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Impact of angiogenesis inhibitors on 
inflammatory activation in human 
vascular endothelial cells

ABSTRACT
Background: The initiation and progression of inflammation can elevate the secretion of angiogenesis 

activators, which bind to receptors on endothelial surfaces, thereby stimulating cell proliferation and en-

hancing migration which has emerged as a significant risk factor for atherosclerosis.

Material and methods: To investigate the effectiveness of angiogenesis inhibitors on changes in blood 

vessels, the study utilized the anti-angiogenic drugs bevacizumab, pazopanib, and KRN-633. In the study, 

the vascular model comprised primary human coronary artery endothelial cells (pHCAECs). Moreover, the 

inflammatory response was induced by the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α).

Results: The compounds’ effect on pHCAECs induced structural changes within the actin cytoskeleton, 

demonstrating the presence of entosis and apoptotic vesicle-like structures. Additionally, inflammation in 

the pHCAEC line exacerbated the effects of the compounds used in the study, leading to heightened disin-

tegration of cellular cytoskeletons. Conversely, pazopanib in combination with TNF-α induced the formation 

of vesicular structures along the course of F-actin retraction fibres in migrating pHCAECs. Furthermore, 

KRN-633 combined with TNF-α resulted in the translocation of VE-cadherin to the cell nucleus in these cells.

Conclusions: It is noteworthy that current treatments for cardiovascular diseases are not entirely effective. 

The utilization of functional pharmacological compounds such as angiogenesis inhibitors may provide an 

effective approach to treating disorders and regulating cardiovascular function.
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Introduction

Chronic inflammation is a significant element in the 
pathogenesis of cardiovascular diseases, which can be 
caused by endothelial dysfunction. During inflamma-
tion, the endothelium experiences dysfunction due to an 
elevated production of reactive oxygen species (ROS), 
pro-inflammatory cytokines, matrix metalloproteinases 
(MMPs), adhesion molecules, and disturbances in 
vascular tone [1–3]. 

Because of the local production of chemokine, 
leukocyte recruitment is one of the most characteristic 
hallmarks of inflammation [4]. Leukocyte recruitment 
involves a complex cascade of sequential signalling 
and adhesion steps, which lead to leukocyte migra-
tion through endothelial cells (ECs) [5]. This process 

necessitates swift and irreversible modifications in the 
functional expression of adhesion molecules, reorgani-
zation of cytoskeletal elements, and coordinated move-
ments of cell and vesicular membranes [6, 7]. Leukocyte 
migration from blood vessels occurs via one of two 
routes. The first one is the intercellular (paracellular) 
route which takes place between ECs. It involves ad-
hesion molecules, which facilitate connections between 
ECs [8]. The second type is transcellular, occurring 
through the endothelial cell body while maintaining 
connections intact [9, 10]. Notably, conditions that ac-
tivate endothelial actin stress fibres reduce transcellular 
migration, thereby promoting increased intercellular 
migration. However, inhibiting the formation of stress 
fibres induces the creation of transitional pores in the 
endothelium, facilitating the transcellular extravasation 
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of leukocytes [11, 12]. Inflammation has the potential 
to stimulate angiogenesis, and the development of 
novel vessels may enhance tissue inflammation [13]. 
In response to angiogenic stimuli, ECs transform the 
quiescent phenotype into an active one, characterized 
by an enhanced capacity to migrate, matrix proteoly-
sis, and a high mitotic index [14]. Moreover, activated 
ECs change the dynamics of closing and short-circu-
iting connections that exist between perivascular cells 
and neighbouring ECs and involve proteins such as 
claudins, vascular endothelial cadherin (VE-cadherin), 
neural cadherin (N-cadherin), occludin, and junctional 
adhesion molecule (JAMs) [15, 16].

Angiogenesis is the formation and maintenance 
of blood vessel structures conducted by vascular 
endothelial growth factor (VEGF), which is an additive 
responsible for vascular permeability and cell migration 
[17]. The mechanism based on the difference in VEGF 
gradient is termed sprouting angiogenesis, whereas, 
in its absence, it is known as invagination or division 
angiogenesis. In the intussusceptive angiogenesis 
model, intraluminal tissue pillars form through contact 
between ECs from opposing capillary walls or via fusion 
of interstitial protrusions [18]. 

Optimal antiangiogenic therapy strategies are be-
coming extremely important in effectively and success-
fully introducing them into the treatment of cardiovascu-
lar diseases. These are therapies based on substances 
that recognize and inhibit the activity of VEGF factors, 
such as bevacizumab, pazopanib, and KRN-633 [19, 
20]. Bevacizumab is a chimeric monoclonal antibody 
containing the muMAb A4.6.1 monoclonal antibody 
with IgG1 immunoglobulin. It has been observed that 
inhibiting the activity of VEGF receptors (VEGFR-1 and 
VEGFR-2) in ECs, significantly enhances ECs prolifer-
ation and angiogenesis ultimately inhibiting the pro-
liferation of ECs and angiogenesis [21]. Pazopanib is 
a small-molecule tyrosine kinase inhibitor (TKI) focused 
on platelet-derived growth factor receptors α and β 
(PDGFR-α, -β), VEGFR-1, -2 and -3, fibroblast growth 
factor receptor-1, -2 (FGFR-1 and -2) and the c-Kit ma-
tricellular factor receptor [22]. Therefore, it effectively 
inhibits numerous pathways affecting cell proliferation 
and angiogenesis [23]. KRN633, a quinazoline-urea 
derivative, effectively and selectively inhibits intracellular 
VEGF signalling, VEGFR-1, -2, and -3 tyrosine kinases, 
as well as PDGFR and c-Kit. It has been demonstrated 
that the primary mechanism of action of KRN633 in-
volves inhibiting VEGFR-2 phosphorylation, thereby 
blocking the response of ECs and angiogenesis in 
vitro [24, 25]. 

Materials and Methods

Cell culture

To assess the correlation between the effects of an-
ti-angiogenic substances and inflammatory activation of 
human vascular endothelium, primary and immortalized 
endothelial model cells obtained from the American 
Type Culture Collection (ATCC) cell bank were used 
in this study. In the study, the Human Coronary Artery 
Endothelial Cells (PHCAEC) cell line was used. The 
cells used in the study were obtained from a young 
Caucasian individual whose death was not due to a car-
diovascular event. The cells that comprise the research 
material in this study were cultivated in sterile culture 
vessels designed for adherent cells with a surface area 
of 25 cm3 (Eppendorf, Falcon), by the recommendations 
of the ATCC cell bank. The basic medium for PHCAEC 
cell line was the liquid growth medium supplemented 
with a growth kit, which, due to the specification of the 
research, consisted of recombinant human vascular 
endothelial growth factor (rhVEGF), recombinant human 
epidermal growth factor (rhEGF), recombinant human 
fibroblast growth factor (rhFGF), recombinant human 
insulin-like growth factor 1 (rhIGF-1), L-glutamine, 
heparan sulphate, hydrocortisone, ascorbic acid and 
2% foetal bovine serum (FBS) (ATCC). In order to pre-
vent bacterial contamination, the culture medium was 
enriched with a mixture of penicillin, streptomycin, and 
amphotericin B. Cells were cultivated under constant 
humidity, at a temperature of 37⁰C and in an atmosphere 
of 5% CO2.

Cell treatment

To initiate the inflammatory reaction, pHCAECs were 
treated with recombinant human tumour necrosis factor 
α (TNF- α) (Sigma-Aldrich). Based on literature data, the 
concentration of rhTNF-α that induces an inflammatory 
reaction in endothelial cell lines is 100 ng/ml. Therefore, 
this concentration was adopted as the working concen-
tration for the compound. Cell populations treated with 
rhTNF-α were incubated for 24 hours under conditions 
of constant humidity, 37°C temperature, and 5% CO2. To 
observe the inhibition of the angiogenesis mechanism 
by biologically and chemically active compounds, 
pHCAEC were experimentally treated with selected 
concentrations of bevacizumab, pazopanib, and KRN-
633 (TargetMol). These concentrations were based on 
literature data describing clinically used doses and the 
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IC50 values of each compound. All mentioned com-
pounds, at the same concentrations, were also used in 
a 1:1 combination with rhTNF-α. Cells were incubated 
with these compounds for 24 hours. Simultaneously, 
an untreated population of cells was cultured and sup-
plemented with a complete nutrient medium to serve as 
the control sample for the study. After the designated 
incubation period, both control and treated cells were 
analysed using qualitative methods to assess changes 
in the expression of selected proteins. This assessment 
was conducted to observe the effects of anti-angiogenic 
substances under physiological conditions and the 
influence of an inflammation activator.

Immunofluorescence

For the immunofluorescence assessment of protein 
localization, pHCAEC cells were seeded on sterile cov-
erslips (18 mm) and placed in a 12-well plate (Corning) 
under standard conditions (37C, 5%CO2) until the cells 
reached a state close to the confluence. Human en-
dothelial cells underwent treatment in the subsequent 
arrangement: rhTNF-α, bevacizumab, pazopanib, KRN-
633, and the combination: rhTNF-α + bevacizumab, 
rhTNF-α + pazopanib, rhTNF-α + KRN-633 and incu-
bated for 24 h. At the same time, each set of treated 
cells had control-containing cells cultured without the 
presence of stress factors. After completing the 24-hour 
incubation, the cells were fixed with a 1% paraformal-
dehyde PFA solution (Sigma-Aldrich) for 20 minutes at 
room temperature (RT). To permeabilize the membrane, 
1 mL of 0.25% Triton X-100 solution was added to 
the cells and left for 10 minutes. The next step was to 
block the non-specific background reaction using 1% 
(pHCAEC cell line) BSA (20 min, RT). Immediately after 
the background blocking procedure, double labelling 
for junctional proteins (ThermoFisher Scientific) was 
performed using a primary mouse anti-VE-cadherin 
antibody (1:100, Invitrogen) and a secondary antibody 
conjugated to Alexa Fluor 594 nm (1:200, Invitrogen). 
Both mentioned antibodies were incubated for 1 h (RT, 
dark), respectively. After the designated time, F-actin 
filaments were labelled using fluorescent phalloidin 
conjugated with FITC (1:40, Invitrogen) for 20 minutes 
(RT, dark). Cell nuclei were stained with DAPI counter-
stain (1:20,000) for 10 min. (RT, dark). All mentioned 
procedures above were preceded by rinsing with 
phosphate-buffered saline (PBS) solution for ongoing 
removal of residues after subsequent stages of the 
immunofluorescence reaction. 

The stained slides were mounted with Aqua 
Poly/Mount medium and evaluated using a C1 laser 
scanning confocal microscope and an oil objective 
VC plan Apo 60×/1.4 and Nikon EZ-C1 software 
3.80 (Nikon). 

The lasers used for DAPI excitation, Alexa Fluor 
488 and Alexa Fluor 594, are a 408 nm diode 
with a 450/35 emission filter, a 488 nm diode with 
a 515/30 emission filter, and a 543 nm He-Ne with 
a 650LP emission filter, respectively. Triple-labelling 
images were generated using the same parameters, 
including laser power, pixel exposure time, channel 
gain, and resolution.

Results

Fluorescence techniques and a confocal micro-
scope were utilized to evaluate the organization and 
localization of F-actin and VE-cadherin in primary pH-
CAEC cells. The visualization of fluorescently stained 
structures allowed for the assessment of organizational 
changes in F-actin and localization of VE-cadherin in 
examined cells cultured under the influence of individual 
drugs and TNF-α. Control cells were characterized by an 
organized F-actin network, which encouraged mutual 
interactions between neighbouring cells and cooper-
ation in mechanical signal transduction. Nonetheless, 
VE-cadherin was predominantly located within the sites 
of intercellular interaction in pHCAECs (Fig. 1a).

After 24 hours of incubation of pHCAECs with 
TNF-α, the organization of F-actin changed. Under the 
influence of TNF-α, F-actin stress fibres were rebuilt 
into parallel bundles of stress fibres, which resulted in 
the manifestation of a spindle-shaped or swollen cell 
shape. Due to the change in the organization of F-actin, 
intercellular spaces were highlighted, which indicates 
a limited barrier function of the examined cells. However, 
the junctional contact between cells assessed using 
fluorescently labelled VE-cadherin was limited to point 
interactions (Fig. 1b).

Treatment of pHCAEC cells with bevacizumab for 
24 hours led to a significant expansion of the actin 
cytoskeleton, which resulted in cell swelling and the 
appearance of a continuous-discontinuous nature of 
intercellular interactions (Fig. 2a). Additionally, in places 
with continuous intercellular connections, a tendency to 
the phenomenon of entosis was observed. Cells were 
also observed about the typical stress organization 
of F-actin and the complete lack of interaction with 
neighbouring cells. The occurrence of cells with actin 
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Figure 1A. Representative confocal image showing F-actin (green) and VE-cadherin (red) fluorescence in control 
pHCAECs. Cell nuclei were labelled with DAPI (blue). A1. Overlay; B1. DAPI + VE-cadherin; C1. DAPI + F-actin. 
(Magnification ×100) Bar = 100μm. 

Figure 1B. Representative confocal image showing F-actin (green) and VE-cadherin (red) fluorescence in pHCAECs treated 
with 100 ng/ml TNF-α. Cell nuclei were labelled with DAPI (blue). A2. Overlay; B2. DAPI + VE-cadherin; C2. DAPI + F-actin. 
(Magnification ×100) Bar = 100μm
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Figure 2A. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in pHCAECs 
treated with bevacizumab 6.7 × 10–6 nmol. Cell nuclei were labelled with DAPI (blue). A1. Overlay; B1. DAPI + VE-
cadherin; C1. DAPI + F-actin. (Magnification ×100) Bar = 100μm

Figure 2B. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in pHCAECs 
treated with 100 ng/ml TNF-α and bevacizumab 6.7 × 10–6 nmol. Cell nuclei were labelled with DAPI (blue). A2. Overlay; 
B2. DAPI + VE-cadherin; C2. DAPI + F-actin. (Magnification ×100) Bar = 100μm
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Figure 3A. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in pHCAECs 
treated with pazopanib 1 × 10–5 nmol. Cell  nuclei were labelled with DAPI (blue). A1. Overlay; B1. DAPI + VE-cadherin; 
C1. DAPI + F-actin. (Magnification ×100) Bar = 100μm

Figure 3B. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in pHCAECs 
treated with 100 ng/ml TNF-α and pazopanib 1 × 10–5 nmol. Cell nuclei were labelled with DAPI (blue). A2. Overlay; 
B2. DAPI + VE-cadherin; C2. DAPI + F-actin. (Magnification ×100) Bar = 100μm

Figure 4A. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in pHCAECs 
treated with KRN-633 1.7 × 10–4 nmol. Cell nuclei were labelled with DAPI (blue). A1. Overlay; B1. DAPI + VE-cadherin; 
C1. DAPI + F-actin. (Magnification ×100) Bar = 100μm

Figure 4B. Representative confocal image showing fluorescence of F-actin (green) and VE-cadherin (red) in pHCAECs 
with 100 ng/ml TNF-α and KRN-633 .7 × 10–4 nmol. Cell nuclei were labelled with DAPI (blue). A2. Overlay; B2. DAPI + VE-
cadherin; C2. DAPI + F-actin. (Magnification ×100) Bar = 100μm
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within their membranes’ vesicular structures resembling 
apoptotic buds has also been reported. 

Fluorescence assessment of the examined struc-
tures in pHCAECs treated with both bevacizumab and 
TNF-α showed swelling or bundle shrinkage of the 
cells. However, both of these changes were accom-
panied by almost complete degradation of the actin 
cytoskeleton and loss of continuity of the endothelial 
layer (Fig. 2b).

In the case of the 24-hour action of pazopanib in 
pHCAEC cells, a significant expansion of F-actin was 
observed, which resulted in cell swelling and led to the 
continuous-discontinuous nature of intercellular interac-
tions. Moreover, cells freshly after cytokinesis showed 
the characteristics of cells undergoing the phenomenon 
of entosis into swollen cells. Shrunken cells were also 
observed with vesicular structures resembling apoptotic 
buds (Fig. 3a). In the case of combined treatment of 
cells with pHCAECs pazopanib and TNF-α degradation 
of the cell cytoskeleton was observed. In addition, 
vesicle structures were observed in parts of migrating 
cells along the course of actin retraction fibres (Fig. 3b).

Treatment of cells with pHCAECs KRN633 for a pe-
riod of 24 hours led to cell swelling and a continuously 
discontinuous nature of intercellular connections (Fig. 
4a). pHCAEC cells treated with both KRN-633 and TNF-α 
led to cell swelling and the formation of a cell migra-
tion phenotype, which conditioned the point nature of 
intercellular connections. Moreover, translocation was 
observed in VE-cadherin into the cell nucleus (Fig. 4b).

Discussion

It is believed that cardiovascular diseases (CVDs) 
and other lifestyle-related diseases may be initiated by 
common factors, posing a challenge in designing effec-
tive therapeutic regimens [26, 27]. This need prompted 
the experimental approach of using bevacizumab, 
pazopanib, and KRN-633 in antiangiogenic tests on 
human endothelial cell lines suitable for arteries (pH-
CAECs). Due to the diverse phenotypes of ECs in the 
vascular tree, which vary based on their function and 
may have a significant impact on specific susceptibility 
to pathological conditions, this study placed special 
emphasis on the morphology of pHCAECs. This study 
highlighted a significant reduction in the number of live 
cells treated with bevacizumab, which correlated with 
decreased VE-cadherin expression in the pHCAEC cell 
line. Studies on VE-cadherin-deficient mouse models 
showed embryonic stage mortality due to severe vas-
cular defects. Flemming et al. (2015) showed that TNF-α 

significantly inhibits the expression of VE-cadherin 
and time-dependently affects the formation of spaces 
between ECs [28, 29]. Similar results were obtained 
in this study. Cells incubated with TNF-α exhibited 
a reduction in membrane VE-cadherin expression, 
which correlated with the loss of continuous fluorescent 
signals at the cell edges. This change was associated 
with a shift in the nature of intercellular interactions 
from continuous to punctate. Similarly to the studies 
discussed in this work, the authors also observed 
changes in cell morphology and the appearance of 
intercellular spaces. Additionally, it has been shown 
that TNF-α induces the expression of MMP9, which 
can break the homophilic interaction of VE-cadherins 
located on the surface of two neighbouring cells [30]. 
As shown, TNF-α enhances blood vessel remodelling 
by influencing the activation of ECs and promoting peri-
cyte recruitment. In turn, chronic inflammation affects, 
through the induction of Angiotensin 2 (Ang-2) in ECs, 
destabilization and increased vascular permeability 
[31]. The Ang-1/Tie-2 system is crucial in maintaining 
blood vessel stability. Ang-1 acts as an antagonist to 
Ang-2, which is released from Weibel-Palade bodies 
in response to various stimuli. As a consequence, the 
ratio of Ang-1 to Ang-2 is reduced, thereby contributing 
to the destabilization of the endothelial monolayer and 
the formation of new blood vessels [32]. It is worth 
noting that Ang-2 also affects the phosphorylation of 
VE-cadherin, simultaneously regulating the activity 
of this protein. Studies confirm that phosphorylated 
VE-cadherin induces blood vessel permeability and 
destabilization of intercellular connections [33]. Wang 
et al. (2019) performed a fluorescence analysis of VE-
cadherin protein, showing its increased expression 
in SACC-LM cells stimulated with VEGF-A. However, 
incubation of cells with bevacizumab contributed to the 
reduction of VE-cadherin expression and disruption of 
the formation of vascular-like structures, which confirms 
the anti-angiogenic nature of the drug [34]. 

The cytoskeleton is integral to several crucial biolog-
ical functions at the cellular level. Among these, it plays 
key roles in cell movement, intracellular organization, 
endocytosis, cytokinesis, and even apoptosis. The 
actin cytoskeleton is composed mainly of actin. This 
protein actively adapts to the changing intra- and 
extracellular environment by polymerizing actin into 
the form of F-actin filaments or depolymerizing them. 
Destabilization of F-actin induces features in cells that 
define the image of apoptotic cells [35]. These cells are 
characterized by the condensation and fragmentation 
of genetic material, fragmentation of the cell nucleus, 
swelling and shrinking of cells, and the formation of small 
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vesicles. Moreover, during the early phase of apoptosis, 
cells undergo shrinkage, and their intracellular contents 
become compacted. The late phase is characterized 
by fragmentation of the cell nucleus and the formation 
of vesicular structures of the plasma membrane [36]. 
In this study, the morphological picture was observed 
indicating the induction of this form of cell death. It 
was demonstrated that cells from both tested cell lines 
developed surface-like actin structures resembling 
apoptotic vesicles. These structures were observed in 
pHCAEC cells following treatment with bevacizumab 
and pazopanib. Interestingly, the study presented in 
this paper demonstrated the ability to induce entosis 
in pHCAEC cells incubated with bevacizumab and pa-
zopanib. Entosis is a fascinating phenomenon where 
a living cell is engulfed completely by a neighbouring 
cell. Moreover, cells engulfed by entosis primarily die, 
suggesting that this process serves as a mechanism for 
cell survival and supports proliferation under conditions 
of limited nutrient availability. However, studies have 
also demonstrated that cells can divide inside the host 
cell or escape from it, subsequently continuing their 
cell cycle [37]. These findings suggest that cells may 
utilize entosis as a survival mechanism under conditions 
unfavourable for growth. 

Fluorescence analysis of cells treated with both bev-
acizumab and TNF-α in pHCAECs shows a significant 
decrease in the intensity of F-actin and VE-cadherin, 
which was associated with almost complete degra-
dation of the actin cytoskeleton and loss of continuity 
of the endothelial layer. Carneiro et al. (2009) demon-
strated the antiangiogenic activity of bevacizumab on 
VEGF-treated HUVECs. This drug has been shown to 
dose-dependently reduce the number of proliferating 
cells. This study also showed that blocking VEGF in-
duces apoptosis, limits migration to the damaged area 
and reduces vessel formation in vitro [38]. Zhang et al. 
(2020) demonstrated the inconclusive anti-angiogenic 
effect of bevacizumab. They found that the migration 
of HUVEC cells under hypoxic conditions, treated with 
bevacizumab, was actually enhanced. Additionally, an 
in vitro vessel formation assay showed that this drug 
accelerates cell angiogenesis [39]. Therefore, it can 
be suggested that bevacizumab may exhibit both pro- 
and anti-angiogenic characteristics depending on the 
microenvironmental conditions (normoxia or hypoxia) 
of the cells.

The second drug used in the research on which this 
work was based was pazopanib. Subsequent detailed 
fluorescence analysis of F-actin in pHCAEC cells incu-
bated with pazopanib and TNF-α revealed structures 
resembling the originally described migrasomes. Ma 

et al. (2015) demonstrated that migrating cells leave 
behind retraction fibres where membrane-covered 
vesicles are located. However, subsequent studies 
have established that actin polymerization is essen-
tial for the formation of migrasomes. The process by 
which cells form migrasomes and secrete them into 
the extracellular space may play a crucial role in cell 
communication [40]. However, considering the above, 
it should be expected that this image is an expression of 
cell death during dynamic processes, such as division 
or migration.

In the present study on the pHCAECs cell model, 
it was noted that the induction of KRN-633 and KRN-
633 combined with TNF α induced both cell apoptosis 
and cell swelling, which was characterized by a specific 
arrangement of F-actin filaments, but also complete 
disintegration of F-actin. The observed swelling cor-
related with the parallel arrangement of F-actin stress 
fibres and led to the spindle shape of the cells. This 
image of pHCAEC cells is characterized by their 
increased migration potential. It is worth noting that 
incubation with KRN-633 contributed to a reduction in 
the intensity of membrane VE-cadherin. It is intriguing 
that in cells treated simultaneously with KRN-633 and 
TNF-α, VE-cadherin was predominantly localized in 
the nucleus and cytoplasm around the perinuclear 
region. Research conducted by Liu et al. (2017) shows 
that thrombin induces phosphorylation of VE-cadherin 
while contributing to increased vascular permeability. 
Fluorescence analysis reveals that incubation of endo-
thelial cells with thrombin leads to increased expression 
of VE-cadherin in the perinuclear area and cytosol, 
accompanied by decreased expression of this protein 
on the cell membrane. It has been suggested that the 
effect of such an event may be to protect the protein 
from degradation [41]. Similarly, in the present findings, 
VE-cadherin translocation may serve as a mechanism 
to protect the protein against factors influencing cell 
degradation, although current studies do not definitively 
confirm this hypothesis. However, one can suggest that 
the inflammatory induction of pHCAECs inhibits the 
antiangiogenic effect of KRN-633.

Conclusions

Based on the conducted research, it can be con-
cluded that TNF-α induces an inflammatory response in 
pHCAEs, characterized by remodelling of the actin cyto-
skeleton into parallel-arranged F-actin stress fibres. This 
alteration changes the nature of cell-cell interactions, 
leading to increased permeability of the cell monolayer 
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through discontinuous intercellular connections and the 
formation of gaps between cells. 

Antiangiogenic compounds induce structural 
changes in the actin cytoskeleton of pHCAECs, leading 
to cell swelling, disruption of intercellular interactions, 
entosis occurring within strong cell-cell interactions, 
and the appearance of vesicular structures resembling 
apoptotic vesicles.

Additionally, endothelial inflammatory activation by 
TNF-α treatment of cells enhances the disintegrative cy-
toskeletal effect of bevacizumab, pazopanib, and KRN-
633 in pHCAECs. In the presence of TNF-α, pazopanib 
induces the formation of vesicular structures along the 
F-actin retraction fibres of migrating pHCAECs. This
finding may contribute to reevaluating the mechanism
proposed by the Chinese team from Tsinghua University 
led by Li Yu regarding “migrasome” formation, par-
ticularly in the context of cell death during dynamic
processes such as cell migration or cytokinesis.
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