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Abstract
Sonoporation is a rapidly developing novel technique serving for drug delivery and non-viral gene 

therapy. It is based on the interaction between microbubbles located in the surrounding of a cell and 

its membrane. The interaction is obtained by excitation of microbubbles with ultrasounds. This leads to 

reversible cell membrane poration. Depending on the intensity of ultrasounds, structure of microbubbles 

used in an experiment and different environmental factors, microbubbles can interact in two manners. 

First, in lower ultrasound intensities, stable cavitation – regular microbubbles oscillations due to changes 

in the environment pressure. Microbubbles have to be very close to a cell membrane, therefore, they are 

usually targeted to an antigen located on the cell membrane by antibodies. Consequently, microbubbles 

push and pull on the cell membrane and create microstreaming around it causing its disruption. Second, 

inertial cavitation, where in contrary to the previous one, oscillations cause rapid collapse of microbubbles, 

which creates shock waves and microjets for the same purpose. No matter in which manner prorated, 

cells tend to reseal their disrupted cell membrane. Ca2+ ions play a crucial role in the process as well as 

endo exocytosis. Sonoporation has proved to be an effective modality against different diseases, including 

variety of cancer types in of both laboratory and clinical studies. 
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Introduction 

Ultrasound is a type of sound that is beyond our 
hearing capabilities (> 20 kHz). Though, it has proven 
to be useful imaging tool from the very beginning as 
a sonar device developed before second World War, 
through its introduction to medical imaging in 1942 by 
Dr Karl Dussik and his brother, until present, modern 
techniques such as 3D imagining – nowadays widely 
used in gynaecology [1].  Different studies revealed di-
verse implications of ultrasounds in medicine: ultrasonic 
knife [2], targeted thermic cancer cells destruction by 
high-intensity focused ultrasound (HIFU) [3], lithotrip-
sy [4], thrombolysis [5], hemostatics [6], blood-brain 
barrier disruption [7], sonodynamic therapy [8] and 
finally drug and nucleic acid facilitated delivery  – so-
noporation [9]. Sonoporation is a process of temporal 
permeabilization of a cell membrane caused by ultra-
sounds. A vast number of studies indicate that sonopo-
ration phenomena are favored if done in combination 
with microbubbles (1–10 μm radius) [10–13] or by their 
nano analogue - nanobubbles (around 50nm radius) 
[14]. They are encapsulated gases, primarily used as 

contrast agents in diagnostics. Their outer shell usually 
consists of denatured albumin, surfactants, phospho-
lipids or polymers and the core of air, perfluorocarbons 
or sulphur hexafluoride. They are rather unstable, 
therefore, their existence lasts several minutes after 
injection [15]. Outer shell composition defines stability 
of microbubbles (Fig. 1). Softshell is easy to excite but 
also more likely to rapture under small pressure vari-
ations caused by ultrasounds, whereas, hard shell is 
more resistant to oscillations, thus more difficult to excite 
[10]. Nanobubbles have significant advantage over 
microbubbles in in vivo studies by being able to escape 
blood vessels and reach the tumour site more effectively 
[16]. Antibodies bound to the surface of a microbubble 
may also enhance specific accumulation [17]. 

Although the topic is widely described in publica-
tions, the exact quantitative contribution of each biologi-
cal process involved in ultrasound-induced drug uptake 
is still unknown. It is also due to variety of different meth-
odologies and settings used in the studies. In this review 
we will focus on those experiments conducted in the 
ambience of microbubbles and nanobubbles since they 
are more prospective than those with ultrasounds only. 
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However, it is worth mentioning that ultrasounds on their 
own are capable of improving drug and nucleic acids 
uptake [18]. Two essential types of interaction between 
ultrasounds and microbubbles can be distinguished. 
First, with low-intensity ultrasounds, microbubbles must 
be close to the cell membrane, stable cavitation forces 
have influence on permeabilization of a cell membrane. 
The second type, high-intensity ultrasound that leads 
to inertial cavitation with bubble collapse as a major 
factor of a cell membrane increased permeabilization. 
It is easier to carry out since the distance between the 
microbubbles and cells doesn’t need to be as close as 
in stable cavitation sonoporation.

Low-intensity ultrasounds

In low-intensity ultrasounds stable cavitation or 
non-inertial cavitation occurs. Microbubbles oscillate 
in regular pattern (Fig. 2). They expand in lower ultra-
sound intensities and compress in higher ultrasound 
pressure [19]. This oscillation creates movement of 
liquid around the microbubbles that are called mi-
crostreaming [20]. The fluid flow implies shear stress 
on surfaces of the nearby cell membranes. It is one of 
the factors of stimulated uptake of particles observed 
during sonoporation experiments [21, 22]. Additionally 
microbubbles located near the cell membrane push 
and pull on it. This mechanical stress also disturbs 
cells membrane integrity. Moreover, it was also proven 
that microbubbles can sometimes enter into a cell by 
the push movements [23]. Kooiman et al. have proven 
that cell targeted microbubbles were lowering ultra-
sound intensities required for cell membrane poration. 
They used biotinylated anti-human CD31 antibody that 
was conjugated to the biotinylated microbubbles via 
avidin-biotin bridging [24]. Since that time scientist 
discovered that sonoporation can benefit from this 
modality. The idea behind it is that specific attachment 
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Figure 1. A microbubble simplified structure

Figure 2. Stable cavitation of a microbubble

of molecular probes on the outer shell of microbubbles 
leads to their accumulation at a specific site. Potential 
ligands might be antibodies, peptides, and polysac-
charides. Monoclonal antibodies or, least common, 
other ligands that recognize antigens expressed and 
located the targeted tissue can be incorporated into or 
conjugated to the microbubble surface. To link higher 
number of ligand-receptor pairs chemical spacers 
are used. The most common is polyethylene glycol 
(PEG). It keeps the ligand away from the microbubble 
outer shell. Monoclonal antibodies are usually tagged 
with biotin. Furthermore, adhesion to molecules such 
as avidin may then form a bridge between a surface 
expressing these antigens and biotinylated microbub-
bles (Fig. 4) [25].
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Figure 3. Inertial cavitation of a microbubble
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Figure 4. Targeted microbubbles

LOW INTENSITY ULTRASOUNDS

High intensity ultrasounds

At certain, high-intensity ultrasounds reach the 
threshold of microbubbles and induces their cavitation. 
After significant volume expansion follows compression 
leading to a rapid collapse of microbubbles (Fig.3). 
The process is called inertial cavitation and has some 
severe physical and chemical consequences [26, 27]. 
First of all, extremely high temperature is generated in 
the centre of a microbubble core. From this phenom-
ena benefits mentioned before high intensity focused 
ultrasound (HIFU) [28]. Moreover, free radicals and 
photons are created. Photons are responsible for so-
called sonoluminescence effect, which is said to be one 
of triggering factors in sonodynamic therapy (SDT). SDT 
is based on three inseparable compounds: a sonosen-
sitive drug, ultrasound, and molecular oxygen. On their 
own they have no influence or very low influence on 
human tissue but together they create reactive oxygen 
species (ROS). Thus, SDT is vividly developing novel 
cancer therapy using also microbubbles [29]. High 
pressure that arises in the center of the core is often 
followed by shock waves. Those shock waves, if reach 
cells have two effects. First of all, observed in in vivo 

studies by high-speed optical techniques  - detachment 
of cells from the substrate; and second of all, more 
important for sonoporation, the temporary deformation 
and disruption in cell membrane which leads to higher 
drug uptake. Another crucial effect of inertial cavitation 
are fluid microjets. They occur when a microbubble 
collapses aspherically near a cell. Fluid from the sur-
rounding is pushed targeting a cell [26, 30]. 

The repair process of a sonoporated membrane

Since ultrasound induced poration is temporary 
process, it is quintessential to have an insight into how 
do the pores reseal. Without sufficient resealing, intra-
cellular content would escape and extracellular ions 
influx would be highly toxic to sonoporated cells and 
other healthy cells in their surroundings. Healing path-
way of a cell depends on pore size, which is commonly 
measured at the single-cell level in real-time using the 
voltage-clamp techniques, electron microscopy imag-
ing or measured by its biological effect on the cells. The 
pore size depends on presence of microbubbles, type of 
a gas in the core of microbubble, duration of  ultrasound 
exposure, microbubble suspension concentrations 
and ultrasound intensities - the higher the ultrasound 
intensity the larger pore diameter. Smaller pores (< 
0.2 μm) are sufficient for transport of small molecules 
such as doxorubicin. They are mostly patched in 
subsecond time scale through self-sealing. The influx 
of extracellular Ca2+ ions has major influence on the 
process as well as on resealing bigger pores. Bigger 
pores allow to enter larger particles, for example whole 
nanoparticles. They are repaired by cell exocytosis, 
which is hypothesized to lower membrane tension and 
additionally, intracellular vesicles are recruited to create 
a mendable to patch disrupted cell membrane [31–34]. 

Sonoporation studies

There are two strategies of drug delivery in sonopo-
ration. First is based solely on cavitation movements of 
microbubbles that lead to a cell membrane disruption 
triggering drug uptake. In the second strategy a drug 
is loaded into microbubbles. In this case inertial cavi-
tation is needed to destroy microbubbles structure and 
release the drug into the sonoporated cells [35]. 

Secondarily, sonopotarion may be used as a non-viral 
vector in gene therapy. Although standard and the most 
efficient technique is virus vector, immunogenicity and cy-
totoxicity stand as a major drawback in its broader clinical 
use. Sonoporation  is much safer in this context and has 
a lower cost of utilization in comparison with expensive in 
implementation viral-mediated gene therapy [36].

Some examples of sonoporation studies with differ-
ent cancer types are as follow:
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Figure 5. 1) Push movement 2) pull movement 3) microjetting 4) shock wave created by inertial cavitation 5) translation 
of a microbubble 6) microstreaming

LOW AND HIGH INTENSITY ULTRASOUNDS

Pancreatic cancer
Dimcevski et al. documented clinical trial with use of 

sonoporation in the treatment of inoperable pancreatic 
cancer. Group of ten patients has been treated with Gem-
citabine intravenously and then subsequent induction of 
sonoporation (reached by ultrasound scanner and intra-
venous administration of SonoVue®). Results showed 
better Gemcitabine tolerance in patients with combined 
treatment (Gemcitabine and sonoporation), prolonged 
median survival time and in 5 out of 10 patients the 
tumour diameter diminished from first to last cycle. The 
trial ended up with conclusion that combined treatment 
may improve the chemotherapy efficiency [37]. 

Liver cancer
Work published by Rinaldi et al. showed possibilities 

of apoptotic pathway redirection of silenced apoptotic 
genes (TRIAL and p53) in liver cancer cells (HepG2). 
They used Sonovue® as a delivery system with the 

result of exogenous expression of the pro-apoptotic 
gene TRIAL and p53 [38].

Squamous cell carcinoma
Hirabayashi et al. used epidermal growth factor 

receptor-targeted sonoporation delivery system to 
deliver bleomycin directly to a squamous cell carcino-
ma model (mouse tumour xenograft model) obtaining 
specific binding of EGFR-MBs to Ca9-22 cells that 
resulted in smaller tumour growth compared with the 
control group [39].

Prostate Cancer
Sarkar et al. combined viral gene transfer with 

sonoporation effect in the therapy of prostate cancer. 
Sonoporation has been used to transfer the cancer 
terminator virus payload to cancerous and inflamed 
tissue leading to oncolysis resulting in higher efficiency 
comparing to the control group [40].
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Breast cancer
Rizitelli et al. used sonoporation to release Doxorubi-

cin from liposomes under the MRI monitoring in breast 
cancer mouse model. In compare to control group, this 
procedure led to higher intratumor drug concentration 
that subsequently led to the complete regression of 
lesion. The protocol uses Doxorubicin, liposomes and 
Gadoteridol which are substances approved for human 
use what gives good clinical perspectives [41].

Cooperative study by Awad et al. proved higher ef-
ficiency of sonoporative targeting liposomes as against 
liposomes without sonical targeting. It led to higher drug 
uptake by breast cancer cell lines (MDA-MB-231 and 
MCF-7) after low-frequency ultrasound exposition [42].

Melanoma
Chandrashekhar Prasad and Rinti Banerjee de-

veloped curcumin and topotecan co-encapsulated 
nanoconjugates Cur_Tpt_NC with ultrasound contrast 
property. They co-delivered mentioned drugs with spa-
tiotemporal control by ultrasound pulses to melanoma 
tumor on mice model reaching 3.5 times reduction of 
tumour growth in comparison to unexposed mice and 
14.8 time reduction in comparison to the group treated 
with physical mixture of this drugs [43].

Glioma
Wenbin Cai et al. synthesized nanobubbles carrying 

siRNA. Then under sonic targeting they improve siRNA 
transfection to glioma cells resulting in glioma growth 
inhibition creating possibilities of noninvasive glioma 
treatment. They work also showed better therapeutic 
effects on mice models with sonic exposure comparing 
mice without sonic exposure [44].

Other studies on the implication of sonoporation 
phenomena include thrombolysis. Ebben et al. elabo-
rated protocol for a phase II single-arm trial for periph-
eral arterial occlusions. They highlighted safety of the 
procedure and reduction of major hemorrhagic com-
plications by lowering thrombolytic drug dosage [45].  
Whereas Zhu et al. did a clinical study on intra-clot 
microbubble-enhanced ultrasound thrombolysis for 
deep vein thrombosis.  An average thrombolysis time 
was almost two times shorter and urokinase dosage 
was diminished with no complications whatsoever 
[46]. Targeted nanobubbles with ultrasound were 
also successfully used in the treatment of Alzheimer 
disease [47] and Parkinson’s disease by ultrasound 
mediated plasmid delivery by DNA-loaded MBs com-
plexes [48].

Conclusions

Ultrasound technology is already well established 
in clinical practice, thus, sonoporation, if examined 

enough, is very likely to enter into common use. Further 
development of the technique is strongly dependent 
on broadening our knowledge about standardization 
of conditions in experiments. Laboratory studies laid 
the foundations for future clinical applications. Dynamic 
advance in synthesis of targeted microbubbles and 
nanobubbles will facilitate obtaining more efficient 
sonoporation effect with less toxicity from drugs to 
a patient. Nevertheless, more laboratory studies need 
to be performed in order to proceed with advanced 
clinical studies.
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