open access

Vol 80, No 4 (2022)
Expert opinion
Published online: 2022-03-15
Get Citation

Clinical use of intracoronary imaging modalities in Poland. Expert opinion of the Association of Cardiovascular Interventions of the Polish Cardiac Society

Tomasz Pawłowski1, Jacek Legutko23, Janusz Kochman4, Tomasz Roleder5, Jerzy Pręgowski6, Zbigniew Chmielak6, Jacek Kubica7, Andrzej Ochała8, Radosław Parma8, Marek Grygier9, Dariusz Dudek10, Wojciech Wojakowski8, Stanisław Bartuś10, Adam Witkowski6, Robert Gil1
DOI: 10.33963/KP.a2022.0071
·
Pubmed: 35290660
·
Kardiol Pol 2022;80(4):509-519.
Affiliations
  1. Department of Invasive Cardiology, Central Clinical Hospital of the Ministry of Interior and Administration, Center of Postgraduate Medical Education, Warszawa, Poland
  2. Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
  3. John Paul II Hospital, Kraków, Poland
  4. 1st Chair and Department of Cardiology, Medical University of Warsaw, Warszawa, Poland
  5. Cardiology Department, Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
  6. Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warszawa, Poland
  7. Department of Cardiology and Internal Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
  8. Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
  9. Chair and 1st Department of Cardiology, Poznan University of Medical Sciences, Poznań, Poland
  10. 2nd Department of Cardiology, Collegium Medicum, Jagiellonian University, Kraków, Poland

open access

Vol 80, No 4 (2022)
Expert opinion and position paper
Published online: 2022-03-15

Abstract

The article presents the most common, current indications for the use of intravascular invasive imag-ing diagnostic techniques, i.e. intravascular ultrasound and optical coherence tomography in Polish invasive cardiology centers. The application of the above-mentioned techniques in the diagnosis of stenosis of the left main coronary artery, optimization of stent implantation procedures, treatment of calcified lesions, and other clinically important issues are discussed.

Abstract

The article presents the most common, current indications for the use of intravascular invasive imag-ing diagnostic techniques, i.e. intravascular ultrasound and optical coherence tomography in Polish invasive cardiology centers. The application of the above-mentioned techniques in the diagnosis of stenosis of the left main coronary artery, optimization of stent implantation procedures, treatment of calcified lesions, and other clinically important issues are discussed.

Get Citation

Keywords

intravascular ultrasound, optical coherence tomography, stent implantation, left main coronary artery

About this article
Title

Clinical use of intracoronary imaging modalities in Poland. Expert opinion of the Association of Cardiovascular Interventions of the Polish Cardiac Society

Journal

Kardiologia Polska (Polish Heart Journal)

Issue

Vol 80, No 4 (2022)

Article type

Expert opinion

Pages

509-519

Published online

2022-03-15

Page views

272

Article views/downloads

105

DOI

10.33963/KP.a2022.0071

Pubmed

35290660

Bibliographic record

Kardiol Pol 2022;80(4):509-519.

Keywords

intravascular ultrasound
optical coherence tomography
stent implantation
left main coronary artery

Authors

Tomasz Pawłowski
Jacek Legutko
Janusz Kochman
Tomasz Roleder
Jerzy Pręgowski
Zbigniew Chmielak
Jacek Kubica
Andrzej Ochała
Radosław Parma
Marek Grygier
Dariusz Dudek
Wojciech Wojakowski
Stanisław Bartuś
Adam Witkowski
Robert Gil

References (66)
  1. Gąsior P, Bryniarski K, Roleder M, et al. Knowledge of intravascular imaging in interventional cardiology practice: results of a survey on Polish interventional cardiologists. Kardiol Pol. 2019; 77(12): 1193–1195.
  2. Koskinas KC, Nakamura M, Räber L, et al. Current use of intracoronary imaging in interventional practice — Results of a European Association of Percutaneous Cardiovascular Interventions (EAPCI) and Japanese Association of Cardiovascular Interventions and Therapeutics (CVIT) Clinical Practice Survey. EuroIntervention. 2018; 14(4): e475–e484.
  3. Yock PG, Linker DT, Angelsen BA. Two-dimensional intravascular ultrasound: technical development and initial clinical experience. J Am Soc Echocardiogr. 1989; 2(4): 296–304.
  4. Mintz G, Garcia-Garcia H, Nicholls S, et al. Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroIntervention. 2011; 6(9): 1123–1130.
  5. Ono M, Kawashima H, Hara H, et al. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front Cardiovasc Med. 2020; 7: 119.
  6. Prati F, Regar E, Mintz GS, et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J. 2010; 31(4): 401–415.
  7. Oviedo C, Maehara A, Mintz GS, et al. Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: where is the plaque really located? Circ Cardiovasc Interv. 2010; 3(2): 105–112.
  8. Jasti V, Ivan E, Yalamanchili V, et al. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation. 2004; 110(18): 2831–2836.
  9. Hernandez Jd, Hernandez FH, Alfonso F, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions. J Am Coll Cardiol. 2011; 58(4): 351–358.
  10. Legutko J, Dudek D, Jakala J, et al. TCT-309 Correlation between fractional flow reserve and intravascular ultrasound in patients with isolated ambiguous left main stenosis. J Am Coll Cardiol. 2012; 60(17): B88.
  11. Kang S, Lee J, Ahn JI, et al. intravascular ultrasound-derived predictors for fractional flow reserve in intermediate left main disease. J Am Coll Cardiol Intv. 2011; 4: 1168–1174.
  12. Park SJ, Ahn JM, Kang SJ, et al. Intravascular ultrasound-derived minimal lumen area criteria for functionally significant left main coronary artery stenosis. JACC Cardiovasc Interv. 2014; 7(8): 868–874.
  13. Skowronski J, Cho I, Mintz GS, et al. Inter-ethnic differences in normal coronary anatomy between Caucasian (Polish) and Asian (Korean) populations. Eur J Radiol. 2020; 130: 109185.
  14. Johnson TW, Räber L, Di Mario C, et al. Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention. 2019; 15(5): 434–451.
  15. Dato I, Burzotta F, Trani C, et al. Optical coherence tomography guidance for the management of angiographically intermediate left main bifurcation lesions: Early clinical experience. Int J Cardiol. 2017; 248: 108–113.
  16. Waksman R, Legutko J, Singh J, et al. FIRST: Fractional Flow Reserve and Intravascular Ultrasound Relationship Study. J Am Coll Cardiol. 2013; 61(9): 917–923.
  17. Nascimento B, de Sousa M, Koo B, et al. Diagnostic accuracy of intravascular ultrasound- derived minimal lumen area compared with fractional flow reserve — meta-analysis pooled accuracy of IVUS luminal area versus FFR. Catheter Cardiovasc Interv. 2014; 84(3): 377–385.
  18. Gil RJ, Pawłowski T, Dudek D, et al. Comparison of angiographically guided direct stenting technique with direct stenting and optimal balloon angioplasty guided with intravascular ultrasound. The multicenter, randomized trial results. Am Heart J. 2007; 154(4): 669–675.
  19. Parise H, Maehara A, Stone GW, et al. Meta-analysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in pre-drug-eluting stent era. Am J Cardiol. 2011; 107(3): 374–382.
  20. Hong SJ, Mintz GS, Ahn CM, et al. Effect of intravascular ultrasound-guided drug-eluting stent implantation: 5-year follow-up of the IVUS-XPL randomized trial. JACC Cardiovasc Interv. 2020; 13(1): 62–71.
  21. Gao XF, Ge Z, Kong XQ, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: the ULTIMATE trial. J Am Coll Cardiol. 2018; 72(24): 3126–3137.
  22. Choi KiH, Song YB, Lee JM, et al. Impact of intravascular ultrasound-guided percutaneous coronary intervention on long-term clinical outcomes in patients undergoing complex procedures. JACC Cardiovasc Interv. 2019; 12(7): 607–620.
  23. Buccheri S, Franchina G, Romano S, et al. Clinical outcomes following intravascular imaging-guided versus coronary angiography-guided percutaneous coronary intervention with stent implantation: a systematic review and bayesian network meta-analysis of 31 studies and 17,882 patients. JACC Cardiovasc Interv. 2017; 10(24): 2488–2498.
  24. Ahn JM, Kang SJ, Yoon SH, et al. Meta-Analysis of outcomes after intravascular ultrasound–guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies. Am J Cardiol. 2014; 113(8): 1338–1347.
  25. Gao XF, Ge Z, Kong XQ, et al. 3-Year outcomes of the ULTIMATE trial comparing intravascular ultrasound versus angiography-guided drug-eluting stent implantation. JACC Cardiovasc Interv. 2021; 14(3): 247–257.
  26. Räber L, Mintz GS, Koskinas KC, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2018; 39(35): 3281–3300.
  27. Prati F, Di Vito L, Biondi-Zoccai G, et al. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012; 8(7): 823–829.
  28. Meneveau N, Souteyrand G, Motreff P, et al. Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-st-elevation acute coronary syndrome: results of the multicenter, randomized DOCTORS study (Does Optical Coherence Tomography Optimize Results of Stenting). Circulation. 2016; 134(13): 906–917.
  29. Ali ZA, Karimi Galougahi K, Maehara A, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet. 2016; 388(10060): 2618–2628.
  30. Kubo T, Akasaka T, Shite J, et al. OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study. JACC Cardiovasc Imaging. 2013; 6(10): 1095–1104.
  31. Mintz GS, Painter JA, Pichard AD, et al. Atherosclerosis in angiographically "normal" coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol. 1995; 25(7): 1479–1485.
  32. Otake H, Kubo T, Takahashi H, et al. Optical frequency domain imaging versus intravascular ultrasound in percutaneous coronary intervention (OPINION trial): results from the OPINION imaging study. JACC Cardiovasc Imaging. 2018; 11(1): 111–123.
  33. Hong MK, Mintz GS, Lee CW, et al. Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J. 2006; 27(11): 1305–1310.
  34. Prati F, Romagnoli E, Burzotta F, et al. Clinical impact of OCT findings during PCI: the CLI-OPCI II study. JACC Cardiovasc Imaging. 2015; 8(11): 1297–1305.
  35. Joner M, Koppara T, Byrne R, et al. Neoatherosclerosis in patients with coronary stent thrombosis. JACC Cardiovasc Interv. 2018; 11(14): 1340–1350.
  36. Park SJ, Kim YH, Park DW, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009; 2(3): 167–177.
  37. de la Torre Hernandez Jd, Alonso JB, Hospital JG, et al. Clinical Impact of Intravascular Ultrasound Guidance in Drug-Eluting Stent Implantation for Unprotected Left Main Coronary Disease. J Am Coll Cardiol Intv. 2014; 7(3): 244–254.
  38. Andell P, Karlsson S, Mohammad MA, et al. Intravascular ultrasound guidance is associated with better outcome in patients undergoing unprotected left main coronary artery stenting compared with angiography guidance alone. Circ Cardiovasc Interv. 2017; 10(5).
  39. Gao XF, Kan J, Zhang YJ, et al. Comparison of one-year clinical outcomes between intravascular ultrasound-guided versus angiography-guided implantation of drug-eluting stents for left main lesions: a single-center analysis of a 1,016-patient cohort. Patient Prefer Adherence. 2014; 8: 1299–1309.
  40. Kang SJ, Mintz GS, Kim WJ, et al. Changes in left main bifurcation geometry after a single-stent crossover technique: an intravascular ultrasound study using direct imaging of both the left anterior descending and the left circumflex coronary arteries before and after intervention. Circ Cardiovasc Interv. 2011; 4(4): 355–361.
  41. Kang SJ, Ahn JM, Song H, et al. Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease. Circ Cardiovasc Interv. 2011; 4(6): 562–569.
  42. de la Torre Hernandez JM, Garcia Camarero T, Baz Alonso JA, et al. Outcomes of predefined optimisation criteria for intravascular ultrasound guidance of left main stenting. EuroIntervention. 2020; 16(3): 210–217.
  43. Fujino Y, Bezerra HG, Attizzani GF, et al. Frequency-domain optical coherence tomography assessment of unprotected left main coronary artery disease-a comparison with intravascular ultrasound. Catheter Cardiovasc Interv. 2013; 82(3): E173–E183.
  44. Cortese B, Burzotta F, Alfonso F, et al. Role of optical coherence tomography for distal left main stem angioplasty. Catheter Cardiovasc Interv. 2020; 96(4): 755–761.
  45. Opolski M, Spiewak M, Marczak M, et al. Mechanisms of Myocardial Infarction in Patients With Nonobstructive Coronary Artery Disease. J Am Coll Cardiol Cardiovasc Imaging . 2019; 12(11): 2210–2221.
  46. Eitel I, Stiermaier T, Graf T, et al. Optical coherence tomography to evaluate plaque burden and morphology in patients with Takotsubo syndrome. J Am Heart Assoc. 2016; 5(12).
  47. Pawłowski T, Mintz G, Kulawik T, et al. Virtual histology intravascular ultrasound evaluation of the left anterior descending coronary artery in patients with transient left ventricular ballooning syndrome. Kardiol Pol. 2010; 68(10): 1093–1098.
  48. Vergallo R, Ren X, Yonetsu T, et al. Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: a 3-vessel optical coherence tomography study. Am Heart J. 2014; 167(1): 59–67.
  49. Shin ES, Ann SH, Singh GB, et al. OCT-Defined morphological characteristics of coronary artery spasm sites in vasospastic angina. JACC Cardiovasc Imaging. 2015; 8(9): 1059–1067.
  50. Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2021; 42(14): 1289–1367.
  51. Sawada T, Shite J, Garcia-Garcia HM, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J. 2008; 29(9): 1136–1146.
  52. Fujii K, Masutani M, Okumura T, et al. Frequency and predictor of coronary thin-cap fibroatheroma in patients with acute myocardial infarction and stable angina pectoris a 3-vessel optical coherence tomography study. J Am Coll Cardiol. 2008; 52(9): 787–788.
  53. Vergallo R, Ren X, Yonetsu T, et al. Pancoronary plaque vulnerability in patients with acute coronary syndrome and ruptured culprit plaque: a 3-vessel optical coherence tomography study. Am Heart J. 2014; 167(1): 59–67.
  54. Hong MK, Mintz GS, Lee CW, et al. Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation. Eur Heart J. 2006; 27(11): 1305–1310.
  55. Hoffmann R, Mintz GS, Popma JJ, et al. Treatment of calcified coronary lesions with Palmaz-Schatz stents. An intravascular ultrasound study. Eur Heart J. 1998; 19(8): 1224–1231.
  56. Fujino A, Mintz G, Matsumura M, et al. TCT-28 a new optical coherence tomography-based calcium scoring system to predict stent underexpansion. EuroIntervention. 2017; 13(18): e2182–e2189.
  57. Wang X, Matsumura M, Mintz GS, et al. In vivo calcium detection by comparing optical coherence tomography, intravascular ultrasound, and angiography. JACC Cardiovasc Imaging. 2017; 10(8): 869–879.
  58. Yamamoto MH, Maehara A, Karimi Galougahi K, et al. Mechanisms of orbital versus rotational atherectomy plaque modification in severely calcified lesions assessed by optical coherence tomography. JACC Cardiovasc Interv. 2017; 10(24): 2584–2586.
  59. Ali ZA, Brinton TJ, Hill JM, et al. Optical coherence tomography characterization of coronary lithoplasty for treatment of calcified lesions: first description. JACC Cardiovasc Imaging. 2017; 10(8): 897–906.
  60. Cosgrove CS, Wilson SJ, Bogle R, et al. Intravascular lithotripsy for lesion preparation in patients with calcific distal left main disease. EuroIntervention. 2020; 16(1): 76–79.
  61. Calé R, Rebocho M, Aguiar C, et al. Diagnosis, prevention and treatment of cardiac allograft vasculopathy. Rev Port Cardiol. 2012; 31(11): 721–730.
  62. Dyrbuś M, Gąsior M, Szyguła-Jurkiewicz B, et al. The role of optical coherence tomography and other intravascular imaging modalities in cardiac allograft vasculopathy. Adv Interv Cardiol. 2020; 16(1): 19–29.
  63. Park SJ, Kang SJ, Virmani R, et al. In-stent neoatherosclerosis: a final common pathway of late stent failure. J Am Coll Cardiol. 2012; 59(23): 2051–2057.
  64. Hong SJ, Lee SY, Hong MKi. Clinical implication of optical coherence tomography-based neoatherosclerosis. J Korean Med Sci. 2017; 32(7): 1056–1061.
  65. Lee SY, Hur SH, Lee SG, et al. Optical coherence tomographic observation of in-stent neoatherosclerosis in lesions with more than 50% neointimal area stenosis after second-generation drug-eluting stent implantation. Circ Cardiovasc Interv. 2015; 8(2): e001878.
  66. Mueller C, Hodgson JM, Schindler C, et al. Cost-effectiveness of intracoronary ultrasound for percutaneous coronary interventions. Am J Cardiol. 2003; 91(2): 143–147.

Regulations

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

By VM Media Sp. z o.o. VM Group Sp.k., ul. Świętokrzyska 73 , 80–180 Gdańsk, Poland

phone:+48 58 320 94 94, fax:+48 58 320 94 60, e-mail: viamedica@viamedica.pl