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biology and new targeted therapeutic 
approaches

ABSTRACT 
Despite the broad prevention programs and early detection and therapy progress, melanoma of skin is 

still responsible for 0.6% of deaths caused by tumour disease. Every year 300,000 patients are diagnosed 

and 60,000 die from the most malignant of skin cancer. Generally, melanoma is formed as a result of 

mutation of growth pathways responsible for proliferation and apoptosis. One of the most investigated 

pathway, mutated in 90% of melanomas, is RAS>RAF>MEK>ERK also known as mitogen-activated 

protein kinase (MAPK) pathway. The second one is phosphoinositide-3-OH kinase (PI3K) pathway. The 

better understanding of melanoma biology resulted in research of inhibitors, which can affect presented 

pathways and prevent uncontrolled proliferation of melanoma. The BRAF inhibitors vemurafenib and dab-

rafenib and MEK inhibitor trametinib seem to be the most successful ones. Recent advances in biology 

of melanoma provided new interesting therapeutic targets. One of the most inquiring is microphthalmia 

associated transcription factor (MITF), the principal regulator of melanocyte lineage. MITF perform the role 

of so-called ‘survival’ or ‘addiction’ oncogene. Moreover, the interleukin-1 receptor-associated kinases 

(IRAKs) might clarify the connection between the inflammatory environment and melanoma carcinogen-

esis. IRAKs play a key role as mediators of toll-like receptor (TLR) and interleukin-1 receptor (IL1R) in 

inflammation signalling processes. Moreover, it was observed that metformin cause cell cycle arrest in 

melanoma cells, secondly leading to activation of autophagy and apoptosis. Although due to targeted and 

immunotherapy the prognosis of patients with metastatic melanoma is incomparably better, melanoma in 

its advanced stadium is still predominantly lethal. Therefore, the most present research concentrates on 

acquired resistance against targeted therapy.
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Introduction

Melanocytes are melanin producing cells that ana-
tomically exist mainly in the epidermal cell population, 
but have origins in neural crest cells. As a  pigment 
producer they are responsible for skin and hair colour. 
They also play a key role in prevention of skin damage 
caused by UV radiation. In unaffected skin they are 
situated in basal layer of epidermis where their metab-
olism is regulated by keratinocytes [1]. Mutations in 
oncogenes enable melanocytes to avoid this regulation, 
then unrestricted spread and consequently develop the 
skin cancer, melanoma. Undergoing radial and vertical 
growth phase melanoma can form malignant tumour 
and then infiltrate the vascular or lymphatic system 
[2]. Considering different clinical pathology diagnosis, 

etiology, biologic properties, and prognosis among 
cutaneous melanoma most authors distinguish nodu-
lar melanoma (NM), superficial spreading melanoma 
(SSM), lentigo maligna melanoma (LMM), and acral-
lentiginous melanoma (ALM) [3]. Studies on cell-sig-
naling mechanisms enabled to determine the pathways 
controlling growth and division of cells. Some of them 
become often hyperactivated leading to uncontrolled 
proliferation of cancer cells.

Epidemiology

As the epidemiological research shows that melano-
ma of skin is responsible for 0.6% of deaths caused by 
tumour disease. Every year 300,000 patients are diag-

https://orcid.org/0000-0002-9400-4920
https://orcid.org/0000-0002-3499-4627
https://orcid.org/0000-0001-5273-5293
https://orcid.org/0000-0001-8272-5440


Aleksander Kiełbik et al., Signaling pathways in melanoma biology and new targeted therapeutic approaches

185www.journals.viamedica.pl/medical_research_journal

nosed and 60,000 die from the most malignant of skin 
cancer [4]. Normally, once the skin cancers are early 
diagnosed and receive appropriate management, they 
reach 95% of 5-year survival rate. However, cutaneous 
malignant melanoma shows relevant higher morbidity 
and mortality and is responsible for 65% of all skin can-
cer deaths [5]. There are several factors, which contrib-
ute to the increasing incidence of skin cancers. Among 
them, the exposure to sunlight and other sources of 
UV irradiation is often associated with development of 
melanoma. Moreover, rising exploitation of sunlamps, 
tanning beds and the depletion of the earth’s ozone 
result in higher exposure to radiation and secondly in 
exacerbation of the skin cancers incidents [6].

Melanoma biology

Melanoma occurs as a result of multiple mutations 
that cause deregulation of several principal cell signal-
ling pathways, which leads to uncontrolled proliferation 
and formation of melanoma. Understanding these 
processes helps to undertake specific and personal-
ized therapies.

The role of MAPK, PI3K and PTEN pathways

One of the most investigated pathway, mutated in 
90% of melanomas, is RAS>RAF>MEK>ERK (also 
known as mitogen-activated protein kinase (MAPK) 
pathway). Its activation triggers the mitosis of cells 
resulting in uncontrolled proliferation of cells [7]. In 
50–70% of cases, the pathway is upregulated by BRAF 
mutation (the most common is V600EBRAF) and in 
15–30% by N-ras mutation [8, 9]. 

It was proven that the single mutation might have 
an effect on several aspects of tumour genesis. In 
melanoma case the BRAF mutation, besides increased 
proliferation of melanoma cells results in upregulation 
of VEGF, the angiogenic factor [10].

The second major melanoma growth pathway is 
phosphoinositide-3-OH kinase (PI3K) pathway. PI3Ks 
are a  family of lipid kinases acting as lipid second 
messengers that affect downstream regulators, among 
others protein kinase B (PKB). PI3K signalling regulates 
cell survival, proliferation and growth. The supervisory 
function in this pathway is performed by PTEN, the 
factor responsible for signal termination. PTEN loss of 
function, resulting in uncontrolled cancer proliferation, 
is present in 5–20 % of melanoma [11].

Significant is that NRAS mutation does not gener-
ally occur simultaneously neither with BRAF nor with 
PTEN mutation, whereas the changes in both BRAF 
and PTEN are present in 20% of cases. This observa-
tion supports the conclusion that BRAF and PI3K are 
activated downstream of RAS. BRAF and PTEN operate 

on distinct genetic pathways and could cooperate to 
promote melanoma proliferation [12, 13]. Moreover, 
some of the N-ras mutations seems to be typical for 
congenital melanocytic neavi, but are not characteristic 
to dysplastic melanocytic neavi [14].

The role of MITF and p16 regulators

An interesting regulator of melanocyte lineage is 
microphthalmia associated transcription factor (MITF). 
MITF perform the role of so-called ‘survival’ or ‘ad-
diction’ oncogenes [16]. It was observed that MITF is 
essential for cell proliferation and survival, but its level 
must be strictly controlled. Increased MITF leads to cell 
cycle arrest, whereas too low level or complete absence 
may result in cell apoptosis. Moreover it was noticed 
that MITF can corporate with V600EBRAF and act as an 
additive oncogene [16, 17]. 

Melanoma occurs not always as the result of spon-
taneous mutations. Germline changes in the p16IN-

K4a gene have been identified in approximately half of 
the families with hereditary melanoma [18]. Bennett et 
al. observed that mutations in p16 result in extremely 
increased lifetime risk of melanoma [19]. In normal 
physiological state p16ink4a enables call to enter the 
senescence stage. When this function is lost, cells gain 
the ability of proliferation [20]. Upregulation of p16ink4a 
can also induce the formation benign naevi [15].

The role of IRAK in deregulation of inflammation 

There seems to be relevant correlation between 
inflammation and genesis of tumours. Some of the 
pathways partly clarify this reciprocal connection. The 
interleukin-1 receptor-associated kinases (IRAKs) play 
a key role as mediators of toll-like receptor (TLR) and 
interleukin-1 receptor (IL1R) signalling processes. It 
was revealed that TLR/IL1R-mediated signalling con-
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Figure 1. Cell proliferation pathways in melanoma and 
possibilities of its targeted inhibition [15]. Main pathways 
involved in melanoma cell survival, proliferation, growth 
RAS/RAF/MEK pathway and PI3K pathway are presented 
as an intracellular processes together which possibilities 
of their inhibition
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trols diverse cellular processes including inflammation, 
apoptosis, and cellular differentiation [21, 22]. Impor-
tance of IRAK receptors in deregulation of inflammation, 
increasing NF-kB activity and formation of cancer is 
currently investigated.

IRAK1 and IRAK4 are overexpressed and activated 
in melanoma cell lines. The attenuating IRAK-1,-4 sig-
nalling with pharmacological inhibitors in vitro increased 
vinblastine impact on melanoma cell death [23]. Further, 
in a  xenograft mouse, combined therapy with IRAK 
inhibitors had significant impact on prolonged survival 
[23]. IRAKs seem to be promising targets to enhance 
the therapeutic response, but until now there are no 
studies proving the effectiveness of IRAK inhibitors on 
melanoma patients in vivo. 

Targeted treatment possibilities 

The better understanding of melanoma biology 
resulted in the research of inhibitors, which can affect 
presented pathways preventing uncontrolled prolifer-
ation of melanoma. The most successful seem to be 
BRAF inhibitors vemurafenib [24] and dabrafenib [25] 
and MEK inhibitor trametinib [26]. The trials on vemu-
rafenib showed the response rates of more than 50% in 
patients with metastatic melanoma with the V600EBRAF 
mutation. Moreover it significantly reduced the risk 
of death and disease progression, as compared with 
chemotherapy with dacarbazine [27]. Letter on, the 
studies on dabrafenib showed similar results on patient 
with advanced-stage metastatic melanoma [25]. As 
the responses seem to be short-lived next trials were 
focused on MEK inhibition with trametinib [28]. 

Long-term investigation showed that patients un-
dergoing targeted therapy developed resistance to 
BRAF inhibitors. MAPK reactivation mechanisms were 
acquired by N-ras mutations. Mutant BRAF amplifica-
tion and alternative splicing were detected in 70% of 
patients. PI3K-PTEN-AKT-upregulation was observed in 
22% of progressive melanoma disease [29]. Moreover, 
the most severe side effect of BRAF inhibition was the 
development of secondary skin tumours, originating 
from a paradoxical activation of the MAPK pathway in 
cells without BRAF mutation [27]. The potential solution 
to this problem may be provided by combined therapy. 
The results of trial with dabrafenib plus trametinib vs 
vemurafenib monotherapy showed encouraging re-
sults enhancing overall survival in previously untreated 
patients with metastatic melanoma [30–32]. Targeted 
medicaments currently approved by FDA for metastatic 
melanoma targeted treatment ware presented in Table 1.

Although presented results seem to be promising 
there is still the vast part of responses that are not typ-
ically complete or durable. Therefore, the major focus 
is required to identify and target the mechanisms of 
resistance. Not only combined approaches among 
targeted but also immune therapy might provide the 
extended overall survival and enhance the quality of life 
of the patients with metastatic melanoma.
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Figure 2. Immune signalling via IRAK family network 
and its role in inflammation process [21, 23]. The 
interleukin-1 receptor-associated kinases (IRAKs) play 
a  key role as mediators of toll-like receptor (TLR) and 
interleukin-1 receptor (IL1R) presented on the cell 
membrane. The Intracellular signalling processes results in 
increasing NF-kB activity and deregulation of inflammation. 
Two kinases IRAK1 and IRAK4 are overexpressed in 
melanoma cell lines and their role is currently investigated

 Table 1. Targeted medicaments currently approved by FDA for metastatic melanoma targeted treatment

Name of medicaments Pathway Studies 

Encorafenib and binimetinib combination BRAF MEK kinases inhibitor [39]

Cobimetinib and vemurafenib combination BRAF and MEK kinases inhibitor [40]

Trametinib MEK inhibitor [28]

Trametinib and dabrafenib combination BRAF and MEK kinases inhibitor [30–32]

Dabrafenib BRAF kinase inhibitor [25]

Vemurafenib BRAF kinase inhibitor [41]
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Metformin induces AMPK-dependent and 
-independent melanoma cell death

Metformin is generally used for Diabetes treat-
ment but it might find its application in oncology. The 
mechanism of action of metformin has not been fully 
elucidated. So far, the activation of AMP-activated pro-
tein kinase (AMPK) in mitochondria seems to provide 
a rational explanation [33].

Metformin uses AMPK-dependent and -independent 
pathway to induce melanoma cell death [34]. It was 
also observed that metformin cause cell cycle arrest 
in melanoma cells, secondly leading to activation of 
autophagy and apoptosis [35]. Moreover, Hirsch et al. 
have proven that Metformin inhibits the inflammatory 
response preventing cellular transformation and inhib-
iting cancer growth [36].

Metformin is known to alternate the mitochondrial 
metabolism, what secondly influence the tumour micro-
environment [37]. Its role as an adjuvant medicament 
against melanoma is currently undergoing trials among 
others with targeted therapy agents [34, 38].

Conclusion

Years of research on melanoma cell biology finally 
gave rise to relatively safe and efficient therapies. The 
knowledge of specific proliferation pathways together 
with progress in oncoimmunology resulted in the de-
velopment of targeted drugs. Those can be applied, 
when other therapeutic options, such as surgery are 
exploited. Although the prognosis of patients with met-
astatic melanoma is incomparably better, melanoma 
in its advanced stadium is still predominantly lethal. 
Therefore, the most present research concentrates on 
acquired resistance against targeted therapy. 
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