open access

Vol 4, No 4 (2019)
Review article
Published online: 2019-12-31
Get Citation

Analysis of antibiotic resistance genetic conditioning of Enterobacteriaceae NDM-1 family members and the related epidemiological threat in Poland

Wojciech Rogóż1, Karolina Kulig, Magdalena Knopik-Koclęga, Agnieszka Szkudlarek, Małgorzata Maciążek-Jurczyk
·
Medical Research Journal 2019;4(4):216-224.
Affiliations
  1. Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland

open access

Vol 4, No 4 (2019)
REVIEW ARTICLES
Published online: 2019-12-31

Abstract

Antibiotic resistance is an extremely serious threat to the modern world. Since 2008, Gram-negative
rods from the Enterobacteriaceae family gained the possibility of b-lactam degradation using NDM-1
carbapenemase, encoded by the blaNDM gene. It often occurs in the genome of Klebsiella pneumoniae
and can occur on both bacterial chromosome and plasmids. This creates a very high risk due to the
widespread occurrence of bacteria from this family both in the environment and in human microflora.
Lack of sensitivity to popular b-lactam antibiotics is especially dangerous for patients hospitalised for a
long time with reduced immunity. In Poland, since 2011, the number of registered NDM+ isolates and
related infections are constantly increasing, reaching 1780 cases in 2016. Bacilli showing the presence of
the blaNDM gene are registered very often in the Mazowieckie and Podlaskie regions, while the number
of such cases is the lowest in the Opolskie region. Inhibiting the growing number of infections caused by
Enterobacteriaceae NDM+ is extremely difficult, and one of the methods to reduce this phenomenon is
strict compliance with hygiene rules.

Abstract

Antibiotic resistance is an extremely serious threat to the modern world. Since 2008, Gram-negative
rods from the Enterobacteriaceae family gained the possibility of b-lactam degradation using NDM-1
carbapenemase, encoded by the blaNDM gene. It often occurs in the genome of Klebsiella pneumoniae
and can occur on both bacterial chromosome and plasmids. This creates a very high risk due to the
widespread occurrence of bacteria from this family both in the environment and in human microflora.
Lack of sensitivity to popular b-lactam antibiotics is especially dangerous for patients hospitalised for a
long time with reduced immunity. In Poland, since 2011, the number of registered NDM+ isolates and
related infections are constantly increasing, reaching 1780 cases in 2016. Bacilli showing the presence of
the blaNDM gene are registered very often in the Mazowieckie and Podlaskie regions, while the number
of such cases is the lowest in the Opolskie region. Inhibiting the growing number of infections caused by
Enterobacteriaceae NDM+ is extremely difficult, and one of the methods to reduce this phenomenon is
strict compliance with hygiene rules.

Get Citation

Keywords

NDM-1, antibiotic resistance, Enterobacteriaceae

About this article
Title

Analysis of antibiotic resistance genetic conditioning of Enterobacteriaceae NDM-1 family members and the related epidemiological threat in Poland

Journal

Medical Research Journal

Issue

Vol 4, No 4 (2019)

Article type

Review article

Pages

216-224

Published online

2019-12-31

Page views

1255

Article views/downloads

751

DOI

10.5603/MRJ.a2019.0039

Bibliographic record

Medical Research Journal 2019;4(4):216-224.

Keywords

NDM-1
antibiotic resistance
Enterobacteriaceae

Authors

Wojciech Rogóż
Karolina Kulig
Magdalena Knopik-Koclęga
Agnieszka Szkudlarek
Małgorzata Maciążek-Jurczyk

References (53)
  1. Ambler RP, Coulson AF, Frère JM, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991; 276 ( Pt 1): 269–270.
  2. Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995; 8(4): 557–584.
  3. Nikonorow E, Baraniak A, Gniadkowski M. Oporność bakterii z rodziny Enterobacteriaceae na antybiotyki β-laktamowe wynikająca z wytwarzania β-laktamaz. Post Mikrobiol. 2013; 52(3): 261–271.
  4. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995; 39(6): 1211–1233.
  5. Narodowy Program Ochrony Antybiotyków: PAŁECZKI JELITOWE ENTEROBACTERIACEAE WYTWARZAJĄCE KARBAPENEMAZY (CPE) http://antybiotyki. edu pl/wp-content/uploads/dokumenty/Definicja-przypadku-CPE pdf (31 08. ; 2019.
  6. Literacka E, Żabicka D, Gniadkowski M, et al. Test Carba NP i CarbAcineto - szybkie testy do wykrywania nabytych karbapenemaz u pałeczek Enterobacteriaceae, Pseudomonas spp. oraz Acinetobacter spp Rekomendacje 2015, http://www korld edu pl/pdf/TestCarbaNPrekomendacje2015 pdf (31 08. ; 2019.
  7. Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012; 18(9): 1503–1507.
  8. Khan AU, Maryam L, Zarrilli R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol. 2017; 17(1): 101.
  9. Deshpande P, Rodrigues C, Shetty A, et al. New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae: treatment options with carbapenems compromised. J Assoc Physicians India. 2010; 58: 147–149.
  10. Grover SS, Doda A, Gupta N, et al. New Delhi metallo-β-lactamase - type carbapenemases producing isolates from hospitalized patients: A pilot study. Indian J Med Res. 2017; 146(1): 105–110.
  11. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010; 10(9): 597–602.
  12. Rolain JM, Parola P, Cornaglia G. New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect. 2010; 16(12): 1699–1701.
  13. Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009; 53(12): 5046–5054.
  14. Nordmann P, Poirel L, Walsh TR, et al. The emerging NDM carbapenemases. Trends Microbiol. 2011; 19(12): 588–595.
  15. Poirel L, Dortet L, Bernabeu S, et al. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother. 2011; 55(11): 5403–5407.
  16. Poirel L, Hombrouck-Alet C, Freneaux C, et al. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect Dis. 2010; 10(12): 832.
  17. Poirel L, Schrenzel J, Cherkaoui A, et al. Molecular analysis of NDM-1-producing enterobacterial isolates from Geneva, Switzerland. J Antimicrob Chemother. 2011; 66(8): 1730–1733.
  18. Poirel L, Al Maskari Z, Al Rashdi F, et al. NDM-1-producing Klebsiella pneumoniae isolated in the Sultanate of Oman. J Antimicrob Chemother. 2011; 66(2): 304–306.
  19. Literacka E, Żabicka D, Hryniewicz W, et al. RAPORT KORLD Dane Krajowego Ośrodka Referencyjnego ds. Lekowrażliwości Drobnoustrojów (KORLD), dotyczące pałeczek Enterobacterales wytwarzających karbapenemazy NDM, KPC, VIM i OXA-48 na terenie Polski w latach 2006 –2018. http://korld.edu.pl/pdf/Raport%20KORLD%202019_EL_2.pdf (31.08.2019).
  20. Fiett J, Baraniak A, Izdebski R, et al. The first NDM metallo-β-lactamase-producing Enterobacteriaceae isolate in Poland: evolution of IncFII-type plasmids carrying the bla(NDM-1) gene. Antimicrob Agents Chemother. 2014; 58(2): 1203–1207.
  21. Baraniak A, Machulska M, Żabicka D, et al. NDM-PL Study Group . Towards endemicity: large-scale expansion of the NDM-1-producing Klebsiella pneumoniae ST11 lineage in Poland, 2015-16. J Antimicrob Chemother. 2019; 74(11): 3199–3204.
  22. Krajowy Ośrodek Referencyjny ds. Lekowrażliwości Drobnoustrojów: Pałeczki jelitowe Enterobacteriaceae wytwarzające karbapenemazy (CPE) w Polsce – sytuacja w 2016. http://www.korld.edu.pl/pdf/CPEraport2016.pdf (31.08.2019).
  23. Żabicka D, Literacka E, Gniadkowski M, et al. Raport Krajowego Ośrodka Referencyjnego ds. Lekowrażliwości Drobnoustrojów Występowanie Enterobacteriaceae (głównie Klebsiella pneumoniae) wytwarzających karbapenemazę New Delhi (NDM) na terenie Polski w okresie I – III kwartał 2017 roku. http://www.korld.edu.pl/pdf/Raport_NDM_18-12-2017_strona.pdf (31.08.2019).
  24. Żabicka D, Gniadkowski M, Ozorowski T, et al. Raport Krajowego Ośrodka Referencyjnego ds. Lekowrażliwości Drobnoustrojów Występowanie Enterobacteriaceae (Klebsiella pneumoniae) wytwarzających karbapenemazy typu New Delhi na terenie Polski w I kwartale 2017 roku Strategia regionalna kontroli rozprzestrzeniania Enterobacteriaceae wytwarzających karbapenemazy (ang. CPE- Carbapenemase-Producing Enterobacteriaceae), 15. 06 2017, http://korld edu pl/pdf/NDM_Raport_I_kwartal_2017-05-07-1 pdf (31 08. ; 2019.
  25. Wojewódzka Stacja Sanitarno-Epidemiologiczna w Warszawie: Stan Sanitarny województwa mazowieckiego 2018, 03. 2019. http://wsse.waw.pl/files/wsse/pliki_WSSE/Organizacyjny_2019/Stan_sanitarny_woj.mazowieckiego_2018r.pdf (31.08.2019).
  26. Milner A, et al. Analiza częstości występowania i ocena lekowrażliwości szczepów Klebsiella pneumoniae NDM-1 na oddziale chirurgii CSK WUM w okresie 1.01.2012-30.09.2014 roku Postępy Nauk Medycznych, 2015; XXVIII(4): 261-268.
  27. Nawfal Dagher T, Azar E, Al-Bayssari C, et al. First Detection of Colistin-Resistant in Association with Carbapenemase Isolated from Clinical Lebanese Patients. Microb Drug Resist. 2019; 25(6): 925–930.
  28. Cai Y, Chen C, Zhao M, et al. High Prevalence of Metallo-β-Lactamase-Producing Enterobacter cloacae From Three Tertiary Hospitals in China. Frontiers in Microbiology. 2019; 10.
  29. Khan AU, Nordmann P. NDM-1-producing Enterobacter cloacae and Klebsiella pneumoniae from diabetic foot ulcers in India. J Med Microbiol. 2012; 61(Pt 3): 454–456.
  30. Gamal D, Fernández-Martínez M, Salem D, et al. Carbapenem-resistant Klebsiella pneumoniae isolates from Egypt containing blaNDM-1 on IncR plasmids and its association with rmtF. Int J Infect Dis. 2016; 43: 17–20.
  31. Galimand M, Courvalin P, Lambert T. RmtF, a new member of the aminoglycoside resistance 16S rRNA N7 G1405 methyltransferase family. Antimicrob Agents Chemother. 2012; 56(7): 3960–3962.
  32. Bocanegra-Ibarias P, Garza-González E, Morfín-Otero R, et al. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS One. 2017; 12(6): e0179651.
  33. Wang D, Hou W, Chen J, et al. Characterization of the blaKPC-2 and blaKPC-3 genes and the novel blaKPC-15 gene in Klebsiella pneumoniae. J Med Microbiol. 2014; 63(Pt 7): 981–987.
  34. Yan J, Pu S, Jia X, et al. Multidrug Resistance Mechanisms of Carbapenem Resistant Klebsiella pneumoniae Strains Isolated in Chongqing, China. Ann Lab Med. 2017; 37(5): 398–407.
  35. Olszanecki R, Wołkow P, Jawień J. Farmakologia. Redakcja naukowa Ryszard Korbut. Wydawnictwo Lekarskie PZWL, Warszawa 2017, s. : 233–244.
  36. Janiec W, et al. Krupińska. Farmakologia Podręcznik dla studentów farmacji. Wydanie V unowocześnione. Wydawnictwo Lekarskie PZWL, Warszawa, 2005, s. : 927–955.
  37. Murray PR, Rosenthal KS, Pfaller MA. Mikrobiologia. Elsevier Urban & Partner, Wrocław, 2011, s. 195-199. : 293–307.
  38. Schlegel HG. Mikrobiologia ogólna. Wydawnictwo Naukowe PWN, Warszawa 2003, s 31-35. ; 140: 419–428.
  39. Jabłoński L. Podstawy mikrobiologii lekarskiej: podręcznik dla studentów. Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1979, s. : 265–269.
  40. Żabicka D. Monitorowanie oporności w Polsce – dane sieci EARS-Net Zakład Epidemiologii i Mikrobiologii Klinicznej; Krajowy Ośrodek Referencyjny ds. Lekowrażliwości Drobnoustrojów, Narodowy Instytut Leków, Warszawa 2016, http://www. korld edu pl/pdf/Monitorowanie_dane_2016_strona_KORLD pdf (31 08. ; 2019.
  41. Popowska M. Antybiotykooporność w środowisku naturalnym – przyczyny i konsekwencje. Kosmos. 2017; 66(1): 81-91.
  42. Baraniak A, Izdebski R, Fiett J, et al. NDM-producing Enterobacteriaceae in Poland, 2012-14: inter-regional outbreak of Klebsiella pneumoniae ST11 and sporadic cases. J Antimicrob Chemother. 2016; 71(1): 85–91.
  43. Ho PL, Lo WU, Yeung MK, et al. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PLoS One. 2011; 6(3): e17989.
  44. Karczewski M, Tomczak H, Piechocka-Idasiak I, et al. Is multiresistant Klebsiella pneumoniae New Delhi metallo-beta-lactamase (NDM-1) a new threat for kidney transplant recipients? Transplant Proc. 2014; 46(7): 2409–2410.
  45. Ho PL, Lo WU, Yeung MK, et al. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PLoS One. 2011; 6(3): e17989.
  46. McGeary RP, Tan DTc, Schenk G. Progress toward inhibitors of metallo-β-lactamases. Future Med Chem. 2017; 9(7): 673–691.
  47. Christopeit T, Leiros HKS. Fragment-based discovery of inhibitor scaffolds targeting the metallo-β-lactamases NDM-1 and VIM-2. Bioorg Med Chem Lett. 2016; 26(8): 1973–1977.
  48. Cahill ST, Cain R, Wang DY, et al. Cyclic Boronates Inhibit All Classes of β-Lactamases. Antimicrob Agents Chemother. 2017; 61(4).
  49. Tooke CL, Hinchliffe P, Bragginton EC, et al. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol. 2019; 431(18): 3472–3500.
  50. King AM, Reid-Yu SA, Wang W, et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature. 2014; 510(7506): 503–506.
  51. González MM, Kosmopoulou M, Mojica MF, et al. Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase. ACS Infect Dis. 2015; 1(11): 544–554.
  52. Ojdana D, Gutowska A, Sacha P, et al. Activity of Ceftazidime-Avibactam Alone and in Combination with Ertapenem, Fosfomycin, and Tigecycline Against Carbapenemase-Producing . Microb Drug Resist. 2019; 25(9): 1357–1364.
  53. Leis K, Mazur E, Szyoerski P, et al. Metallo-beta-lactamases: NDM. Journal of Education, Health and Sport. 2019; 9(6): 27–40.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Group sp. z o.o., ul. Świętokrzyska 73, 80–180 Gdańsk, Poland
tel.:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl