Vol 80, No 3 (2022)
Editorial
Published online: 2022-02-02

open access

Page views 5118
Article views/downloads 518
Get Citation

Connect on Social Media

Connect on Social Media

Role of cardiac magnetic resonance imaging in heart failure

Prathap Kanagala12, James Lee3, Mehtab Mehtab Khan-Kheil3, Jamal Nasir Khan34
Pubmed: 35114001
Kardiol Pol 2022;80(3):251-253.

Abstract

Not available

References

  1. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599–3726.
  2. Karamitsos TD, Francis JM, Myerson S, et al. The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol. 2009; 54(15): 1407–1424.
  3. Ojrzyńska-Witek N, Marczak M, Mazurkiewicz Ł, et al. Role of cardiac magnetic resonance in heart failure of initially unknown etiology: A 10-year observational study. Kardiol Pol. 2021 [Epub ahead of print].
  4. Abbasi SA, Ertel A, Shah RV, et al. Impact of cardiovascular magnetic resonance on management and clinical decision-making in heart failure patients. J Cardiovasc Magn Reson. 2013; 15: 89.
  5. Kanagala P, Cheng ASH, Singh A, et al. Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in heart failure with preserved ejection fraction — implications for clinical trials. J Cardiovasc Magn Reson. 2018; 20(1): 4.
  6. Paterson DI, Wells G, Erthal F, et al. OUTSMART HF: A Randomized Controlled Trial of Routine Versus Selective Cardiac Magnetic Resonance for Patients With Nonischemic Heart Failure (IMAGE-HF 1B). Circulation. 2020; 141(10): 818–827.
  7. Jaarsma C, Leiner T, Bekkers SC, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012; 59(19): 1719–1728.
  8. Khan JN, McCann GP. Cardiovascular magnetic resonance imaging assessment of outcomes in acute myocardial infarction. World J Cardiol. 2017; 9(2): 109–133.
  9. Felker GM, Shaw LK, O'Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002; 39(2): 210–218.
  10. Gulati A, Ismail TF, Jabbour A, et al. The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation. 2013; 128(15): 1623–1633.
  11. Kanagala P, Arnold JR, Singh A, et al. Prevalence of right ventricular dysfunction and prognostic significance in heart failure with preserved ejection fraction. Int J Cardiovasc Imaging. 2021; 37(1): 255–266.
  12. Pellicori P, Zhang J, Lukaschuk E, et al. Left atrial function measured by cardiac magnetic resonance imaging in patients with heart failure: clinical associations and prognostic value. Eur Heart J. 2015; 36(12): 733–742.
  13. Kato S, Saito N, Kirigaya H, et al. Prognostic significance of quantitative assessment of focal myocardial fibrosis in patients with heart failure with preserved ejection fraction. Int J Cardiol. 2015; 191: 314–319.
  14. Schelbert EB, Piehler KM, Zareba KM, et al. Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc. 2015; 4(12).
  15. Leyva F, Leyva F, Leyva F, et al. Cardiac resynchronization therapy guided by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010; 12(3): 64–262.



Polish Heart Journal (Kardiologia Polska)