, Marcinek A, Chłopicki S. Sposób określania parametrów do oceny funkcji śródbłonka naczyniowego. Opis patentowy nr PL226889.
  24. Tarnawska M, Dorniak K, Kaszubowski M, et al. A pilot study with flow mediated skin fluorescence: A novel device to assess microvascular endothelial function in coronary artery disease. Cardiol J. 2018; 25(1): 120–127.
  25. Uehata A, Lieberman EH, Gerhard MD. et. al. , Noninvasive assessment of endothelium-dependent flow-mediated dilation of the brachial artery, Vascular Medicine. 1997; 2: 87–92.
  26. Ganz P, Vita JA. Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation. 2003; 108(17): 2049–2053.
  27. Celermajer DS. Reliable endothelial function testing: at our fingertips? Circulation. 2008; 117(19): 2428–2430.
  28. Goor DA. et. al, Diagnosing medical conditions by monitoring of peripheral arterial tone, opis patentowy nr WO. ; 00: 74551.
  29. Schnall RP. , Probe partucularly useful for non-invasive detection of medical conditions, opis patentowy nr WO. ; 01: 03569.
  30. Lavie P, Schanll RP, Sheffy J. , Method and apparatus for th non-invasive detection of particular sleep-state conditons by monitoring the peripheral vascular system, opis patentowy nr WO. ; 01: 64101.
  31. Obońska K, Grąbczewska Z, Koziński M, et al. Assessment of endothelial function in relation to the presence of type 2 diabetes mellitus in patients with prior myocardial infarction: a pilot study using peripheral arterial tonometry, Folia Medica Copernicana. 2014; 2: 42–48.
  32. Grabczewska Z, Adamowicz A, Oboñska K, et al. Neither Cyclosporine nor Tacrolimus Deteriorate Endothelial Function in Renal Transplant Recipients Assessed with Reactive Hyperaemia Index. Transplantation Journal. 2012; 94(10S): 892.
  33. Naghavi M, Yen AA, Lin AW. H., Tanaka H., Kleis S. , New Indices of Endothelial Function Measured byDigital Thermal Monitoring of Vascular Reactivity: Data from 6084 Patients Registry; International Journal of Vascular Medicine, 2016, Art. : ID.
  34. Naghavi M, Yen A, Panthagani D, et al. Methods and apparatus for assessing vascular health, opis patentowy nr WO2015147796A1.
  35. Hirano H, Takama R, Matsumoto R, et al. Assessment of Lower-limb Vascular Endothelial Function Based on Enclosed Zone Flow-mediated Dilation. Sci Rep. 2018; 8(1): 9263.
  36. Idei N, Ukawa T, Kajikawa M, et al. A novel noninvasive and simple method for assessment of endothelial function: enclosed zone flow-mediated vasodilation (ezFMD) using an oscillation amplitude measurement. Atherosclerosis. 2013; 229(2): 324–330.
  37. Si D, Ni L, Wang Y, et al. A new method for the assessment of endothelial function with peripheral arterial volume. BMC Cardiovasc Disord. 2018; 18(1): 81.
  38. Hellmann M, Dudziak M. , Analiza kontrastu obrazu spekli laserowych - nowa metoda oceny mikrokrążenia, Choroby Serca i Naczyń. 2013; 10: 91–94.
  39. Cordovil I, Huguenin G, Rosa G, et al. Evaluation of systemic microvascular endothelial function using laser speckle contrast imaging. Microvasc Res. 2012; 83(3): 376–379.
  40. Tamura T. Blood Flow Measurement. Comprehensive Biomedical Physics. 2014: 91–105.
  41. Maga P, Henry BM, Kmiotek EK, et al. Postocclusive Hyperemia Measured with Laser Doppler Flowmetry and Transcutaneous Oxygen Tension in the Diagnosis of Primary Raynaud's Phenomenon: A Prospective, Controlled Study. Biomed Res Int. 2016; 2016: 9645705.
  42. Schlager O, Hammer A, Willfort-Ehringer A, et al. Microvascular autoregulation in children and adolescents with type 1 diabetes mellitus. Diabetologia. 2012; 55(6): 1633–1640.
  43. Gurovich AN, Braith RW. Pulse wave analysis and pulse wave velocity techniques: are they ready for the clinic? Hypertens Res. 2011; 34(2): 166–169.
  44. McEniery CM, Wallace S, Mackenzie IS, et al. Endothelial function is associated with pulse pressure, pulse wave velocity, and augmentation index in healthy humans. Hypertension. 2006; 48(4): 602–608.
  45. Idei N, Ukawa T, Kajikawa M, et al. A novel noninvasive and simple method for assessment of endothelial function: enclosed zone flow-mediated vasodilation (ezFMD) using an oscillation amplitude measurement. Atherosclerosis. 2013; 229(2): 324–330.
  46. Grześk G, Kozinski M, Tantry US, et al. High-dose, but not low-dose, aspirin impairs anticontractile effect of ticagrelor following ADP stimulation in rat tail artery smooth muscle cells. Biomed Res Int. 2013; 2013: 928271.
  47. Grzesk G, Kozinski M, Navarese EP, et al. Ticagrelor, but not clopidogrel and prasugrel, prevents ADP-induced vascular smooth muscle cell contraction: a placebo-controlled study in rats. Thromb Res. 2012; 130(1): 65–69.
  48. Koziński M, Sukiennik A, Sinkiewicz W, et al. [Drug-eluting stent-associated thrombosis: clinical relevance of impaired vessel-wall healing]. Postepy Hig Med Dosw (Online). 2008; 62: 185–205.
  49. Kosobucka A, Michalski P, Pietrzykowski Ł, et al. Adherence to treatment assessed with the Adherence in Chronic Diseases Scale in patients after myocardial infarction. Patient Prefer Adherence. 2018; 12: 333–340.
  50. Kubica A, Kosobucka A, Fabiszak T, et al. Assessment of adherence to medication in patients after myocardial infarction treated with percutaneous coronary intervention. Is there a place for newself-reported questionnaires? Curr Med Res Opin. 2019; 35(2): 341–349.
  51. Kubica A, Obońska K, Fabiszak T, et al. Adherence to antiplatelet treatment with P2Y12 receptor inhibitors. Is there anything we can do to improve it? A systematic review of randomized trials. Curr Med Res Opin. 2016; 32(8): 1441–1451.
  52. Kubica A, Kasprzak M, Siller-Matula J, et al. Time-related changes in determinants of antiplatelet effect of clopidogrel in patients after myocardial infarction. Eur J Pharmacol. 2014; 742: 47–54.
  53. Pietrzykowski Ł, Michalski P, Kosobucka A, et al. Medication adherence and its determinants in patients after myocardial infarction. Sci Rep. 2020; 10(1): 12028.
  54. Kubica A, Obońska K, Kasprzak M, et al. Prediction of high risk of non-adherence to antiplatelet treatment. Kardiol Pol. 2016; 74(1): 61–67.
  55. Kubica A, Kasprzak M, Obońska K, et al. Discrepancies in assessment of adherence to antiplatelet treatment after myocardial infarction. Pharmacology. 2015; 95(1-2): 50–58.
  56. Kubica A, Kosobucka A, Michalski P, et al. Self-reported questionnaires for assessment adherence to treatment in patients with cardiovascular diseases. Medical Research Journal. 2018; 2(4): 115–122.
  57. Kosobucka A, Michalski P, Pietrzykowski Ł, et al. The impact of readiness to discharge from hospital on adherence to treatment in patients after myocardial infarction. Cardiol J. 2020 [Epub ahead of print].
  58. Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020; 116(10): 1666–1687.
  59. Pons S, Fodil S, Azoulay E, et al. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. 2020; 24(1): 353.
  60. Navarese EP, Musci RL, Frediani L, et al. Ion channel inhibition against COVID-19: A novel target for clinical investigation. Cardiol J. 2020; 27(4): 421–424.