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ABSTRACT

Background: Comorbidity has emerged as a major challenge in the last few decades that 

result from cascades of failures involving complex biochemical and physical interactions of 

genes, proteins, and metabolites responsible for cellular functions. Various epidemiological 

and demographic studies conducted since the emergence and global transmission of the 

SARS-CoV-2 virus have reported that patients with pre-existing medical conditions such as 

cardiovascular disease, diabetes, hepatitis, lung disease, and kidney disease are more prone to

coronavirus infection.
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Objective: The present study was undertaken to elucidate the molecular mechanisms that are 

common amongst COVID-19-associated comorbidities using an interactome-based network 

biology approach to identify the shared genes/proteins and biological pathways.

Methodology: Genes of COVID-19-associated comorbidity diseases retrieved from disease 

databases were analyzed using in silico bioinformatics and systems network biology tools 

STRING and Cytoscape plug-ins CytoHubba and CytoCluster.

Results: The shared hub proteins, namely IL1B, ACTB, IL6, MMP2, ALB, AKT1, MAPK3, 

FN1, TNF, CCL2, VEGFA, and TP53, among various pre-existing comorbidities, revealed 

their involvement in immunological pathways. All these proteins were also found to have 

significant associations with ACE2, TMPRSS2, and CD17/BSG, the entry receptors of the 

COVID-19 virus.

Conclusion: The higher risk factor for COVID-19 in patients with pre-existing comorbidities

is due to immune dysfunction that results in their higher susceptibility to infection by SARS-

CoV-2 via its entry receptors on the host cells. This study provides novel insights into the 

association between host genetics and the consequences of viral infection that is responsible 

for the severity of COVID-19 in patients suffering from pre-existing comorbidities.

Keywords: Comorbidity, SARS-CoV-2, systems network biology, interactome, COVID-19, 

in silico, hub genes, Cytokine storm (CS), Immune dysfunction

Introduction

A major challenge that has emerged in the last few decades is comorbidity, which 

refers to the presence of more than one disease in individuals. Disease comorbidity effects 

result from interactions between molecular components, which in turn may affect other 

cellular functions as well as mutated gene products.

Several epidemiological and clinical studies have reported that patients with pre-

existing medical conditions have severe responses to the coronavirus infection. The highest 

risk factor for infection of COVID-19 resulting in extreme lung injury followed by death is in

patients having comorbidities such as cardiovascular disease, diabetes, hepatitis, lung disease,

and kidney disease, who may develop [1–3]. The strongest predictors of the prognosis of 

COVID-19 patients have been shown to be age, gender, and some pre-existing comorbidities. 

The higher risk group is ≥ 60 years, and those with certain hidden conditions, for example, 

cardiovascular and cerebrovascular sicknesses and diabetes [4].

Epidemiological studies on COVID-19-affected patients revealed that age factors 

along with comorbidities such as diabetes, lung infection, renal impairment, and liver damage



should be taken into consideration, as a substantial number of old patients showed a higher 

death rate with better survival rates for younger patients infected with COVID-19 [5, 6]. 

Earlier studies published in 2003 had reported that in patients infected with SARS, acute 

coronary syndrome and myocardial infarction cause 2 deaths per fifth patient [7, 8].

The principal risk factors for COVID-19 infection are acute respiratory failure and alveolar 

failure. The target site of SARS is the respiratory tract of an individual, causing mild upper 

respiratory illness followed by acute respiratory distress with septic shock and a higher 

infectious rate leading to pulmonary fibrosis by binding to the transmembrane receptor 

Angiotensin-Converting Enzyme 2 (ACE2) on the respiratory epithelium [9]. The presence of

the viral genome of SARS in the hepatic tissue's endothelial cells causes multiple organ 

failures, including liver failure, which can be attributed to the widely distributed ACE2 

receptors that are responsible for the entry of SARS-CoV [10]. The elevated levels of ALT 

and AST and pro-inflammatory cytokines were reported in liver-damaged patients, and 

patients with a history of hepatitis were at higher risk of COVID-19 exhibiting exaggerated 

replication during SARS-CoV infection [11].

It is related to other organ harm, for example, cardiovascular damage by means of an 

increased risk of hypertension through ACE2, gastrointestinal dysfunctionality, diabetes 

mellitus, liver brokenness, ongoing kidney illness, CNS damages, lung injury, visual dangers 

like conjunctival hyperemia, chemosis, conjunctivitis, and malignant growth hazard, venous 

thromboembolism, tuberculosis, maturing, and conceptive danger [12].

A recent study based on an integrated network biology approach reported cancers, 

pulmonary, hepatic, neurological, hypertensive, and cardiac disorders being linked to 

COVID-19 along with multiple organ damage [13]. A bioinformatics analysis revealed the 

genes and pathways were significantly enriched for immune system and cardiovascular-

related phenotypes in COVID-19 comorbidities [14]. Another study based on computational 

methods reported 274 differentially expressed genes common in both COVID-19 patients and

patients with comorbidities like cardiovascular disease, diabetes, and obesity, suggesting their

role in the increased severity of COVID-19 [15].

Patients with certain pre-existing medical conditions have higher chances of being 

afflicted with the SARS-CoV-2 virus, followed by severe responses as reported following the 

emergence and global transmission of COVID-19. Therefore, there arises a need to study 

disease-disease relationships to better understand the human interactome and molecular 

causes of disease comorbidities. However, reports on the molecular factors responsible for 

the association of COVID-19 with pre-existing comorbidities are not well understood and 



need to be deciphered for the design of preventive strategies. Therefore, this study was 

undertaken to identify the underlying common molecular mechanism of association of 

genes/proteins and biological pathways amongst various disease comorbidities and COVID-

19 using a systems biology-based interactome approach. This study would give meaningful 

insights into understanding the etiopathology and the molecular association of disease 

comorbidity and COVID-19.

Material and methods

Data Mining 

Genes reported to be associated with diabetes mellitus, cardiovascular diseases, 

pulmonary fibrosis, kidney diseases, hepatitis C, and hepatitis B were retrieved from the 

DisGeNet database (http://www.disgenet.org) [16], and genes common amongst these six 

diseases were obtained using PHP programming.

Construction and analysis of interactome

STRING database

A protein-protein interaction (PPI) network was constructed using the STRING 

database (Search Tool for the Retrieval of Interacting Genes/Proteins) database (https://string-

db.org/) that performs analysis based on known and predicted PPIs, including physical and 

functional associations [17] for the genes found common amongst the six diseases.

Cytoscape

Network analysis was performed using Cytoscape, an open-source software project 

that integrates expression data with biomolecular interaction networks and molecular states to

form a unified conceptual framework [18]. 

ClusterONE (Clustering with Overlapping Neighborhood Expansion) plugin of 

Cytoscape (http://apps.cytoscape.org/apps/clusterone) was used for the identification of 

highly connected regions in the form of clusters [19].

CytoHubba plugin of Cytoscape (http://apps.cytoscape.org/apps/cytohubba) was used for 

ranking the hub genes using the MCC (maximal clique centrality) scoring method [20], was 

used for the analysis of the interactome.



Reactome knowledgebase 

The hub genes were mapped into their respective biomolecular pathways using 

Reactome (https://reactome.org), which is a peer-reviewed knowledge base that captures 

information about genes and molecules involved in pathways [21].

Results

Genes involved in diabetes mellitus (3134), cardiovascular diseases (1756), 

pulmonary fibrosis (924), kidney diseases (1180), hepatitis C (1768), and hepatitis B (1449) 

were retrieved from the DisGeNET database. One hundred and ten common genes among all 

six diseases were shortlisted.

Network construction of the 110 genes common amongst the diseases (Table 1) was 

done using the STRING database, and only 107 genes/proteins were present in Homo 

sapiens, which were used for the construction of an interaction network having 107 nodes 

and 1989 edges that represent genes and their interactions, respectively (Fig. 1).

On analysis of the network obtained from STRING using Cytoscape plug-in 

ClusterONE, four clusters were obtained, out of which only one cluster had a significant p-

value (< 0.05) (Fig. 2 A & B). This network was analyzed with CytoHubba to identify hub 

nodes that represent highly connected nodes having a higher likelihood of being involved in 

an essential interaction [22, 23]. The top 50 ranked genes were obtained, where red, yellow, 

and gray nodes represent highly, least significant genes, and outliers, respectively (Fig. 3).

Twenty common genes were found to be significant, namely IL6, TNF, IL1B, AKT1, 

ACTB, CXCL8, CCL2, VEGFA, ALB, TP53, IL10, MAPK3, FN1, PTGS2, STAT3, PPARG, 

IL4, TLR4, IFNG, and MMP2, amongst the six diseases, i.e., cardiovascular disease, diabetes 

mellitus, hepatitis, pulmonary fibrosis, and kidney disease. A network of these 20 hub genes 

was constructed in STRING, and the resulting network had 190 edges and an average node 

degree of 19, which indicates the number of interactions (at the score threshold) that a protein

has on average in the network (Fig. 4).

The hub genes/proteins common among the comorbidities were found to be enriched 

in 500 biological pathways (FDR ≤ 0.05) using the Reactome knowledgebase, with most of 

them being associated with the immune system, signal transduction, disease, and 

transcription-associated pathways (Table 2).

Infection of host cells by SARS-CoV-2 has been reported to require the presence of 

entry receptors, namely transmembrane receptors ACE2 (Angiotensin-Converting Enzyme 2),

TMPRSS2 (Type II Transmembrane Serine Protease), and CD147 (cluster of differentiation 



147)/EMMPRIN (Extracellular matrix metalloproteinase inducer)/BSG (Basigin) [24–26]. A 

study proposed that CD147 and ACE2 allow entry of the virus into the cell cytoplasm by 

sequential activation of NLRP3 inflammasome, resulting in cleavage of interleukins IL-1β 

and IL-18 [24] followed by binding of SARS-CoV-2 to ACE2. Subsequently, TMPRSS2 

primes the SARS-CoV-2 spike protein that allows membrane fusion and its entry into the host

cell [24, 27].

To identify the association of pre-existing disease comorbidities with SARS-CoV-2, 

an interaction network of the 20 hub proteins identified with the SARS-CoV-2 entry 

receptors, namely ACE2, TMPRSS2, and CD147/BSG, was constructed in STRING (Fig. 5).

In the present study, SARS-CoV-2 entry receptors TMPRSS2, ACE2, and 

CD147/BSG showed interactions with 2 (excluding ACE2), 8 (excluding TMPRSS2), and 7 

hub proteins, respectively, that were common amongst the comorbidities (Table 3).

From the analysis of the network, it is observed that out of the 20 hub proteins only 12

proteins, i.e., IL1B, ACTB, IL6, MMP2, ALB, AKT1, MAPK3, FN1, TNF, CCL2, VEGFA, 

and TP53, have significant interactions with the SARS-CoV-2 entry receptors. Each of these 

12 proteins was studied using literature mining to understand their association with SARS-

CoV-2 infection, given their significant number of interactions with SARS-CoV-2 entry 

receptors TMPRSS2, ACE2, and CD147/BSG [24-26].

Discussion

Protein kinase B alpha (PKBalpha/Akt-1) was found to interact with all the 11 

proteins previously shortlisted and has significant interactions with all the SARS-CoV-2 entry

receptors. AKT1 is reported to be involved in the regulation of cell proliferation and 

transformation thereby playing an essential role in immune cell modulation, resulting in 

diabetes and cardiovascular diseases, among others [28–30]. Through its downstream targets 

GSK3 and GLUT4, AKT increases cellular metabolism, and alterations in AKT signaling 

affect various cardiovascular pathological processes such as atherosclerosis [31]. During the 

progression of acute kidney injury to chronic kidney disease, the renal fibrosis and tubular 

dedifferentiation observed have been attributed to AKT, along with its role in increasing the 

oncogenic potential of the Hepatitis B virus X protein by phosphorylation [32, 33]. AKT has 

been reported to affect the progression and severity of COVID-19 along with IL10, TNF, and 

other proteins in non-alcoholic fatty liver disease patients [34]. In COVID-19/asthma 

comorbidity, AKT1 along with TP53, ALB, IL-6, TNF, and VEGFA have been reported to be 

hub proteins [35].



Levels of proinflammatory cytokines and chemokines such as TNF-α, IL-6, and IL-1β

have been found to be elevated in cytokine storm (CS), which is a hallmark of COVID-19 

pathogenesis [36, 37]. TNF can induce cells to release cytokines and evoke various 

intracellular signaling pathways, such as inflammation, apoptosis, programmed cell necrosis, 

and immunity [38, 39]. IL-6 has been reported to be associated with the host’s response to 

infection, which affects the viral load and severity of the disease in a patient [40]. Therefore, 

CS is responsible for the escalation of disease severity resulting in septic shock and multi-

organ failure in COVID-19 patients with comorbidities [41].

Mitogen-activated protein kinase (MAPK3) plays an essential role in viral infections 

and other important cellular physiological and pathological processes as it regulates cell 

growth, differentiation, and inflammatory response. Studies have also shown reprogramming 

caused by tumor therapy is due to a link between MAPK signals and control of the 

inflammatory network [42, 43].

Matrix metalloproteinases (MMPs) are involved in the release of substrates such as 

growth factors that are anchored at the extracellular matrix or cell membrane and also 

contribute to injurious processes in lung pathologies. Following SARS-CoV-2 infection, 

clinical studies report an increase in plasma MMPs, suggesting their release by the host’s 

immune system and target cells [44]. Fibronectin (FN) is a glycoprotein that is present in high

concentrations in blood and is a component of the extracellular matrix. In critically ill 

COVID-19 patients, it has been reported as a disease marker of severity and also found to be 

associated with different kinds of inflammatory diseases [45]. Actin cytoplasmic 1 (ACTB) is

a highly conserved protein found in the cytoplasm and a component of the cytoskeleton. It is 

involved in the proper functioning of the immune system, cell motility, and division, and in 

COVID-19 patients it had a low expression, resulting in immune cell infiltration and altered 

immune function [46].

In the present study, association of shared hub genes/proteins, namely IL1B, ACTB, 

IL6, MMP2, ALB, AKT1, MAPK3, FN1, TNF, CCL2, VEGFA, and TP53, among various pre-

existing comorbidities (cardiovascular disease, diabetes mellitus, hepatitis, pulmonary 

fibrosis, and kidney disease) with COVID-19 have been identified, which were found to be 

directly involved in immunological responses. Moreover, each of these hub proteins was 

found to have significant associations with ACE2, TMPRSS2, and CD17/BSG, which are the 

entry receptors of the COVID-19 virus. People suffering from pre-existing comorbidities 

have impaired immune functions, making them more likely to contract viral infections, 

including SARS-CoV-2. The genes identified can be further explored to develop preventive 



therapeutic interventions for patients with pre-existing comorbidities to contain the severity 

of SARS-CoV-2 and decrease morbidity and mortality rates.

Conclusions

This study provides novel insights into the associated molecular mechanisms in pre-

existing comorbidities with COVID-19 using a robust interactome-based systems biology 

approach. Controlling the inflammatory response proteins is a common critical factor 

amongst the six disease co-morbidities studied and the cytokine storm, which is the hallmark 

of COVID-19. The higher risk factors for COVID-19 in patients with pre-existing 

comorbidities are associated with immune dysfunction, and two proteins, AKT1 and TNF, 

identified in the present study having multiple interactions with the entry receptors of SARS-

CoV-2, can be used as biomarkers and explored further for the design of potential therapeutic 

strategies. A synergistic approach is needed to block pathologies at multiple levels using 

therapeutic interventions to inhibit viral infection and regulate the dysfunctional immune 

responses to alleviate the severity of COVID-19 in patients having pre-existing 

comorbidities.
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Table 1. Genes common amongst the diseases Diabetes mellitus, Cardiovascular diseases, 

Pulmonary fibrosis, Kidney diseases, Hepatitis C and B

CDKN2A AHSA1 MTCO2P12* PPARGC1A CHI3L1
NLRP3 CNR1 RBM45 SLCO6A1 COX8A
CRK MAPK14 CCN2 CTNNB1 ACE
AGT EGFR AKT1 ESR1 ALB
F2 FN1 SIRT1 BRD4 FOS
MTOR GABPA RNF19A POLDIP2 PTPN22
IL37 CXCR3 ANGPT2 GPT ANXA1
HLA-DRB1 HMGB1 HMOX1 HSPA1B HSPA4
APOA1 ICAM1 IFNG IGF1 APRT
IL1A IL1B IL1RN IL4 IL6
CXCL8 IL10 IL17A IL18 GSTK1
LEP LGALS3 MIR145 MIR146A* MIR155*
MIR21 MFAP1 MMP2 MMP14 COX2
NFE2L2 NFKB1 NOTCH1 SERPINE1 ABCB1
PIK3CG PPARG PRKAA1 MAPK1 MAPK3
MAPK8 PTGS2 RELA ACTB CCL2
CCL5 GORASP1 WNK1 SOAT1 SPP1
STAT3 STAT4 SYT1 ADAM17 TERT
TGFB1 THBS1 TLR2 TLR4 TNF
TNFRSF1A TP53 C3 VDR VEGFA
VTN VWF CXCR4 AIMP2 CAT
CAV1 SOCS1 TNFSF10 GRAP2 GDF15
*Genes in grey boxes are not present in Homo sapiens



Figure 1. Protein-protein interaction network of common genes amongst six diseases 

obtained from STRING containing 107 nodes and 1989 edges



Graphical network indicating red nodes 

(represent highly significant genes), yellow 

nodes represent least significant genes) and 

grey nodes (represent outliers)

Four clusters were obtained out of 

which the topmost cluster (having 91 

nodes/genes) was found to be with 

significant p-value (< 0.05).
Figure 2. ClusterONE results obtained by analyzing the PPI Network

A B



Figure 3. Graphical view of ranked hub nodes obtained from Cytoscape plug-in Cytohubba 

with color coding



Figure 4. Protein-Protein interaction network of 20 hub genes (nodes) from STRING having 

190 edges responsible for co-morbidity of the six diseases



Table 2. The top 15 most significantly enriched pathways obtained from Reactome

Pathway name p-value FDR
Gene 

count
Genes in pathway

Interleukin-10 

signaling

1.11E-

16
1.28E-14 8

IL10; IL6; CXCL8; IL1B; STAT3; 

CCL2; PTGS2; TNF
Interleukin-4 

and interleukin-

13 signaling

1.11E-

16
1.28E-14 14

IL10; CXCL8; MMP2; STAT3; 

FN1; PTGS2; TNF; VEGFA; IL4; 

IL6; IL1B; CCL2; AKT1; TP53

Signaling by 

interleukins

1.11E-

16
1.28E-14 16

IL10; CXCL8; MMP2; STAT3; 

FN1; PTGS2; TNF; VEGFA; IL4; 

IL6; IFNG; IL1B; CCL2; AKT1; 

TP53; MAPK3

Cytokine 

signaling in the 

immune system

1.11E-

16
1.28E-14 16

IL10; CXCL8; MMP2; STAT3; 

FN1; PTGS2; TNF; VEGFA; IL4; 

IL6; IFNG; IL1B; CCL2; AKT1; 

TP53; MAPK3

Immune system
1.11E-

16
1.28E-14 18

IL10; CXCL8; MMP2; STAT3; 

FN1; PTGS2; TNF; ACTB; 

VEGFA; IL4; IL6; IFNG; IL1B; 

CCL2; AKT1; TLR4; TP53; 

MAPK3
Senescence-

associated 

secretory 

phenotype 

(SASP)

8.17E-

09
7.84E-07 5

IL6; CXCL8; IL1B; STAT3; 

MAPK3

Cellular 

responses to 

stress

7.68E-

08
6.29E-06 11

IL6; CXCL8; IL1B; ALB; STAT3; 

CCL2; AKT1; TLR4; TP53; 

MAPK3; VEGFA
Cellular 

responses to 

stimuli

9.68E-

08
6.52E-06 11

IL6; CXCL8; IL1B; ALB; STAT3; 

CCL2; AKT1; TLR4; TP53; 

MAPK3; VEGFA
Cellular 

senescence

1.02E-

07
6.52E-06 6

IL6; CXCL8; IL1B; STAT3; TP53; 

MAPK3
Signaling by 

receptor 

tyrosine kinases

6.35E-

05
0.0012 6

STAT3; FN1; AKT1; ACTB; 

MAPK3; VEGFA



Signal 

transduction
0.0012 0.0107 12

CXCL8; MMP2; STAT3; FN1; 

TNF; ACTB; VEGFA; IL6; AKT1; 

CCL2; PPARG; TP53; MAPK3

Disease 0.0013 0.0118 11

IL10; IL6; IL1B; STAT3; FN1; 

AKT1; TLR4; TP53; ACTB; 

MAPK3; VEGFA
Infectious 

disease
0.0023 0.0172 7

IL10; IL6; IL1B; AKT1; ACTB; 

MAPK3; VEGFA
Gene 

expression 

(transcription)

0.0024 0.0172 8
IL6; IFNG; AKT1; PPARG; TP53; 

ACTB; MAPK3; VEGFA



Figure 5. Interaction network of hub proteins common amongst comorbidities with SARS-

CoV-2 entry receptors constructed in STRING



Table 3. SARS-CoV-2 entry receptors having direct interactions with hub proteins of 

comorbidities

SARS-CoV-2 entry receptors
TMPRSS

2 ACE2

CD147/BS
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IL6 MAPK3
ILIB MMP2
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