

Klaudia Piekarska¹, Dominika Spyt¹, Klaudia Bonowicz^{1, 2}, Dominika Jerka¹, Alina Grzanka¹, Maciej Gagat^{1, 2}

¹Department of Histology and Embryology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń ²Faculty of Medicine, Collegium Medicum, Mazovian Academy

Antiangiogenic effects in the modulation of inflammatory pathways. A comprehensive analysis of potential therapeutic substances

Corresponding author:

Klaudia Piekarska Department of Histology and Embryology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Coperni-

cus University in Toruń ul. Jagiellońska 13–15 85–067 Bydgoszcz, Poland e-mail: klaudia.mikolajczyk.piekarska@gmail.com

Medical Research Journal 2024:

DOI: 10.5603/mrj.101851 Copyright © 2024 Via Medica ISSN 2451-2591 e-ISSN 2451-4101

ABSTRACT

Based on current knowledge antiangiogenic compounds are utilized in the treatment of inflammatory-depended diseases such as cancer. It has been shown that these compounds can simultaneously block several signalling pathways regulating angiogenesis. The visualization of fluorescently labelled F-actin and VE-cadherin was allowed to demonstrate that the reorganization of the cell cytoskeleton disrupts cellular processes and consequently inhibits angiogenesis.

Keywords: cell communication, inflammation, antiangiogenesis

Med Res J 2024

The study aims to assess the effect of compounds that inhibit angiogenesis on the inflammatory response of endothelial cells. The study used EA.hy926 model cells which were treated with tumour necrosis factor-alpha (TNF- α) — a pro-inflammatory cytokine, which is the main modulator of the inflammatory process, and compounds that inhibit angiogenesis [1, 2]. The experiments focused on assessing the effect of Bevacizumab, Pazopanib and KRN-633 on the organization of F-actin and the localization of vascular endothelial cadherin (VE-cadherin) using fluorescence immunostaining and confocal microscopy.

The control cells were distinguished by an organized F-actin network that promoted mutual interactions among adjacent cells and cooperation in mechanical signal transduction. In contrast, VE-cadherin did not show the same continuous membrane expression, although it was strongly expressed at cell-cell interactions and along the F-actin core of filipodia initiating adherence junctions (AJs) (Fig. 1).

After 24 hours of incubation with TNF- α , the organization of F-actin changed. Due to the changed organization of F actin, intercellular spaces were highlighted, which indicates that the studied cells have a limited barrier function. Moreover, the junctional contact between cells assessed using fluorescently labelled VE-cadherin was restricted to point interactions (Fig. 2).

The EA.hy926 cell line incubated with Bevacizumab for 24 hours promoted actin cytoskeleton swelling and complete degradation, which was visible only within vesicular structures on the surface of swollen cells. There were no observed sites of intercellular contact (Fig. 3).

In the case of the combination of $TNF-\alpha$ and Bevacizumab, simultaneous swelling and shrinking cells were observed. However, both of these changes were accompanied by a complete degradation of the actin cytoskeleton and a loss of endothelial layer continuity (Fig. 4).

Treatment of cells with a second antiangiogenic compound - Pazopanib - also revealed swollen cell

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.

Figure 1. Representative confocal image showing F-actin (green) and VE-cadherin (red) fluorescence in control EA.hy926. Cell nuclei were labelled with DAPI (blue). A. Overlay. B. DAPI + VE-cadherin. C. DAPI + F-actin. (Magnification x100) Bar = 100μ m

Figure 2. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in EA.hy926 treated with 100 ng/ml TNF- α . Cell nuclei were labelled with DAPI (blue). A. Overlay. B. DAPI + VE-cadherin. C. DAPI + F-actin (Magnification x 100) Bar = 100 μ m

Figure 3. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in EA.hy926 treated with Bevacizumab 6.7*10-6 nmol. Cell nuclei were labelled with DAPI (blue). A. Overlay. B. DAPI + VE-cadherin. C. DAPI + F-actin. (Magnification x 100) Bar = $100 \,\mu$ m

structures, which were accompanied by significant degradation of the actin cytoskeleton and lack of intercellular interactions (Fig. 5).

Figure 4. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in EA.hy926 treated with 100 ng/ml TNF- α and Bevacizumab 6.7*10-6 nmol. Cell nuclei were labelled with DAPI (blue). A. Overlay. B. DAPI + VE-cadherin. C. DAPI + F-actin. (Magnification x 100) Bar = 100 μ m

The same effect was observed after further incubation of cells with the pro-inflammatory cytokine TNF- α . Nonetheless, the inflammation activity coupled with

Figure 5. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in EA.hy926 treated with Pazopanib 1*10-5 nmol. Cell nuclei were labelled with DAPI (blue). **A.** Overlay. **B.** DAPI + VE-cadherin. C. DAPI + F-actin. (Magnification x 100) Bar = $100 \,\mu$ m

Figure 6. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in EA.hy926 treated with 100 ng/ml TNF- α and Pazopanib 1*10-5 nmol. Cell nuclei were labelled with DAPI (blue). **A.** Overlay. **B.** DAPI + VE-cadherin. **C.** DAPI + F-actin. (Magnification x 100) Bar = 100 μ m

Figure 7. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in EA.hy926 treated with KRN-633 1.7*10-4 nmol. Cell nuclei were labelled with DAPI (blue). **A.** Overlay. **B.** DAPI + VE-cadherin. **C.** DAPI + F-actin. (Magnification x 100) Bar = 100 μ m

the antiangiogenic properties of Pazopanib resulted in a complete reduction in the fluorescence intensity of VE-cadherin (Fig. 6).

Figure 8. Representative confocal image showing the fluorescence of F-actin (green) and VE-cadherin (red) in EA.hy926 treated with 100 ng/ml TNF- α and KRN-633 1.7*10-4 nmol. Cell nuclei were labelled with DAPI (blue). **A.** Overlay. **B.** DAPI + VE-cadherin. C. DAPI + F-actin. (Magnification x 100) Bar = 100 μ m

Finally, the complete disintegration of the cytoskeleton was caused by the application of KRN-633 cells. Incubation for 24 hours both in only compound presence and in combination with $TNF-\alpha$ showed a visible decrease in the level of fluorescence of actin filaments and intercellular junctions (Fig.7, Fig. 8).

The findings presented in this paper indicate that the drugs employed in the study to inhibit angiogenesis predominantly exert antiproliferative effects, triggering cell survival processes, and also exerting a lethal effect on EA.hy926 cells.

Article information

Acknowledgements: None. Ethics statement: None.

Author contributions: Author contributions: Conceptualization; KP, DS, MG, AG; Data curation: KP; Formal analysis KP, Funding acquisition KP, MG; Investigation and Methodology; KP, DS, DJ, KB; Supervision: MG, AG; Visualization KP, DS; Roles/Writing — original draft KP, DS, MG; Writing — review & editing KP, DS, KB, DJ.

Funding: The project was financed by research grants awarded by the authorities of the Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń.

Conflict of interest: None. Supplementary material: None.

References

- Jang DI, Lee AH, Shin HY, et al. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci. 2021; 22(5), doi: <u>10.3390/ijms22052719</u>, indexed in Pubmed: <u>33800290</u>.
- Bigda J, Okrój M. The role of tumor necrosis factor (TNF) in angiogenesis. Contemporary Oncology/Współczesna Onkologia. 2002; 6(2): 57–59.