open access

Online first
Review paper
Published online: 2022-05-02
Get Citation

Do we need new lipid-lowering agents in the era of PCSK9 inhibitors? Recent advances

Dan Atar12, Gisle Langslet3, Serena Tonstad4
DOI: 10.33963/KP.a2022.0117
Pubmed: 35521719
  1. Department of Cardiology, Oslo University Hospital Ulleval, Oslo, Norway
  2. Institute of Clinical Medicine, University of Oslo, Norway
  3. Lipid Clinic, Oslo University Hospital, Aker Sykehus, Nydalen, Oslo, Norway
  4. Department of Preventive Cardiology, Oslo University Hospital, Oslo, Norway

open access

Online first
Published online: 2022-05-02


Not available


Not available
Get Citation
About this article

Do we need new lipid-lowering agents in the era of PCSK9 inhibitors? Recent advances


Kardiologia Polska (Polish Heart Journal)


Online first

Article type

Review paper

Published online


Page views


Article views/downloads







Dan Atar
Gisle Langslet
Serena Tonstad

References (59)
  1. WHO: Health topics in cardiovascular diseases 2021. (April 28, 2022).
  2. Atar D, Jukema JW, Molemans B, et al. New cardiovascular prevention guidelines: How to optimally manage dyslipidaemia and cardiovascular risk in 2021 in patients needing secondary prevention? Atherosclerosis. 2021; 319: 51–61.
  3. Sverre E, Peersen K, Husebye E, et al. Unfavourable risk factor control after coronary events in routine clinical practice. BMC Cardiovasc Disord. 2017; 17(1): 40.
  4. Setny M, Jankowski P, Kamiński K, et al. Secondary prevention of coronary heart disease in Poland: does sex matter? Results from the POLASPIRE survey. Pol Arch Intern Med. 2022; 132(3).
  5. Mundal L, Igland J, Ose L, et al. Cardiovascular disease mortality in patients with genetically verified familial hypercholesterolemia in Norway during 1992-2013. Eur J Prev Cardiol. 2017; 24(2): 137–144.
  6. Bogsrud MP, Græsdal A, Johansen D, et al. LDL-cholesterol goal achievement, cardiovascular disease, and attributed risk of Lp(a) in a large cohort of predominantly genetically verified familial hypercholesterolemia. J Clin Lipidol. 2019; 13(2): 279–286.
  7. Mach F, Baigent C, Catapano AL, et al. ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41(1): 111–188.
  8. Guedeney P, Giustino G, Sorrentino S, et al. Efficacy and safety of alirocumab and evolocumab: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J. 2019 [Epub ahead of print]; 43(7): e17–e25.
  9. Kastelein JJP, Ginsberg HN, Langslet G, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015; 36(43): 2996–3003.
  10. Raal FJ, Stein EA, Dufour R, et al. RUTHERFORD-2 Investigators. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. 2015; 385(9965): 331–340.
  11. Farnier M, Hovingh GK, Langslet G, et al. Long-term safety and efficacy of alirocumab in patients with heterozygous familial hypercholesterolemia: An open-label extension of the ODYSSEY program. Atherosclerosis. 2018; 278: 307–314.
  12. Koren MJ, Sabatine MS, Giugliano RP, et al. Long-term efficacy and safety of evolocumab in patients with hypercholesterolemia. J Am Coll Cardiol. 2019; 74(17): 2132–2146.
  13. Santos RD, Stein EA, Hovingh GK, et al. Long-term evolocumab in patients with familial hypercholesterolemia. J Am Coll Cardiol. 2020; 75(6): 565–574.
  14. Blom DJ, Harada-Shiba M, Rubba P, et al. Efficacy and safety of alirocumab in adults with homozygous familial hypercholesterolemia: the ODYSSEY HoFH trial. J Am Coll Cardiol. 2020; 76(2): 131–142.
  15. Santulli G, Jankauskas SS, Gambardella J. Inclisiran: a new milestone on the PCSK9 road to tackle cardiovascular risk. Eur Heart J Cardiovasc Pharmacother. 2021; 7(3): e11–e12.
  16. Cuchel M, Bloedon LT, Szapary PO, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007; 356(2): 148–156.
  17. Ballantyne CM, Davidson MH, Macdougall DE, et al. Efficacy and safety of a novel dual modulator of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase in patients with hypercholesterolemia: results of a multicenter, randomized, double-blind, placebo-controlled, parallel-group trial. J Am Coll Cardiol. 2013; 62(13): 1154–1162.
  18. Ballantyne CM, McKenney JM, MacDougall DE, et al. Effect of ETC-1002 on serum low-density lipoprotein cholesterol in hypercholesterolemic patients receiving statin therapy. Am J Cardiol. 2016; 117(12): 1928–1933.
  19. Ray KK, Bays HE, Catapano AL, et al. CLEAR Harmony Trial. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019; 380(11): 1022–1032.
  20. Goldberg AC, Leiter LA, Stroes ESG, et al. Effect of bempedoic acid vs placebo added to maximally tolerated statins on low-density lipoprotein cholesterol in patients at high risk for cardiovascular disease: the CLEAR wisdom randomized clinical trial. JAMA. 2019; 322(18): 1780–1788.
  21. Lin Y, Parco C, Karathanos A, et al. Clinical efficacy and safety outcomes of bempedoic acid for LDL-C lowering therapy in patients at high cardiovascular risk: a systematic review and meta-analysis. BMJ Open. 2022; 12(2): e048893.
  22. Bytyçi I, Penson PE, Mikhailidis DP, et al. Prevalence of statin intolerance: a meta-analysis. Eur Heart J. 2022 [Epub ahead of print]: ehac015.
  23. Wood FA, Howard JP, Finegold JA, et al. N-of-1 trial of a statin, placebo, or no treatment to assess side effects. N Engl J Med. 2020; 383(22): 2182–2184.
  24. Herrett E, Williamson E, Brack K, et al. StatinWISE Trial Group. Statin treatment and muscle symptoms: series of randomised, placebo controlled n-of-1 trials. BMJ. 2021; 372: n135.
  25. Laufs U, Banach M, Mancini GB, et al. Efficacy and safety of bempedoic acid in patients with hypercholesterolemia and statin intolerance. J Am Heart Assoc. 2019; 8(7): e011662.
  26. Ballantyne CM, Banach M, Mancini GB, et al. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis. 2018; 277: 195–203.
  27. Ballantyne CM, Laufs U, Ray KK, et al. Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol. 2020; 27(6): 593–603.
  28. Rubino J, MacDougall DE, Sterling LR, et al. Combination of bempedoic acid, ezetimibe, and atorvastatin in patients with hypercholesterolemia: A randomized clinical trial. Atherosclerosis. 2021; 320: 122–128.
  29. McKenney J, MacDougall D, Sterling L, et al. Lipid lowering with bempedoic acid added to proprotein convertase subtilisin/kexin type 9 inhibitor therapy: a randomized controlled trial. J Clin Lipidol. 2019; 13(3): e55–e56.
  30. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nature Rev. 2021; 20(8): 589–610.
  31. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021; 42(47): 4791–4806.
  32. Bello-Chavolla OY, Kuri-García A, Ríos-Ríos M, et al. Familial combined hyperlipidemia: current knowledge, perspectives, and controversies. Rev Invest Clin. 2018; 70(5): 224–236.
  33. Aung T, Halsey J, Kromhout D, et al. Omega-3 Treatment Trialists’ Collaboration. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol. 2018; 3(3): 225–234.
  34. Bhatt DL, Steg PG, Miller M, et al. REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019; 380(1): 11–22.
  35. Peterson BE, Bhatt DL, Steg PhG, et al. REDUCE‐IT Investigators, REDUCE-IT Investigators, REDUCE-IT Investigators. Effects of icosapent ethyl on total ischemic events: from REDUCE-IT. J Am Coll Cardiol. 2019; 73(22): 2791–2802.
  36. Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020; 324(22): 2268–2280.
  37. Doi T, Langsted A, Nordestgaard BG. A possible explanation for the contrasting results of REDUCE-IT vs. STRENGTH: cohort study mimicking trial designs. Eur Heart J. 2021; 42(47): 4807–4817.
  38. Mason RP, Libby P, Bhatt DL. Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid. Arterioscler Thromb Vasc Biol. 2020; 40(5): 1135–1147.
  39. Liu ZL, Li GQ, Bensoussan A, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet. 2010; 375(9729): 1875–1884.
  40. Ginsberg HN, Hounslow NJ, Senko Y, et al. Efficacy and safety of K-877 (pemafibrate), a selective pparα modulator, in european patients on statin therapy. Diabetes Care. 2022; 45(4): 898–908.
  41. Pradhan AD, Paynter NP, Everett BM, et al. Rationale and design of the pemafibrate to reduce cardiovascular outcomes by reducing triglycerides in patients with diabetes (PROMINENT) study. Am Heart J. 2018; 206: 80–93.
  42. Dib I, Khalil A, Chouaib R, et al. Apolipoprotein C-III and cardiovascular diseases: when genetics meet molecular pathologies. Mol Biol Rep. 2021; 48(1): 875–886.
  43. Wulff AB, Nordestgaard BG, Tybjærg-Hansen A. APOC3 loss-of-function mutations, remnant cholesterol, low-density lipoprotein cholesterol, and cardiovascular risk: mediation- and meta-analyses of 137 895 individuals. Arterioscler Thromb Vasc Biol. 2018; 38(3): 660–668.
  44. Stitziel NO, Khera AV, Wang X, et al. PROMIS and Myocardial Infarction Genetics Consortium Investigators. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017; 69(16): 2054–2063.
  45. Dewey FE, Gusarova V, O'Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med. 2016; 374(12): 1123–1133.
  46. Hussain A, Sun C, Selvin E, et al. Triglyceride-rich lipoproteins, apolipoprotein C-III, angiopoietin-like protein 3, and cardiovascular events in older adults: Atherosclerosis Risk in Communities (ARIC) study. Eur J Prev Cardiol. 2022; 29(2): e53–e64.
  47. Ahmad Z, Banerjee P, Hamon S, et al. Inhibition of angiopoietin-like protein 3 with a monoclonal antibody reduces triglycerides in hypertriglyceridemia. Circulation. 2019; 140(6): 470–486.
  48. Ahmad Z, Pordy R, Rader D, et al. Inhibition of angiopoietin-like protein 3 with evinacumab in subjects with high and severe hypertriglyceridemia. J Am Coll Cardiol. 2021; 78(2): 193–195.
  49. Raal FJ, Rosenson RS, Reeskamp LF, et al. ELIPSE HoFH Investigators. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020; 383(8): 711–720.
  50. Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis and hypertriglyceridaemia. Eur Heart J. 2020; 41(40): 3936–3945.
  51. Tardif JC, Karwatowska-Prokopczuk E, Amour ES, et al. Apolipoprotein C-III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. Eur Heart J. 2022; 43(14): 1401–1412.
  52. Gelrud A, Digenio A, Alexander V, et al. Treatment with volanesorsen reduced triglycerides and pancreatititis in patients with FCS and sHTG vs placebo: results of the APPROACH and COMPASS studies. Atherosclerosis. ; 32(Suppl 2018): 157–158.
  53. Witztum JL, Gaudet D, Freedman SD, et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N Engl J Med. 2019; 381(6): 531–542.
  54. Erqou S, Kaptoge S, Perry PL, et al. Emerging Risk Factors Collaboration. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009; 302(4): 412–423.
  55. Ference BA. The potential clinical benefit of lowering lipoprotein(a). JAMA. 2022 [Epub ahead of print].
  56. Tsimikas S, Karwatowska-Prokopczuk E, Xia S, et al. AKCEA-APO(a)-LRx Study Investigators. Lipoprotein (a) reduction in persons with cardiovascular disease. N Engl J Med. 2020; 382(3): 244–255.
  57. Assessing the Impact of Lipoprotein (a) Lowering With Pelacarsen (TQJ230) on Major Cardiovascular Events in Patients With CVD. (April 28, 2022).
  58. Koren MJ, Moriarty PM, Baum SJ, et al. Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a). Nat Med. 2022; 28(1): 96–103.
  59. Nissen SE, Wolski K, Balog C, et al. Single ascending dose study of a short interfering RNA targeting lipoprotein (a) production in individuals with elevated plasma lipoprotein(a) levels. JAMA. 2022 [Epub ahead of print].


Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Sp. z o.o. VM Group Sp.k., ul. Świętokrzyska 73 , 80–180 Gdańsk, Poland

phone:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: