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ABSTRACT

Introduction: Aripiprazole is a third-generation antipsychotic drug generally well tolerated, 

but some patients experience adverse effects. Variability in a patient’s response to aripiprazole

can be associated with genetic variants in genes involved in drug pharmacokinetics and 

pharmacodynamics. The purpose of this study was to perform genetic profiling on patients 

with schizophrenia, bipolar disorder, and personality disorder to find an association between 

SNPs and adverse events.

Materials and methods: The gDNA of 74 patients was used to assess 71 polymorphisms in 

21 genes by mass spectrometric analysis and PCR-RFLP method. 

Results: Patients were divided into well- and badly-reacting groups. The CYP2D6 UM/NM 

phenotypes and the combined homozygous genotype CYP1A2*1F/CYP2B6*1 were observed 

more frequently in the badly-reacting group. Moreover, the frequency of the combined 

homozygous status of 5HTR2A (AA/TT rs6311/rs6313) differed significantly between groups. 

For the polymorphism of the COMT rs4680 variant, the frequency of the A allele was 

significantly higher in the well-reacting group.

Conclusions: The present preliminary findings showed that polymorphisms of the DRD2 and 

5HTR2A genes may be related to adverse drug effects. Alleles determining the higher density 

of receptors were observed more frequently in the badly reacting group. Moreover, the G 

allele of COMT was observed significantly more frequently in patients who experienced 

adverse effects. Surprisingly, it was noticed that patients in the badly reacting group most 

often had the CYP2D6 UM/NM phenotype, which does not require standard dose 

adjustments. 

Keywords: aripiprazole, genetic polymorphism, neurotransmitter receptors, 

pharmacogenetics, schizophrenia
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Introduction

Aripiprazole is an atypical antipsychotic drug and due to its unique pharmacological 

profile is defined as a third-generation antipsychotic drug [1]. The FDA-approved aripiprazole

as medication used to treat schizophrenia, mania associated with bipolar disorder type I, 

irritability associated with an autism spectrum disorder, disjunctive therapy in major 

depressive disorder, and Tourette syndrome [2]. Aripiprazole is mostly metabolized by hepatic

enzymes, CYP2D6 and CYP3A4, and its active metabolite, dehydro-aripiprazole, 

representing about 40% of the parent drug levels in plasma [3]. A dose reduction is 

recommended when using strong CYP3A4 or CYP2D6 inhibitors concomitantly, and an 

increase of the dose is recommended when using strong CYP3A4 inducers [3]. Aripiprazole 

can modulate the properties of different neurotransmitter systems. It has high affinities for 

dopamine and serotonin receptors as well as exhibits a moderate affinity for adrenergic, and 

histamine receptors [4]. Partial agonism of the dopamine D2, D3, and serotonin 5HT1A 

receptors as well as antagonism of the serotonin 5HT2A receptor is considered to be the 

functional basis of its clinical effect [5]. Although, aripiprazole is well tolerated both in short- 

and long-term treatment, adverse drug reactions are observed including extrapyramidal 

effects, headache, agitation, insomnia, anxiety, nausea,  vomiting, akathisia, light-headedness, 

and constipation [2, 6]. To avoid side effects, the FDA and Clinical Pharmacogenetics 

Implementation Consortium recommended half of the usual dose of aripiprazole 

administration only for CYP2D6 PMs [7, 8]. However, it was demonstrated that both IM and 

PM CYP2D6 phenotypes increase the risk of extrapyramidal reactions, nausea, or vomiting 

[8, 9]. Possibly, the polymorphisms in other CYP genes can be involved in aripiprazole 

metabolism. A recent study has revealed that the CYP1A2 enzyme can influence the 

metabolism of aripiprazole and dehydro-aripiprazole in healthy volunteers treated with 

aripiprazole 10 mg daily [10]. An analysis of previous studies conducted on commonly used 
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antipsychotic drugs showed that higher activity of CYP1A2 was associated with lower 

adverse effects [11]. In addition, several studies demonstrated that genetic variants in the 

ABCB1, COMT, DRD2, and 5-HTRs genes can be related to aripiprazole response and adverse

effects [8, 12–14]. 

Because there are no studies examining the wide single-nucleotide polymorphism 

analysis of patients treated with aripiprazole regarding adverse effects the authors investigated

71 polymorphisms in 21 genes in patients with schizophrenia, bipolar disorder, and 

personality disorder.

The purpose of this study was to perform genetic profiling on patients with 

schizophrenia, bipolar disorder, and personality disorder to find an association between SNPs 

and adverse events.

Materials and methods

Patients

Caucasian subjects taken into consideration were those diagnosed with schizophrenia 

(n = 58), bipolar disorder (n = 10), and personality disorder (n = 6). A total of  74 patients (47 

males, and 27 females) aged between 19 to 60 years (mean ± standard deviation 35.9 ± 10.4 

years) were recruited in Babinski University Hospital (Krakow, Poland). Written informed 

consent was obtained from all subjects. Inclusion criteria were as follows: (1) aripiprazole 

therapy (ongoing or withdrawn), and (2) age 18 to 60 years. Exclusion criteria were as 

follows: (1) polypharmacy with drugs listed as CYP2D6 inhibitors or CYP3A4 inducers or 

inhibitors, (2) organic lesions of the central nervous system, and (3) mental retardation. 

Patients were divided into two main groups: well-reacting (WR) and badly-reacting (BR) 

which included patients previously treated with aripiprazole, but the drug was withdrawn due 

to side effects. The WR group was composed of two subgroups: patients treated with 
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aripiprazole alone (ARI) and patients treated with aripiprazole and one or more second-

generation antipsychotics (ARI + SGA). 

DNA extraction and genotyping

DNA from blood samples were genotyped using MassArray® System and VeriDose 

Core and VeriDose CYP2D6 CNV Panel (Agena Bioscience). In addition, the PCR-RFLP 

method was used to analyze three polymorphisms in the 5-HTR2A gene. The description of 

genotyping, analyzed genes, and consequences of polymorphism are presented in 

Supplementary Material: Table S1 and S2.

Translation of genotype into phenotype

To classify patients into a specific phenotypic group the calculation of activity score 

(AS), based on the functionality of the alleles, was applied. Each CYP2D6 allele is assigned 

an activity value: wild type (normal function) allele — 1;  decreased-function allele — 0.5 or 

0.25; no-function allele — 0. The sum of the values assigned to each allele allows the 

translation of genotype into phenotype. According to the Clinical Pharmacogenetics 

Implementation Consortium (CPIC) guidelines, the following phenotypes are distinguished: 

poor metabolizer (PM) when AS = 0, intermediate metabolizer (IM) when AS > 0 and ≤ 1.25, 

normal metabolizer (NM) when AS > 1.25 and ≤ 2.25, and ultra-rapid metabolizer (UM) 

when AS > 2.25. 

CYP3A4 and CYP3A5 genotypes are merged into a CYP3A phenotype. The star allele 

*1 for the CYP3A4 and CYP3A5 was defined as a normal allele, allele *22 for the CYP3A4 as 

a reduced activity allele, and allele *3 for the CYP3A5 as an inactive allele. The following 

phenotypes were determined based on genotype clusters: PM for CYP3A4*1/*22 and 

CYP3A5*3/*3 cluster; IM for CYP3A4*1/*1 and CYP3A5*3/*3; and NM for CYP3A4*1/*1 

and CYP3A5*1A/*3. 
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Also, the calculation of AS was used to determine CYP1A2 phenotypes. The activity 

values assigned to the *1C, *1, *1B, and *1F alleles were 0.5, 1, 1.25, and 1.5, respectively. 

CYP1A2 phenotypes were predicted based on the sum of functionality values: PM 1–1.5, NM

1.75–2.5, and UM 2.75–3.

Statistical analysis

Statistical analyses were performed using the GraphPad Prism 9.4.1 software 

(GraphPad Software, Inc). A T-test was used to compare demographic variables. The Chi-

squared test was selected to evaluate the Hardy-Weinberg equilibrium. An odds ratio (OR) 

with their corresponding 95% confidence intervals (95% CI) was calculated to assess the 

association of genotypes and polymorphic alleles with adverse drug effects susceptibility. The

p-value ≤ 0.05 was considered statistically significant.

Results

This study included 74 patients, 47 males, and 27 females, divided into two main 

groups based on the presence or absence of adverse effects: (1) BR – badly-reacting (n = 10) 

and (2) WR -  well-reacting (n = 64) to ARI. Average age, weight, and BMI did not differ 

significantly between the three groups. Detailed information on demographics and clinical 

characteristics in groups and subgroups are shown in Table 1 and Supplementary Material 

Table S3. 

The distribution of genotypes in the study population was in the Hardy-Weinberg 

equilibrium (p≥0.05), except for COMT and 5HTR2A (rs6314) polymorphisms (Table 2). 

The present results showed that the frequencies of functional alleles (*1 and *2) of the 

CYP2D6 gene were 75% in the BR group and 68% in the WR group (data not shown). Based 

on the allele activity score the patients were classified into two phenotype groups: (1) 

UM+NM and (2) IM+PM. The UM/NM phenotypes were observed more frequently in the BR

group (88%) than in the WR group (55%) (Fig. 1A). Surprisingly, an almost 4 times lower 

6



frequency of the IM/PM phenotype was observed in the BR group (12%) compared to the WR

group (45%) (Fig. 1A).

Two phenotypes in each group, UM and NM, for CYP1A2, were determined using the 

allele activity score (Fig. 1B). Three CYP2B6 genotypes (*1/*1, *1/*6, and *6/*6) were 

identified in the study population. The authors analyzed the combined homozygous condition 

(*1F/*1F/*1/*1) of the CYP1A2 and CYP2B6 genes, respectively. Interestingly, the combined

homozygous genotype (*1F/*1) was observed more frequently in the BR group (56%) 

compared to the WR group (26%) ( Fig. 1C). Probably the combined homozygous state may 

increase the chance of developing adverse drug effects, however, the OR was not statistically 

significant (p = 0.088, Table 3). 

For the polymorphism of the 5HTR2A rs6311, the frequency of AA homozygote was higher in 

the BR group compared to the WR group (45% vs. 15%) (Fig. 2A). Due to complete linkage 

disequilibrium between HTR2A rs6311 and rs6313 polymorphisms, the same frequency of  

AA and TT homozygote was found in the studied groups (Fig. 2A and 2B). The combined 

homozygote AA/TT (rs6311/rs6313) was 3-fold higher in the BR group than in the WR group 

(45% vs. 15%, respectively), and the OR was statistically significant (OR: 4.71; 95%CI: 1.06–

20.96; p = 0.042) (Table 2 and 3). Such results suggest that AA/TT genotype may predispose 

to adverse effects. In turn, the frequency of 5HTR2A (rs6314) TT genotypes did not differ 

significantly between groups (OR: 1.19; p = 0.912) (Fig. 2C, Tab. 3). The authors also 

analyzed rs1800497 polymorphism in the DRD2 gene. The frequency of WT/WT homozygote 

was higher in the BR group compared to the WR group (78% vs. 61%) (Fig. 3A). 

Interestingly the frequency of the Taq1A allele was almost 2 times higher in the WR group 

than in the BR group  (20% vs. 11%, respectively) (Fig. 3B). Probably this allele improves 

drug response, however, the OR was not statistically significant (p = 0.362) (Tab. 

3)Polymorphisms in the ABCB1 and COMT genes were also examined in this study. 
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Interestingly, only carriers of the major allele (CC/CT) of ABCB1 rs1045642 were identified 

in the BR group. Therefore, it seems that the C allele may predispose to a worse response but 

the OR was not statistically significant (p = 0.136) (Tab. 3).

For the polymorphism of the COMT rs4680 variant, no AA homozygous was observed 

in the BR group (Fig. 4A). Interestingly, a nearly 2 times higher frequency of the A allele was 

observed in the WR group compared to the BR group (Fig. 4B). The OR for the A allele was 

statistically significant (p = 0.039), this allele probably reducing the risk of adverse effects 

(Tab. 3).

Discussion

The present study performed genetic profiling in patients treated with aripiprazole. 

Regarding the response to aripiprazole, two groups were distinguished: BR — badly-reacting 

(patients who experienced adverse effects) and WR — well-reacting. The pharmacogenetic 

analysis focused on genetic variations in drug-metabolizing and dopamine-degrading 

enzymes, drug transporter as well as dopamine and serotonin receptors. Polymorphic variants 

in the CYP2D6, CYP3A4, and CYP3A5 genes that encode the most important enzymes 

involved in the metabolism of ARI were assessed. Interestingly, it was found that UM/NM 

CYP2D6 phenotypes were observed more frequently in the BR group (88%) than in the WR 

group (55%). Surprisingly, the frequency of IM/PM phenotypes was 4 times higher in the WR

group (45%) compared to the BR group (12%). Furthermore, the frequency of IM combined 

CYP3A (CYP3A4 and CYP3A5) phenotype did not differ between those two groups (BR — 

78%, vs. WR — 85%). Several studies suggested that CYP2D6 genotype/phenotype 

significantly influences aripiprazole pharmacokinetics [15–17]. It was found that IM and PM 

CYP2D6 phenotypes increase the risk of extrapyramidal reactions, nausea, or vomiting [8, 9]. 

Surprisingly, adverse drug effects were not observed in the WR group despite the high 

frequency of IMs, especially high in patients treated with aripiprazole alone (IM — 70%). 
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Thus, the present findings are contradictory to the existing research. It should be emphasized 

that CYP2D6 is expressed not only in the liver but also in the brain where it is involved in 

local serotonin and dopamine syntheses [18]. It is postulated that pharmacogenetic variability 

of the CYP2D6 enzyme may influence the central nervous system’s vulnerability to ADEs  

[19]. Notably, individuals with the UM phenotypes showed higher concentrations of platelet 

serotonin than those with NM and PM [20]. It is plausible that CYP2D6 polymorphism 

influences the crosstalk of the DA and 5-HT endogenous systems, thus drugs interacting with 

the serotonergic and dopaminergic systems can provoke ADE symptoms [21]. The present 

study found more than a 2-fold higher frequency of UMs in the BR group compared to the 

WR group (Supplementary Material Table S4). An in vivo study suggested that PMs might 

have a higher DA tone in the pituitary with concomitant lower serotonin tone, serotonin 

systems exerting a tonic inhibitory control on the dopaminergic circuits [22, 23]. Given the 

above, it is currently difficult to explain why patients with UM phenotypes experienced 

adverse events. The role of CYP2D6 polymorphisms appears to be more complex and requires

further studies to elucidate the relationship between adverse effects and patient phenotypes. In

addition, polymorphisms in other genes important for drug metabolism and response should 

be considered.

Also, polymorphisms in other cytochrome P450 families were assessed, including 

CYP1A2 and CYP2B6 genes. The combined homozygous CYP1A2*1F/CYP2B6*1/ status was

more frequently observed in the BR group (56%) than in the WR group (27%). The CYP1A2 

is considered to be one of five of the most important CYPs (CYP1A2, CYP2C9, CYP2C19, 

CYP2D6, and CYP3A), which are responsible for approximately 90% of the oxidative 

metabolism of drugs [24], while the CYP2B6 enzyme is involved in the metabolic 

hydroxylation of nearly 8% of clinically used drugs [25]. The CYP1A2*1A allele has normal 

activity and is considered the reference allele [26], but the CYP1A2*1F allele contains a 
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single variation (−163C > A), which is located in intron 1 that increases the inducibility of 

caffeine metabolism by smoking [27]. Generally, this variant is associated with higher enzyme

activity due to increased induction of expression [26]. CYP1A2*1F/*1F carriers may have 30-

70% higher CYP1A2 activity than CYP1A2*1A/*1F and CYP1A2*1A/*1A carriers [28]. For 

example, the CYP1A2∗1F allele enhanced clozapine clearance and increased plasma 

concentrations leading to adverse effects, particularly in smokers [29]. It is worth noticing that

the present study observed a high frequency of combined homozygous 

(CYP1A2*1F/CYP2B6*1) status in patients with adverse drug effects. The role of CYP1A2 

and CYP2B6 enzymes is unknown in aripiprazole metabolism, however, a recent study has 

shown that the metabolism of aripiprazole and dehydro-aripiprazole may be affected by the 

CYP1A2 enzyme [10]. Unlike the present study, Cendrós et al. suggested that psychic adverse

effects were less frequent in patients with higher CYP1A2 activity [11]. Currently, it is very 

difficult to find a clear explanation for the role of the CYP1A2*1F and CYP2B6*1 alleles in 

the metabolism of aripiprazole, therefore further studies on the involvement of these enzymes 

are needed. 

According to previous studies, the CYP2B6 enzyme is expressed in different brain 

structures and similar to CYP1A2 may also contribute to the metabolism of CNS-acting drugs

and neurological side effects of certain medications [24, 30]. 

In addition to enzymes involved in drug metabolism, other proteins, such as enzymes 

involved in catecholamine metabolism and their receptors, are important for drug response. To

assess the relationship between polymorphisms in genes engaged in catecholamine action and 

drug response, variants in the COMT, DRD2, and 5HTR2A genes were studied. COMT 

encodes an important enzyme that degrades catecholamines and regulates dopamine 

availability in the prefrontal cortex (PFC), where the expression of dopamine transporters is 

low [31]. The COMT rs4680 (472G > A, Val158Met) polymorphism significantly affects 
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enzyme activity and therefore prefrontal dopamine levels and function [32]. A missense G to 

A transition results in the valine (Val) to methionine (Met) substitution at codon 158. The Met 

variant is associated with lower thermostability, a 3- to 4-fold reduction in enzyme activity  

[33] as well as lower protein expression [34]. It was/has been observed that this 

polymorphism can affect the response to antipsychotics and the metabolism of 

neurotransmitters during the treatment of schizophrenia [14]. A greater improvement in 

PANSS score was observed in the AA homozygous (Met/Met) after the treatment with 

aripiprazole. The present results seem to be in line with these observations, the frequency of 

the G allele in the BR group was higher than in the WR group (72% vs. 45%). Moreover, in 

patients from the BR group, the AA genotype was not identified at all, while in the WR group,

the frequency was 37%. Indeed, the allelic odds ratio calculation revealed that the G allele 

increased susceptibility to adverse effects 3 times (p = 0.039). It is plausible that the Met/Met 

genotype leads to hyperdopaminergic neurotransmission due to less efficient dopamine 

metabolism. In turn aripiprazole, a partial agonist at D2 receptors, can restore appropriate 

dopamine neurotransmission and may also stabilize dopamine function in the prefrontal 

cortex. 

It is well known that DRD2 Taq1A polymorphism (rs1800497), is related to a reduced 

number of dopamine receptors in the brain [35]. A study by Kwon et al. demonstrated that 

patients carrying the Taq1A/Taq1A genotype had a better therapeutic response to aripiprazole 

[12]. In the present population, the frequency of the Taq1A/Taq1A genotype was extremely 

low (BR group – 0% WR group – 2%), but the frequency of the Taq1A allele was almost 2 

times higher in well-reacting than badly reacting patients. 

Aripiprazole acts as an antagonist at the 5HT2A receptor, which is extensively 

expressed in the prefrontal cortex [36]. Thus, analyzed were also three SNPs 5HTR2A, rs6311,

rs6313, and rs6314 that potentially could influence drug response. The SNP rs6311 and 
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rs6313 are in complete linkage disequilibrium in the Caucasian population (the A and T alleles

always appear together). It was found that the frequency of the AA/TT genotype group of 

5HTR2A rs6311/rs6313 was almost 3-fold higher in the BR group (45%) compared to the WR

group (15%). An odds ratio showed a statistically significant (p = 0.042) relationship between 

genotype and ADE susceptibility. Therefore, the present results suggest that AA/TT genotype 

may be associated with aripiprazole adverse events. However, a meta-analysis by Lin et al. 

demonstrated that the T allele of rs6313 correlated with a better response to antidepressants 

[37]. Other studies uncovered that the GG genotype of rs6311 had reduced mRNA levels 

compared with AA and GA genotype subjects [38], and higher receptor density was observed 

in a healthy control group with the AA genotype [39]. In addition, unlike the T allele, the C 

allele of rs6313 reduced the mRNA level and decreased protein expression [38]. It is 

postulated that epigenetic regulation can also influence the 5HTR2A expression. The CC 

genotype (rs6313) was related to reduced post-synaptic serotonin receptor expression, 

probably due to the cytosine methylation at the polymorphic site [40]. Considering the above, 

it was postulated that the AA/TT genotype observed in the study patients may result in higher 

receptor density and possibly affect drug response. However, further studies are needed to 

confirm the association between HTR2A combined homozygous status and susceptibility to 

ADEs after aripiprazole treatment.

Conclusions

In conclusion, the present results indicate that the G allele of the COMT gene might 

increase susceptibility to side effects. The authors speculated that alleles of the 5HTR2A gene 

may be related to adverse drug effects. However, this supposition should be additionally 

confirmed by large-scale studies. The main limitation of the present study is the low number 

of individuals in the BR group. In addition, the authors did not measure the concentration of 

aripiprazole and its main metabolite, and brain imaging studies to show neurotransmitter 
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receptor densities were not performed. Therefore, these preliminary findings should be 

interpreted with caution.
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Figure 1. The frequency of CYP phenotypes or genotypes. BR — badly-reacting group, WR 
— well-reacting group
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Figure 2. The frequency of 5HTR2A genotypes. BR — badly-reacting group, WR — well-
reacting group
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Figure 3. The frequency of DRD2 genotypes and alleles. BR — badly-reacting group, WR —
well-reacting group
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Figure 4. The frequency of COMT genotypes and alleles. BR — badly-reacting group, WR —
well-reacting group
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Table 1. Demographic and clinical parameters of studied patient groups

Group n (%)
Age 
(y)

Weight 
(kg)

Height 
(m)

BMI
(kg/m2)

ARI dose
[mg]

Duration of ARI 
therapy
(n / y)

WR
All 64 (100)

35.98
(± 10.09)

82.68
(±17.54)

1.74
(± 0.10)

26.74
(± 96.42)

Oral / 2.5–30 / day
Oral / 7.5–30 / day
LAI / Once–monthly /
400

9 / > 1
19 / > 1
36 / < 1

Males 41 (67)

Females   23 (33)

BR

All 10 (100)
35.30
(± 12.54)

74.85
(± 20.01)

1.69
(± 0.10)

25.95
(± 4.71)

Oral / 3.75–30 / day
LAI / Once-monthly /
400

5 / > 1
5 / < 1

Males   6 (60)

Females   4 (40)

   p = 0.270 p = 0.437 p = 0.387 p = 0.347  

N — number, y — year, BMI — body mass index, LAI — long-acting injection
BR — badly reacting group (aripiprazole has been replaced by another drug due to adverse effects)
WR — well-reacting group (the sum of ARI and ARI+SGA subgroups)

23



Table 2. Alleles/haplotypes/genotypes/phenotypes frequencies of the selected polymorphisms
and associated p values for Chi-Square tests for deviation from Hardy–Weinberg equilibrium

Gene/variants
Genotypes /  
Haplotype / 
Alleles

Frequency
χ2 p-value

Total BR WR

ABCB1 
rs1045642

C 0.493 0,650 0.468

0,52 0,471

T 0.507 0,350 0.532

C/C 26% 30% 26%

C/T 46% 70% 42%

T/T 28% 0% 32%

COMT
rs4680

G 0.486 0.722 0.452

4,05 0.042

A 0.514 0.278 0.548

G / G 30% 44% 27%

G / A 38% 56% 35%

A / A 32% 0% 37%

DRD2
rs1800497

WT 0.808 0.889 0.797

1,72 0,190

Taq1A 0.192 0.111 0.203

WT / WT 63% 78% 61%

WT / Taq1A 36% 22% 38%

Taq1A / Taq1A 1% 0% 2%

5HTR2A
rs6311

G 0,549 0.389 0,573

0,47 0,493

A 0,451 0.611 0,427

G / G 28% 22% 29%

G / A 54% 33% 56%

A / A 18% 44% 15%

5HTR2A
rs6313

C 0.,570 0,444 0,589

0,02 0.791

T 0,420 0,556 0,411

C / C 31% 33% 31%

C / T 50% 22% 54%

T / T 19% 44% 15%

5HTR2A
rs6314

C 0,919 0,900 0,922

5,94 0,015

T 0,081 0,100 0,078

C / C 86% 80% 88%

C / T 11% 20% 9%

T / T 3% 0% 3%

CYP2D6
UM + NM 56% 88% 51%

 N/A N/A 
IM + PM 44% 13% 49%

CYP3A

NM 9% 11% 8%
 N/A  N/AIM 84% 78% 85%

PM 7% 11% 7%
CYP1A2/CYP2B
6
*1F/*1F/*1/*1

*1F / *1 28% 67% 23%
 N/A N/A 

others 72% 30% 77%

BR — badly reacting group (aripiprazole has been replaced by another drug due to adverse effects); WR — well-
reacting group (the sum of ARI and ARI+SGA subgroups).
Phenotypes: UM — ultrarapid metabolizer; NM — normal metabolizer; IM — intermediate metabolizer; PM — 
poor metabolizer; N/A — not applicable
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Table 3. The odds ratio for the selected polymorphisms

Gene/variants

Alleles / 
Haplotypes / Genotypes
/  
Phenotypes

OR
BR vs. 
WR

95% CI p-value

ABCB1
 rs1045642

C 2.11 0.79−5.65 0.136

T 0.47 0.18−1.27 0.136

CC vs. CT + TT 1.23 0.28−5.34 0.780

COMT
rs4680

G 3.16 1.06−9.39 0.039

A 0.32 0.11−0.94 0.039

GG vs. GA + AA 2.12 0.51−8.83 0.303
CYP1A2/CYP2B6
      *1F/*1F/*1/*1

*1F / *1 vs. others 3.50 0.82−14.79 0.088

CYP2D6 UM + NM vs. IM + PM 7.00 0.81−60.93 0.078

DRD2
rs1800497

WT 2.04 0.44−9.43 0.302

Taq1 0.49 0.11−2.27 0.362

WT / WT vs. WT / Taq1 2.24 0.43−11.68 0.337

WT / Taq1 vs. WT / WT 0.45 0.09−2.32 0.337

5HTR2A
rs6311

G 0.48 0.17−1.31 0.150

A 2.11 0.77−5.79 0.150

GG vs. GA + AA 0.70 0.13−3.69 0.673

AA vs. GG + GA 4.71 1.06−20.96 0.042

5HTR2A
rs6313

C 0.57 0.21−1.53 0.261

T 1.77 0.65−4.78 0.261

CC vs. CT + TT 1.05 0.24−4.63 0.949

TT vs. CC + CT 4.71 1.06−20.96 0.042

5HTR2A
rs6314

C 0.763 0.12−3.77 0.740

T 1.311 0.27−6.48 0.740

CC vs. CT + TT 0.571 0.11−3.18 0.523

TT vs. CC + CT 1.19 0.05−26.58 0.912
5HTR2A 
rs6311/rs6313

AA / TT vs. others 4.71 1.06−20.96 0.042

BR — badly reacting group (aripiprazole has been replaced by another drug due to adverse effects); WR — well-
reacting group (the sum of ARI and ARI + SGA subgroups)
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