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The interplay between bone, muscle 
and adipose tissue — is there a role for 
potential new metabolic biomarker?

Abstract
Recent studies in mice and humans have shown the tight connection between bone and muscle tissues. 

Physical activity affects the function of osteocytes, mature bone cells, stimulating the synthesis of several 

hormone-like myokines in skeletal muscles. Anabolic action of physical exercise on bone is mediated by 

a myokine called irisin. This protein was initially assigned to regulate glucose homeostasis in humans 

but recently the influence of irisin on bone and adipose tissue metabolism was also demonstrated. In 

the human blood, irisin occurs in different forms, free or complexed, glycosylated and non-glycosylated 

which makes a reliable and reproducible measurement of this protein a crucial issue for the clinical inter-

pretation of experimental findings. In humans, irisin was shown to inversely correlate with the prevalence 

of bone fractures. Data obtained so far suggest that irisin could be a potential target for the treatment of 

osteoporosis and play an important role in the bone healing process.
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Structural integrity of bone is preserved by three 
types of cells: osteoblasts (bone forming cells), os-
teocytes (mature osteoblasts) and osteoclasts (bone 
resorbing cells). Cell to cell crosstalk in bone tissue 
involves not only biochemical interactions but also 
mechanical and electrical signaling. Bone is a met-
abolically active endocrine organ [1]. Metabolism of 
bone tissue is regulated by several factors, above all, 
physical exercise and hormones acting directly or indi-
rectly on bone. Osteoblasts produce a wide range of 
factors involved in the proliferation and development of 
bone resorbing cells (RANK-ligand, osteoprotegerin). 
Moreover, osteoblasts and osteocytes release other 
signaling proteins periostin, sclerostin and Dickkopf 
(DKK) regulating osteoblastogenesis and bone forma-
tion. Bone forming cells possess membrane receptors 
for parathyroid hormone (PTH) and nuclear receptors 
for estrogens and 1,25 (OH)2D whereas osteoclasts 
present receptors for RANK, calcitonin and estrogens 
but not for PTH and vitamin D.

Bone and muscle influence each other by releasing 
a range of directly or indirectly acting factors. Physical 
activity affects osteocyte function and stimulates synthe-

sis of several hormone-like myokines in skeletal muscle 
cells. Recent studies in mice and humans proved tight 
communication between bone and muscle tissues. Ana-
bolic action of physical exercise on bone is mediated by 
a myokine called irisin [2]. Small protein molecule- irisin, 
the cleavage product of fibronectin type III domain-con-
taining protein 5 (FNDC5) is secreted by skeletal muscle 
mainly after exercise. Irisin is also expressed in other 
organs containing muscle and, to lesser extent, in adi-
pose and brain tissue. The existence of irisin in humans 
was questioned until its detection in the circulation 
was proven by Jedrychowski et al with the use of gas 
chromatography/mass spectrometry technique [3]. In 
the human blood irisin occurs in different forms: free 
or complexed, glycosylated and non-glycosylated that 
makes reliable and reproducible measurement of this 
protein, a crucial issue for the clinical interpretation of 
experimental findings [4]. In adult healthy individuals 
irisin concentration in the blood was found to be in the 
range of 3–5 ng/mL and increased after physical ex-
ercise [4, 5]. Little is known about the circulating irisin 
in children, however, it seems that its levels are much 
higher and increase after heavy exercise [6, 7]. 
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Irisin was initially assigned to regulate glucose ho-
meostasis in humans, in particular in individuals with 
type 2 diabetes [8–10]. Recently, an influence of irisin 
on bone and adipose tissue metabolism was also re-
ported [11]. Although, serum level of irisin was related 
to a wide range of clinical disorders the studies in hu-
mans reported inconclusive and sometimes discrepant 
results [12, 13]. It is clear that further well designed 
studies are necessary for clarification of effects of irisin 
on different tissues.

So far, most human studies reported a weak but pos-
itive association of irisin with body mass and markers of 
insulin resistance [4]. Interestingly, a direct correlation 
was observed between blood irisin levels, fasting insulin 
and glucose in healthy and obese subjects, children 
and women with polycystic ovary syndrome, but not in 
diabetics. It is worth to note that secretion of irisin was 
not affected by food intake [14]. Unexpectedly, in most 
previous studies carried on in patients with prediabetes 
or type 2 diabetes lower irisin levels, compared to nor-
moglycemic subjects, were observed. The mechanism 
behind this phenomenon has not been elucidated yet. 
Similarly, the uniform data are lacking regarding the 
possible role of irisin in metabolic syndrome, liver and 
cardiovascular diseases [4].

It was postulated that physiological function of 
irisin in different tissues may depend on its effective 
concentration and type of cellular receptors [5]. Studies 
in mice bring discrepant results demonstrating positive 
or negative effects of irisin on bone. Kim et al. reported 
on irisin functional receptors on osteocytes and adipo-
cytes in mice. These irisin receptors belong to alpha-V 
class of integrins through which irisin promotes bone 
remodelling by stimulating sclerostin expression. Direct 
induction of sclerostin, an osteocyte-derived signalling 
molecule inhibiting bone formation, by irisin was shown 
in vitro and in vivo. Based on this observation the au-
thors suggested that irisin could be a potential target 
for treatment of osteoporosis [5]. 

Recent findings from animal experiments demon-
strated the anabolic action of irisin on bone tissue [2, 
15, 16]. Zhang et al showed that exercise-induced 
secretion of irisin increases osteoblastogenesis and 
decrease osteoclastogenesis in experimental mice 
[16]. Colaianni et al reported that irisin may increase 
cortical bone mass [2, 15]. In addition they observed 
that treatment with recombinant irisin prevented bone 
loss and protected against muscle atrophy in animals 
subjected to immobilization which may be an important 
step forward on the way to search for novel therapies 
for elderly and physically disable patients [17]. 

Irisin was shown to inversely correlate with the prev-
alence of bone fractures in postmenopausal women 
with low bone mass [18]. Irisin levels were lower than 
normal in diabetics with increased risk of osteoporosis 

and bone fractures suggesting its role in prevention of 
fractures [19]. It is likely that irisin may also play a role 
in bone healing process. 

The first study performed in adult patients with hip 
fractures in which irisin concentration was measured 
in the serum and irisin presence was showed immuno-
histochemically in bone tissues samples, taken during 
arthroplasty, revealed that concentration of this myokine 
increases during the bone union process [21]. Patients 
included in this study were carefully selected based 
on the exclusion criteria like bone metabolic diseases, 
malignancy, diabetes, kidney disease and hormonal 
disorders. All study patients underwent hip arthroplasty 
within 24 hours after admission to the hospital. Interest-
ingly, the mean value of serum irisin was found to be 
significantly higher 60 days after operation, compared 
to the concentrations at baseline, 1 day and at 15 days 
after operation. These findings led authors to conclusion 
that irisin may positively affect bone healing which is 
of importance in the light of constant search for factors 
affecting bone healing process. 

It is not surprising that the relationship between 
irisin and estradiol level in elderly individuals was also 
investigated. It was reported that the synthesis of scle-
rostin and irisin may be influenced by estradiol in post-
menopausal overweight women with osteoporosis [5, 
22]. In obese subjects a direct relationship of irisin with 
estradiol level, muscle mass and insulin sensitivity was 
observed [20, 22]. On the contrary, older age and body 
fat was negatively correlated with irisin and sclerostin 
in adults with prediabetes [20]. A possible link of met-
abolic impairment biomarkers with bone metabolism in 
children has not been extensively investigated however, 
recently a negative effect of inflammation and insulin 
resistance on bone development in young girls was pos-
tulated [23]. Moreover, in children with diabetes mellitus 
type 1 the detrimental impact of increased sclerostin on 
bone formation has been shown [24]. Taken together 
these data provide insight into the complex regulatory 
interplay of bone, muscle and adipose tissues.

Continuous bone remodelling essential for longitudi-
nal growth of skeleton in children, motion, maintaining 
of bone mass, repairing damages and fracture healing 
is an energy consuming process, therefore, must be 
linked to energy metabolism, in particular to glucose 
metabolism [25, 26]. The utilization of glucose by bone 
tissues is approximately half of that by adipose tissue 
and much lower than by muscles [1]. It is extremely 
interesting that the anabolic action of parathyroid hor-
mone on bone, as demonstrated by Esen et al, was 
through increase of aerobic glycolysis (glucose con-
sumption and production of lactate) via IGF-1 signalling 
and the same is true for irisin as anabolic agent [27, 28]. 
The anabolic effect of irisin on bone is particularly de-
pendent on glucose metabolism, moreover irisin plays 
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an important role in the regulation of energy expenditure 
in different metabolic conditions [1, 28]. 

Whether irisin, a novel hormone-like myokine, plays 
a unique role linking bone, muscle and adipose tissue 
metabolism in humans remains to be investigated. 
Further studies are necessary to clarify the interplay 
between irisin and potential other exercise-induced 
mediators released by bone, adipose and muscle cells. 

Abbreviations: RANK-receptor activator of nuclear 
factor kappab
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