Effect of acetylcholine on vascular smooth muscle contraction induced by phenylephrine, angiotensin II and mastoparan-7

ORIGINAL ARTICLE

Elżbieta Grześk¹, Wioleta Stolarek², Michał Wiciński², Katarzyna Szaduikis-Szadurska², Bartosz Malinowski², Barbara Tejza¹, Sylwia Kołtan¹, Małgorzata Gołębiewska², Andrzej Kołtan¹, Grzegorz Grześk³

¹Department of Paediatrics, Haematology and Oncology
²Department of Pharmacology and Therapeutics
³Department of Cardiology and Internal Diseases
Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Poland

ABSTRACT

Background. The reactivity of blood vessels depends on their structure and the presence of calcium ions. It is modulated by numerous factors which activate specific signalling pathways leading to contraction or relaxation of smooth muscle. The action of various vasodilatation substances may be altered under the influence of similar or quite different modulators.

Main aim. of this study was to assess the role of acetylcholine and calcium ions in modulating the contraction induced by angiotensin II (ANG II), phenylephrine (PHE) and mastoparan-7, a direct activator of G-protein.

Material and methods. Experiments were performed on isolated and perfused tail arteries of Wistar rats. Contraction force in our model was measured by increased level of perfusion pressure with a constant flow.

Results. ANG II caused an increase in perfusion pressure in physiological salt solution (PSS) and calcium free PSS (FPSS). Under the influence of increasing concentrations of acetylcholine, a statistically significant reduction in perfusion pressure in both types of fluid was noted. In the presence of nitro-L-arginine (nitric oxide synthase inhibitor, L-NNA) in both solutions, no changes in contraction stimulated by ANG II or spasmolytic effect of acetylcholine were observed. PHE, in a similar manner to ANG II, caused contraction in FPSS and PSS, which was similarly modulated by acetylcholine. In the mastoparan-7 induced contraction, the pattern of tissue response was similar. For all groups, maximal perfusion pressure in PSS was higher than for FPSS.

Conclusions. The results of our experiments suggest that acetylcholine by activation of vascular endothelium is able to induce dose-dependent vasodilatation not only in contraction related to typical metabotropic receptor agonists, but also after direct stimulation of G-protein with mastoparan-7. This effect may be reversed in the presence of inhibitors of endothelial synthase of nitric oxide.

Key words: calcium ions, adrenoceptors, angiotensin II, mastoparan-7, acetylcholine

Introduction

The reactivity of blood vessels depends on their structure and the presence of calcium ions [1]. It is modulated by numerous factors which activate specific signalling pathways leading to contraction or relaxation of smooth muscle. The action of various vasodilatation substances may be altered under the influence of similar or quite different modulators. Vascular reactivity may vary with age, which probably is associated with endothelial dysfunction, leading to a reduction in nitric oxide synthesis [2–4]. Angiotensin II (ANG II) triggers vasoconstriction via a metabotropic AT1 receptor [5]. ANG II also regulates smooth muscle cell (SMC) growth, has an effect on apoptosis and migration and has proinflammatory action. In addition, it causes the production of other growth- and contraction-stimulating factors. It is, therefore, important both for maintaining the proper
structure and function of blood vessels and may mediate pathophysiological processes leading to the development of cardiovascular diseases [6]. Phenylephrine (PHE) is an agonist of the α1-adrenergic metabolotropic receptor through which it induces vasoconstriction [7].

Both substances, ANG II and PHE, act through G proteins, which leads to stimulation of phospholipase C and the synthesis of secondary messengers: IP3 and DAG [8–10]. IP3 binds to the endoplasmic reticulum membrane (ER) IP3R receptors and causes the release of Ca2+ from intracellular pools. The ryanodin receptors (RyR), stimulated, among others, by caffeine [1, 11, 12], are an alternative way for the release of calcium from the ER. Contraction of vascular smooth muscle may also occur via calcium ions escaping from the extracellular space through channels in the cell membrane [receptor-operated Ca2+ channels (ROC)] activated by ligands ANG II or PHE [13]. Mastoparan-7 is a basic tetradecapeptide isolated from wasp venom which activates G proteins by catalysing guanosine 5'-diphosphate/guanosine 5'-triphosphate (GDP/GTP) exchange, thus the compound mimics the action of activated G protein-coupled receptors. The peptide has been shown to stimulate PLC in several cellular compartments such as rat mast cells, rat hepatocytes, and human HL-60 leukaemia cells. In contrast, inhibition of PLC by mastoparan has been demonstrated in SH-SYSY human neuroblastoma cells and in human astrocytoma cells [14–16].

Studies on vas deferens (human and rat) and rat tail arteries have shown that receptor associated G-protein modulation may be influenced by sodium nitroprusside and 8Br-cGMP [17–19]. Nitric oxide derived from endothelium is a major vasodilatation factor [20]. Acetylcholine can stimulate the release of nitric oxide in a cGMP-mediated relaxing effect [21, 22]. However, studies using isolated human placental villous arteries found that NO donors and 8Br-cGMP did not cause relaxation of arteries contracted with caffeine. The mechanism of nitric oxide action on the cardiac calcium release channel in canines has been explored [23, 24]. Lim et al. discussed various ways in which nitric oxide can modulate cardiac ryanodine receptor function and suggested the possibility of pharmacological strategies in heart failure, related to the considered mechanisms [25]. Grzesz et al. [26] suggest that calcium movements may be one of the most important mechanisms of cyclosporine-A induced hypertension.

The aim of this study was to assess the role of acetylcholine and calcium ions in modulating the contraction induced by ANG II, PHE and mastoparan-7.

Materials and methods

The study was performed on perfused tail arteries of male Wistar rats weighing 250–350 g, euthanised with an intraperitoneal injection of urethane at the dose of 120 mg/kg. The cannula was introduced in the proximal section of the rat tail artery (2.5–3 cm in length) and combined with a perfusion system and a set that allows constant measurement and recording of perfusion pressure. After loading the distal end of the isolated artery with a weight of 500 mg, the preparation was placed upright in a thermostated vessel for isolated organs 20 mL in volume and oxygenated with physiological fluid at a temperature of 37°C. Perfusion fluid flow was increased gradually to 1 ml/min. Investigations were performed on TSZ-04 system, Experimetria Ltd. Budapest, Hungary. Perfusion pressure was measured on BPR-01 and BPR-02 devices, vascular smooth muscle tension was measured on a FSG-01 transducer connected with digital recorder Graphtec midi Logger GL820. All transducers used in our experiments were made by Experimetria Ltd. Peristaltic pump was made by ZALIMP.

The experiments were carried out to determine the importance of intracellular and extracellular pools of Ca2+ in reactions induced by ANG II, PHE, mastoparan-7, and Bay K8644 in control conditions and after addition of L-NNA (nitro-L-arginine — nitric oxide synthase inhibitor) and in the presence of increasing concentrations of acetylcholine using two types of Krebs fluid:

- **FPSS** — Ca2+-free EGTA-Krebs with the following composition: NaCl (71.8 mM/L), KCl (4.7 mM/L), NaHCO3 (28.4 mM/L), MgSO4 (2.4 mM/L), KH2PO4 (1.2 mM/L), glucose (11.1 mM/L) with the addition of EGTA (30 μM/L);
- **PSS** — fluid with Ca2+ EGTA-Krebs (normal) with the following composition: NaCl (71.8 mM/L), KCl (4.7 mM/L), CaCl2 (1.7 mM/L), NaHCO3 (28.4 mM/L), MgSO4 (2.4 mM/L), KH2PO4 (1.2 mM/L), glucose (11.1 mM/L) with the addition of EGTA (30 μM/L), after emptying the intracellular pool of calcium ions.

The increase in pressure of the perfusate in the experimental system was an exponent of vessel spasm. The study protocol was approved by the Local Ethics Committee. All studies were carried out in accordance with the United States NIH guidelines [Guide for the Care and Use of Laboratory Animals (1985), DHEW Publication No. (NIH) 85–23: Office of Science and Health Reports, DRR/NIH, Bethesda, MD, U.S.A.].

Results

ANG II caused an increase in perfusion pressure in FPSS and PSS. Under the influence of increasing concentrations of acetylcholine, a statistically significant reduction in perfusion pressure in both types of fluid was noted. In the presence of L-NNA in both solutions, no changes in contraction stimulated by ANG II or
spasmodic effect of acetylcholine were observed. PHE, in a similar manner to ANG II, caused contraction in FPSS and PSS, which was similarly modulated by acetylcholine. In the mastoparan-7 induced contraction, the pattern of tissue response was similar. The difference was in the time from stimulation to maximal response (in PHE or ANG II groups it was several seconds, whereas for mastoparan-7 it was up to 30 minutes). Moreover maximal perfusion pressure in the mastoparan-7 group was lower than for PHE or ANG II. In the presence of acetylcholine, a significant and dose-dependent reduction in perfusion pressure was found. For all groups maximal perfusion pressures in PSS were higher than for FPSS (Tab. 1).

Discussion

Calcium ions are an essential element in muscle contraction. Vascular tone can be adjusted by a variety of substances that stimulate the release of calcium from cellular stores, that cause the influx of calcium from the outside, and that stimulate sensitivity to calcium ions. A key role in regulating muscle function is the appropriate protein kinases, exhibit functional antagonism of calcium ions in smooth muscle [28, 29].

The aim of the present study was to determine the role of acetylcholine and calcium ions in modulating the vascular contraction induced by angiotensin II, phenylephrine and mastoparan-7.

The experiments were carried out in PSS (after emptying the intracellular pool of calcium ions) and FPSS to determine the importance of the extracellular and the intracellular pools of calcium ions. Metabotropic receptor agonists, ANG II and PHE, led to an increase in perfusion pressure in both types of solutions. A similar effect is present after direct stimulation of G-protein with metabolite of G-protein with mastoparan-7. The effect of mastoparan-7 seems to be comparable with partial agonists rather than with full agonists such as phenylephrine or angiotensin II [15, 16].

Acetylcholine reduced the vascular contraction stimulated by ANG II and PHE in a concentration-dependent manner. Additionally, in experiments using human mesenteric arteries, such an effect of acetylcholine was observed [22]. Ji et al. in studies of rat aorta demonstrated that the inhibitory effect of acetylcholine was associated with the presence of endothelial cells, and this effect was not present in experiments carried out in arteries denuded of endothelium [30]. Another series of studies found that blocking NO synthase (after the addition of L-NNA) led to the elimination of the relaxing effects of

<table>
<thead>
<tr>
<th>Agonist</th>
<th>n</th>
<th>Solution</th>
<th>Control</th>
<th>Ach 10 nM/L</th>
<th>Ach 30 nM/L</th>
<th>Ach 0.1 μM/L</th>
<th>Ach 0.3 μM/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG II</td>
<td>14</td>
<td>FPSS</td>
<td>98 ± 12</td>
<td>76 ± 14*</td>
<td>59 ± 12*</td>
<td>38 ± 8*</td>
<td>22 ± 6*</td>
</tr>
<tr>
<td>ANG II + L-NNA</td>
<td>15</td>
<td></td>
<td>99 ± 13</td>
<td>96 ± 10</td>
<td>102 ± 10</td>
<td>98 ± 10</td>
<td>96 ± 9</td>
</tr>
<tr>
<td>ANG II</td>
<td>14</td>
<td>PSS</td>
<td>125 ± 12</td>
<td>98 ± 12*</td>
<td>84 ± 11*</td>
<td>65 ± 12*</td>
<td>48 ± 10*</td>
</tr>
<tr>
<td>ANG II + L-NNA</td>
<td>12</td>
<td></td>
<td>122 ± 10</td>
<td>120 ± 11</td>
<td>155 ± 14</td>
<td>118 ± 12</td>
<td>120 ± 10</td>
</tr>
<tr>
<td>PHE</td>
<td>14</td>
<td>FPSS</td>
<td>105 ± 12</td>
<td>81 ± 12*</td>
<td>69 ± 12*</td>
<td>42 ± 11*</td>
<td>25 ± 8*</td>
</tr>
<tr>
<td>PHE + L-NNA</td>
<td>12</td>
<td></td>
<td>102 ± 10</td>
<td>101 ± 12</td>
<td>105 ± 14</td>
<td>102 ± 14</td>
<td>98 ± 12</td>
</tr>
<tr>
<td>PHE</td>
<td>16</td>
<td>PSS</td>
<td>119 ± 12</td>
<td>97 ± 12*</td>
<td>87 ± 14*</td>
<td>58 ± 11*</td>
<td>50 ± 9*</td>
</tr>
<tr>
<td>PHE + L-NNA</td>
<td>13</td>
<td></td>
<td>117 ± 14</td>
<td>118 ± 13</td>
<td>116 ± 14</td>
<td>121 ± 13</td>
<td>122 ± 14</td>
</tr>
<tr>
<td>Mastoparan-7</td>
<td>16</td>
<td>FPSS</td>
<td>55 ± 10</td>
<td>36 ± 7*</td>
<td>24 ± 6*</td>
<td>16 ± 2*</td>
<td>15 ± 3*</td>
</tr>
<tr>
<td>Mastoparan-7 + L-NNA</td>
<td>15</td>
<td></td>
<td>53 ± 10</td>
<td>59 ± 9</td>
<td>55 ± 7</td>
<td>49 ± 10</td>
<td>50 ± 10</td>
</tr>
<tr>
<td>Mastoparan-7</td>
<td>16</td>
<td>PSS</td>
<td>60 ± 7</td>
<td>47 ± 8*</td>
<td>36 ± 6*</td>
<td>25 ± 3*</td>
<td>13 ± 4*</td>
</tr>
<tr>
<td>Mastoparan-7 + L-NNA</td>
<td>14</td>
<td></td>
<td>57 ± 8</td>
<td>60 ± 7</td>
<td>71 ± 7</td>
<td>62 ± 8</td>
<td>60 ± 7</td>
</tr>
</tbody>
</table>

* P < 0.05
n — number of CRCs used in calculations; PSS — physiological salt solution; FPSS — calcium free PSS; L-NNA — nitro-L-arginine, nitric oxide synthase inhibitor; ANG — angiotensin; PHE — phenylephrine
acetylcholine. These results confirm the dependence of acetylcholine on NO synthesis.

In the present study, the importance of calcium ions and acetylcholine, as an element in the Ach/NO/cGMP signalling pathway in the vascular contraction induced by ANG II and PHE through metabotropic receptors (AT1 and \((\epsilon)1\)-adrenergic, respectively) was compared with the action of mastoparan-7, a direct activator of G-protein. The action of ANG II and PHE was mediated by two pools of calcium. Direct activation of G-protein with mastoparan-7 activates both calcium pools too. The relaxing effect of acetylcholine on responses stimulated by ANG II, PHE and mastoparan-7 indicates the participation of endothelium derived nitric oxide in modulating the reactivity of arteries to the studied agonists.

Conclusion

The results of our experiments suggest that acetylcholine by activation of vascular endothelium is able to induce dose-dependent vasodilatation not only in contraction related to typical metabotropic receptor agonists, but also after direct stimulation of G-protein with mastoparan-7. This effect may be reversed in the presence of inhibitors of endothelial synthase of nitric oxide.

References