Vol 80, Supp. IV (2022): Zeszyty Edukacyjne 4/2022
Wytyczne ESC
Published online: 2023-02-21

open access

Page views 302
Article views/downloads 477
Get Citation

Connect on Social Media

Connect on Social Media

Wytyczne ESC 2022 dotyczące postępowania u pacjentów z komorowymi zaburzeniami rytmu serca oraz zapobiegania nagłej śmierci sercowej

Katja Zeppenfeld, Jacob Tfelt-Hansen, Marta de Riva, Bo Gregers Winkel, Elijah R. Behr, Nico A. Blom, Philippe Charron, Domenico Corrado, Nikolaos Dagres, Christian de Chillou, Lars Eckardt, Tim Friede, Kristina H. Haugaa, Mélèze Hocini, Pier D. Lambiase, Eloi Marijon, Jose L. Merino, Petr Peichl, Silvia G. Priori, Tobias Reichlin, Jeanette Schulz-Menger, Christian Sticherling, Stylianos Tzeis, Axel Verstrael, Maurizio Volterrani
DOI: 10.33963/v.kp.92187

Abstract

Not available

Article available in PDF format

View PDF (Polish) Download PDF file

References

  1. Brignole M, Moya A, de La, et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur Heart J. 2018; 39(21): 1883–1948.
  2. Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021; 42(35): 3427–3520.
  3. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018; 39(2): 119–177.
  4. Pelliccia A, Sharma S, Gati S, et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J. 2021; 42(1): 17–96.
  5. Wahbi K, Babuty D, Probst V, et al. Incidence and predictors of sudden death, major conduction defects and sustained ventricular tachyarrhythmias in 1388 patients with myotonic dystrophy type 1. Eur Heart J. 2017; 38(10): 751–758.
  6. Bucci E, Testa M, Licchelli L, et al. A 34-year longitudinal study on long-term cardiac outcomes in DM1 patients with normal ECG at baseline at an Italian clinical centre. J Neurol. 2018; 265(4): 885–895.
  7. Chong-Nguyen C, Wahbi K, Algalarrondo V, et al. Association between mutation size and cardiac involvement in myotonic dystrophy type 1: an analysis of the DM1-heart registry. Circ Cardiovasc Genet. 2017; 10(3): e001526.
  8. Sabovic M, Medica I, Logar N, et al. Relation of CTG expansion and clinical variables to electrocardiogram conduction abnormalities and sudden death in patients with myotonic dystrophy. Neuromuscul Disord. 2003; 13(10): 822–826.
  9. Clarke NR, Kelion AD, Nixon J, et al. Does cytosine-thymine-guanine (CTG) expansion size predict cardiac events and electrocardiographic progression in myotonic dystrophy? Heart. 2001; 86(4): 411–416.
  10. Melacini P, Villanova C, Menegazzo E, et al. Correlation between cardiac involvement and CTG trinucleotide repeat length in myotonic dystrophy. J Am Coll Cardiol. 1995; 25(1): 239–245.
  11. Lazarus A, Varin J, Ounnoughene Z, et al. Relationships among electrophysiological findings and clinical status, heart function, and extent of DNA mutation in myotonic dystrophy. Circulation. 1999; 99(8): 1041–1046.
  12. Sansone VA, Brigonzi E, Schoser B, et al. The frequency and severity of cardiac involvement in myotonic dystrophy type 2 (DM2): long-term outcomes. Int J Cardiol. 2013; 168(2): 1147–1153.
  13. Breton R, Mathieu J, et al. Usefulness of clinical and electrocardiographic data for predicting adverse cardiac events in patients with myotonic dystrophy. Can J Cardiol. 2009; 25(2): e23–e27.
  14. Hermans MCE, Faber CG, Bekkers SC, et al. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2012; 14: 48.
  15. Schmacht L, Traber J, Grieben U, et al. Cardiac involvement in myotonic dystrophy type 2 patients with preserved ejection fraction: detection by cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2016; 9(7): e004615.
  16. Bhakta D, Groh MR, Shen C, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med. 2008; 358(25): 2688–2697.
  17. Bhakta D, Groh MR, Shen C, et al. Increased mortality with left ventricular systolic dysfunction and heart failure in adults with myotonic dystrophy type 1. Am Heart J. 2010; 160(6): 1137–1141.e1.
  18. Petri H, Ahtarovski KA, Vejlstrup N, et al. Myocardial fibrosis in patients with myotonic dystrophy type 1: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2014; 16: 59.
  19. Myerburg RJ, Junttila MJ, et al. Sudden cardiac death caused by coronary heart disease. Circulation. 2012; 125(8): 1043–1052.
  20. Stecker EC, Reinier K, Marijon E, et al. Public health burden of sudden cardiac death in the United States. Circ Arrhythm Electrophysiol. 2014; 7(2): 212–217.
  21. Chen LY, Sotoodehnia N, Bůžková P, et al. Atrial fibrillation and the risk of sudden cardiac death: the atherosclerosis risk in communities study and cardiovascular health study. JAMA Intern Med. 2013; 173(1): 29–35.
  22. Marijon E, Uy-Evanado A, Dumas F, et al. Warning symptoms are associated with survival from sudden cardiac arrest. Ann Intern Med. 2016; 164(1): 23–29.
  23. Glinge C, Jabbari R, Risgaard B, et al. Symptoms before sudden arrhythmic death syndrome: a nationwide study among the young in Denmark. J Cardiovasc Electrophysiol. 2015; 26(7): 761–767.
  24. Ågesen FN, Lynge TH, Blanche P, et al. Temporal trends and sex differences in sudden cardiac death in the Copenhagen City Heart Study. Heart. 2021; 107(16): 1303–1309.
  25. Winkel BG, Holst AG, Theilade J, et al. Nationwide study of sudden cardiac death in persons aged 1–35 years. Eur Heart J. 2011; 32(8): 983–990.
  26. Pilmer CM, Kirsh JA, Hildebrandt D, et al. Sudden cardiac death in children and adolescents between 1 and 19 years of age. Heart Rhythm. 2014; 11(2): 239–245.
  27. Risgaard B, Winkel BG, Jabbari R, et al. Burden of sudden cardiac death in persons aged 1 to 49 years: nationwide study in Denmark. Circ Arrhythm Electrophysiol. 2014; 7(2): 205–211.
  28. Fishman GI, Chugh SS, Dimarco JP, et al. Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop. Circulation. 2010; 122(22): 2335–2348.
  29. Wong CX, Brown A, Lau DH, et al. Epidemiology of sudden cardiac death: global and regional perspectives. Heart Lung Circ. 2019; 28(1): 6–14.
  30. Bougouin W, Lamhaut L, Marijon E, et al. SDEC Co-Investigators. Characteristics and prognosis of sudden cardiac death in Greater Paris: population-based approach from the Paris Sudden Death Expertise Center (Paris-SDEC). Intensive Care Med. 2014; 40(6): 846–854.
  31. Deo R, Safford MM, Albert CM, et al. Epidemiology and genetics of sudden cardiac death. Circulation. 2012; 125(4): 620–637.
  32. Gerber Y, Jacobsen SJ, Frye RL, et al. Secular trends in deaths from cardiovascular diseases: a 25-year community study. Circulation. 2006; 113(19): 2285–2292.
  33. Krahn AD, Connolly SJ, Roberts RS, et al. Diminishing proportional risk of sudden death with advancing age: implications for prevention of sudden death. Am Heart J. 2004; 147(5): 837–840.
  34. Becker LB, Han BH, Meyer PM, et al. Racial differences in the incidence of cardiac arrest and subsequent survival. The CPR Chicago Project. N Engl J Med. 1993; 329(9): 600–606.
  35. Zhao Di, Post WS, Blasco-Colmenares E, et al. Racial differences in sudden cardiac death. Circulation. 2019; 139(14): 1688–1697.
  36. Vreede-Swagemakers JJ, Gorgels A, Dubois-Arbouw W, et al. Out-of-hospital cardiac arrest in the 1990s: a population-based study in the Maastricht area on incidence, characteristics and survival. J Am Coll Cardiol. 1997; 30(6): 1500–1505.
  37. Lynge TH, Risgaard B, Banner J, et al. Nationwide burden of sudden cardiac death: A study of 54,028 deaths in Denmark. Heart Rhythm. 2021; 18(10): 1657–1665.
  38. Atwood C, Eisenberg MS, Herlitz J, et al. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation. 2005; 67(1): 75–80.
  39. Empana JP, Blom MT, Bӧttiger BW, et al. Determinants of occurrence and survival after sudden cardiac arrest - a European perspective: The ESCAPE-NET project. Resuscitation. 2018; 124: 7–13.
  40. Fox CS, Evans JC, Larson MG, et al. Temporal trends in coronary heart disease mortality and sudden cardiac death from 1950 to 1999: the Framingham Heart Study. Circulation. 2004; 110(5): 522–527.
  41. Niemeijer MN, van den Berg ME, Leening MJG, et al. Declining incidence of sudden cardiac death from 1990-2010 in a general middle-aged and elderly population: The Rotterdam Study. Heart Rhythm. 2015; 12(1): 123–129.
  42. Lynge TH, Nielsen JL, Blanche P, et al. Decline in incidence of sudden cardiac death in the young: a 10-year nationwide study of 8756 deaths in Denmark. Europace. 2019; 21(6): 909–917.
  43. Zheng ZJ, Croft JB, Giles WH, et al. Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001; 104(18): 2158–2163.
  44. Dudas K, Lappas G, Stewart S, et al. Trends in out-of-hospital deaths due to coronary heart disease in Sweden (1991 to 2006). Circulation. 2011; 123(1): 46–52.
  45. Harmon KG, Asif IM, Maleszewski JJ, et al. Incidence, cause, and comparative frequency of sudden cardiac death in national collegiate athletic association athletes: a decade in review. Circulation. 2015; 132(1): 10–19.
  46. Risgaard B, Winkel BoG, Jabbari R, et al. Sports-related sudden cardiac death in a competitive and a noncompetitive athlete population aged 12 to 49 years: data from an unselected nationwide study in Denmark. Heart Rhythm. 2014; 11(10): 1673–1681.
  47. Holst AG, Winkel BoG, Theilade J, et al. Incidence and etiology of sports-related sudden cardiac death in Denmark — implications for preparticipation screening. Heart Rhythm. 2010; 7(10): 1365–1371.
  48. Maron BJ, Doerer JJ, Haas TS, et al. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009; 119(8): 1085–1092.
  49. Corrado D, Basso C, Thiene G. Sudden cardiac death in athletes: what is the role of screening? Curr Opin Cardiol. 2012; 27(1): 41–48.
  50. Albert CM, Mittleman MA, Chae CU, et al. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med. 2000; 343(19): 1355–1361.
  51. Siscovick DS, Weiss NS, Fletcher RH, et al. The incidence of primary cardiac arrest during vigorous exercise. N Engl J Med. 1984; 311(14): 874–877.
  52. Marijon E, Tafflet M, Celermajer DS, et al. Sports-related sudden death in the general population. Circulation. 2011; 124(6): 672–681.
  53. Heidbuchel H, Willems R, Jordaens L, et al. Intensive recreational athletes in the prospective multinational ICD Sports Safety Registry: Results from the European cohort. Eur J Prev Cardiol. 2019; 26(7): 764–775.
  54. Marijon E, Bougouin W, Périer MC, et al. Incidence of sports-related sudden death in France by specific sports and sex. JAMA. 2013; 310(6): 642–643.
  55. Marijon E, Uy-Evanado A, Reinier K, et al. Sudden cardiac arrest during sports activity in middle age. Circulation. 2015; 131(16): 1384–1391.
  56. Bagnall RD, Weintraub RG, Ingles J, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016; 374(25): 2441–2452.
  57. Wisten A, Forsberg H, Krantz P, et al. Sudden cardiac death in 15–35-year olds in Sweden during 1992–99. J Intern Med. 2002; 252(6): 529–536.
  58. Chugh SS, Jui J, Gunson K, et al. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large U.S. community. J Am Coll Cardiol. 2004; 44(6): 1268–1275.
  59. Winkel BoG, Risgaard B, Sadjadieh G, et al. Sudden cardiac death in children (1-18 years): symptoms and causes of death in a nationwide setting. Eur Heart J. 2014; 35(13): 868–875.
  60. Byrne R, Constant O, Smyth Y, et al. Multiple source surveillance incidence and aetiology of out-of-hospital sudden cardiac death in a rural population in the West of Ireland. Eur Heart J. 2008; 29(11): 1418–1423.
  61. Eckart RE, Shry EA, Burke AP, et al. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J Am Coll Cardiol. 2011; 58(12): 1254–1261.
  62. Waldmann V, Karam N, Bougouin W, et al. Burden of coronary artery disease as a cause of sudden cardiac arrest in the Young. J Am Coll Cardiol. 2019; 73(16): 2118–2120.
  63. Waldmann V, Karam N, Rischard J, et al. Low rates of immediate coronary angiography among young adults resuscitated from sudden cardiac arrest. Resuscitation. 2020; 147: 34–42.
  64. Lloyd-Jones DM, Wilson PWF, Larson MG, et al. Framingham risk score and prediction of lifetime risk for coronary heart disease. Am J Cardiol. 2004; 94(1): 20–24.
  65. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42(34): 3227–3337.
  66. Jouven X, Desnos M, Guerot C, et al. Predicting sudden death in the population: the Paris Prospective Study I. Circulation. 1999; 99(15): 1978–1983.
  67. Dekker LRC, Bezzina CR, Henriques JPS, et al. Familial sudden death is an important risk factor for primary ventricular fibrillation: a case-control study in acute myocardial infarction patients. Circulation. 2006; 114(11): 1140–1145.
  68. Kaikkonen KS, Kortelainen ML, Linna E, et al. Family history and the risk of sudden cardiac death as a manifestation of an acute coronary event. Circulation. 2006; 114(14): 1462–1467.
  69. Jabbari R, Engstrøm T, Glinge C, et al. Incidence and risk factors of ventricular fibrillation before primary angioplasty in patients with first ST-elevation myocardial infarction: a nationwide study in Denmark. J Am Heart Assoc. 2015; 4(1): e001399.
  70. Friedlander Y, Siscovick DS, Weinmann S, et al. Family history as a risk factor for primary cardiac arrest. Circulation. 1998; 97(2): 155–160.
  71. Deo R, Norby FL, Katz R, et al. Development and validation of a sudden cardiac death prediction model for the general population. Circulation. 2016; 134(11): 806–816.
  72. Aro AL, Reinier K, Rusinaru C, et al. Electrical risk score beyond the left ventricular ejection fraction: prediction of sudden cardiac death in the Oregon Sudden Unexpected Death Study and the Atherosclerosis Risk in Communities Study. Eur Heart J. 2017; 38(40): 3017–3025.
  73. Waks JW, Sitlani CM, Soliman EZ, et al. Global electric heterogeneity risk score for prediction of sudden cardiac death in the general population: the Atherosclerosis Risk in Communities (ARIC) and Cardiovascular Health (CHS) studies. Circulation. 2016; 133(23): 2222–2234.
  74. Yoshinaga M, Ushinohama H, Sato S, et al. Electrocardiographic screening of 1-month-old infants for identifying prolonged QT intervals. Circ Arrhythm Electrophysiol. 2013; 6(5): 932–938.
  75. Yoshinaga M, Kucho Yu, Sarantuya J, et al. Genetic characteristics of children and adolescents with long-QT syndrome diagnosed by school-based electrocardiographic screening programs. Circ Arrhythm Electrophysiol. 2014; 7(1): 107–112.
  76. Jørgensen T, Jacobsen RK, Toft U, et al. Effect of screening and lifestyle counselling on incidence of ischaemic heart disease in general population: Inter99 randomised trial. BMJ. 2014; 348: g3617.
  77. Boas R, Sappler N, von Stülpnagel L, et al. Periodic repolarization dynamics identifies ICD responders in nonischemic cardiomyopathy: a DANISH substudy. Circulation. 2022; 145(10): 754–764.
  78. Spirito P, Bellone P, Harris KM, et al. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med. 2000; 342(24): 1778–1785.
  79. Barsheshet A, Goldenberg I, O-Uchi J, et al. Mutations in cytoplasmic loops of the KCNQ1 channel and the risk of life-threatening events: implications for mutation-specific response to β-blocker therapy in type 1 long-QT syndrome. Circulation. 2012; 125(16): 1988–1996.
  80. Wahbi K, Yaou RB, Gandjbakhch E, et al. Development and validation of a new risk prediction score for life-threatening ventricular tachyarrhythmias in laminopathies. Circulation. 2019; 140(4): 293–302.
  81. Cadrin-Tourigny J, Bosman L, Nozza A, et al. A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2019; 40(23): 1850–1858.
  82. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003; 348(19): 1866–1874.
  83. Miron A, Lafreniere-Roula M, Steve Fan CP, et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation. 2020; 142(3): 217–229.
  84. Norrish G, Ding T, Field E, et al. Development of a novel risk prediction model for sudden cardiac death in childhood hypertrophic cardiomyopathy (HCM risk-kids). JAMA Cardiol. 2019; 4(9): 918–927.
  85. O'Mahony C, Jichi F, Pavlou M, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014; 35(30): 2010–2020.
  86. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014; 35(29): 1925–1931.
  87. Collins G, Reitsma J, Altman D, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Circulation. 2015; 131(2): 211–219.
  88. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature. JAMA. 2017; 318(14): 1377–1384.
  89. Yan S, Gan Y, Jiang N, et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care. 2020; 24(1): 61.
  90. Hallstrom AP, Ornato JP, Weisfeldt M, et al. Public-access defibrillation and survival after out-of-hospital cardiac arrest. N Engl J Med. 2004; 351(7): 637–646.
  91. Nakashima T, Noguchi T, Tahara Y, et al. Public-access defibrillation and neurological outcomes in patients with out-of-hospital cardiac arrest in Japan: a population-based cohort study. Lancet. 2019; 394(10216): 2255–2262.
  92. Pollack RA, Brown SP, Rea T, et al. Impact of bystander automated external defibrillator use on survival and functional outcomes in shockable observed public cardiac arrests. Circulation. 2018; 137(20): 2104–2113.
  93. Kragholm K, Wissenberg M, Mortensen R, et al. Bystander efforts and 1-year outcomes in out-of-hospital cardiac arrest. N Engl J Med. 2017; 376(18): 1737–1747.
  94. Kitamura T, Kiyohara K, Sakai T, et al. Public-access defibrillation and out-of-hospital cardiac arrest in Japan. N Engl J Med. 2016; 375(17): 1649–1659.
  95. Hasselqvist-Ax I, Riva G, Herlitz J, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2015; 372(24): 2307–2315.
  96. Marijon E, Bougouin W, Celermajer DS, et al. Major regional disparities in outcomes after sudden cardiac arrest during sports. Eur Heart J. 2013; 34(47): 3632–3640.
  97. Karam N, Narayanan K, Bougouin W, et al. Major regional differences in Automated External Defibrillator placement and Basic Life Support training in France: Further needs for coordinated implementation. Resuscitation. 2017; 118: 49–54.
  98. Mpotos N, De Wever B, Cleymans N, et al. Repetitive sessions of formative self-testing to refresh CPR skills: a randomised non-inferiority trial. Resuscitation. 2014; 85(9): 1282–1286.
  99. Gundry JW, Comess KA, DeRook FA, et al. Comparison of naive sixth-grade children with trained professionals in the use of an automated external defibrillator. Circulation. 1999; 100(16): 1703–1707.
  100. Blewer AL, Putt ME, Becker LB, et al. Video-Only cardiopulmonary resuscitation education for high-risk families before hospital discharge: a multicenter pragmatic trial. Circ Cardiovasc Qual Outcomes. 2016; 9(6): 740–748.
  101. Ringh M, Rosenqvist M, Hollenberg J, et al. Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest. N Engl J Med. 2015; 372(24): 2316–2325.
  102. Stroop R, Kerner T, Strickmann B, et al. Mobile phone-based alerting of CPR-trained volunteers simultaneously with the ambulance can reduce the resuscitation-free interval and improve outcome after out-of-hospital cardiac arrest: A German, population-based cohort study. Resuscitation. 2020; 147: 57–64.
  103. Lee SY, Shin SDo, Lee YuJ, et al. Text message alert system and resuscitation outcomes after out-of-hospital cardiac arrest: A before-and-after population-based study. Resuscitation. 2019; 138: 198–207.
  104. Fordyce CB, Hansen CM, Kragholm K, et al. Association of public health initiatives with outcomes for out-of-hospital cardiac arrest at home and in public locations. JAMA Cardiol. 2017; 2(11): 1226–1235.
  105. Andelius L, Malta Hansen C, Lippert FK, et al. Smartphone activation of citizen responders to facilitate defibrillation in out-of-hospital cardiac arrest. J Am Coll Cardiol. 2020; 76(1): 43–53.
  106. Ranthe MF, Winkel BoG, Andersen EW, et al. Risk of cardiovascular disease in family members of young sudden cardiac death victims. Eur Heart J. 2013; 34(7): 503–511.
  107. Patton KK, Sotoodehnia N, DeFilippi C, et al. N-terminal pro-B-type natriuretic peptide is associated with sudden cardiac death risk: the Cardiovascular Health Study. Heart Rhythm. 2011; 8(2): 228–233.
  108. Everett BM, Moorthy MV, Tikkanen JT, et al. Markers of myocardial stress, myocardial injury, and subclinical inflammation and the risk of sudden death. Circulation. 2020; 142(12): 1148–1158.
  109. Berger R, Huelsman M, Strecker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation. 2002; 105(20): 2392–2397.
  110. Scott PA, Barry J, Roberts PR, et al. Brain natriuretic peptide for the prediction of sudden cardiac death and ventricular arrhythmias: a meta-analysis. Eur J Heart Fail. 2009; 11(10): 958–966.
  111. Ahmad T, Fiuzat M, Neely B, et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC Heart Fail. 2014; 2(3): 260–268.
  112. Goldberger JJ, Cain ME, Hohnloser SH, et al. American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death. Circulation. 2008; 118(14): 1497–1518.
  113. Varma N, Cygankiewicz I, Turakhia MP, et al. 2021 ISHNE/HRS/EHRA/APHRS expert collaborative statement on mHealth in Arrhythmia Management: digital medical tools for heart rhythm professionals: from the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia-Pacific Heart Rhythm Society. Circ Arrhythm Electrophysiol. 2021; 14(2): e009204.
  114. Solbiati M, Casazza G, Dipaola F, et al. The diagnostic yield of implantable loop recorders in unexplained syncope: A systematic review and meta-analysis. Int J Cardiol. 2017; 231: 170–176.
  115. Gatzoulis KA, Arsenos P, Trachanas K, et al. Signal-averaged electrocardiography: past, present, and future. J Arrhythm. 2018; 34(3): 222–229.
  116. Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J. 2010; 31(7): 806–814.
  117. Giudicessi JR, Ackerman MJ. Exercise testing oversights underlie missed and delayed diagnosis of catecholaminergic polymorphic ventricular tachycardia in young sudden cardiac arrest survivors. Heart Rhythm. 2019; 16(8): 1232–1239.
  118. Roston TM, Kallas D, Davies B, et al. Burst exercise testing can unmask arrhythmias in patients with incompletely penetrant catecholaminergic polymorphic ventricular tachycardia. JACC Clin Electrophysiol. 2021; 7(4): 437–441.
  119. Sy RW, van der Werf C, Chattha IS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011; 124(20): 2187–2194.
  120. Binder T. Transthoracic echocardiography and the standard examination of specific cardiac structures. ESC CardioMed. 2018: 425–431.
  121. Haugaa KH, Basso C, Badano LP, et al. Comprehensive multi-modality imaging approach in arrhythmogenic cardiomyopathy — an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017; 18(3): 237–253.
  122. Haugaa KH, Grenne BL, Eek CH, et al. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC Cardiovasc Imaging. 2013; 6(8): 841–850.
  123. Haugaa KH, Hasselberg NE, Edvardsen T. Mechanical dispersion by strain echocardiography: a predictor of ventricular arrhythmias in subjects with lamin A/C mutations. JACC Cardiovasc Imaging. 2015; 8(1): 104–106.
  124. Ersbøll M, Valeur N, Andersen MJ, et al. Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction. JACC Cardiovasc Imaging. 2013; 6(8): 851–860.
  125. Biering-Sørensen T, Knappe D, Pouleur AC, et al. Regional longitudinal deformation improves prediction of ventricular tachyarrhythmias in patients with heart failure with reduced ejection fraction: a MADIT-CRT substudy (multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy). Circ Cardiovasc Imaging. 2017; 10(1): e005096.
  126. Garg R, Friedrich MG. Cardiomyopathies. ESC CardioMed. 3rd ed. Oxford University Press 2022: 510–515.
  127. Borgquist R, Haugaa KH, Gilljam T, et al. The diagnostic performance of imaging methods in ARVC using the 2010 task force criteria. Eur Heart J Cardiovasc Imaging. 2014; 15(11): 1219–1225.
  128. Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014; 35(39): 2733–2779.
  129. Di Marco A, Anguera I, Schmitt M, et al. Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. JACC Heart Fail. 2017; 5(1): 28–38.
  130. Dejgaard LA, Skjølsvik ET, Lie ØH, et al. The mitral annulus disjunction arrhythmic syndrome. J Am Coll Cardiol. 2018; 72(14): 1600–1609.
  131. Basso C, Iliceto S, Thiene G, et al. Mitral valve prolapse, ventricular arrhythmias, and sudden death. Circulation. 2019; 140(11): 952–964.
  132. Achenbach S. Technology of cardiac computed tomography. ESC CardioMed. 3rd ed. Oxford University Press 2022: 537–541.
  133. Meijboom WB, van Mieghem CAG, Mollet NR, et al. 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol. 2007; 50(15): 1469–1475.
  134. Mark DB, Federspiel JJ, Cowper PA, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015; 372(14): 1291–1300.
  135. Priori SG, Wilde AA, Horie M, et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace. 2013; 15(10): 1389–1406.
  136. Govindan M, Batchvarov VN, Raju H, et al. Utility of high and standard right precordial leads during ajmaline testing for the diagnosis of Brugada syndrome. Heart. 2010; 96(23): 1904–1908.
  137. Churet M, Luttoo K, Hocini M, et al. Diagnostic reproducibility of epinephrine drug challenge interpretation in suspected long QT syndrome. J Cardiovasc Electrophysiol. 2019; 30(6): 896–901.
  138. Rolf S, Bruns HJ, Wichter T, et al. The ajmaline challenge in Brugada syndrome: diagnostic impact, safety, and recommended protocol. Eur Heart J. 2003; 24(12): 1104–1112.
  139. Tadros R, Nannenberg EA, Lieve KV, et al. Yield and pitfalls of ajmaline testing in the Evaluation of unexplained cardiac arrest and sudden unexplained death: single-center experience with 482 families. JACC Clin Electrophysiol. 2017; 3(12): 1400–1408.
  140. Meregalli PG, Ruijter JM, Hofman N, et al. Diagnostic value of flecainide testing in unmasking SCN5A-related Brugada syndrome. J Cardiovasc Electrophysiol. 2006; 17(8): 857–864.
  141. Krahn AD, Healey JS, Chauhan VS, et al. Epinephrine infusion in the evaluation of unexplained cardiac arrest and familial sudden death: from the cardiac arrest survivors with preserved ejection fraction registry. Circ Arrhythm Electrophysiol. 2012; 5(5): 933–940.
  142. Sueda S, Kohno H, Ochi T, et al. Overview of the acetylcholine spasm provocation test. Clin Cardiol. 2015; 38(7): 430–438.
  143. Takagi Y, Yasuda S, Takahashi J, et al. Clinical implications of provocation tests for coronary artery spasm: safety, arrhythmic complications, and prognostic impact: multicentre registry study of the Japanese Coronary Spasm Association. Eur Heart J. 2013; 34(4): 258–267.
  144. Garratt CJ, Antoniou A, Griffith MJ, et al. Use of intravenous adenosine in sinus rhythm as a diagnostic test for latent preexcitation. Am J Cardiol. 1990; 65(13): 868–873.
  145. Bourke JP, Richards DA, Ross DL, et al. Routine programmed electrical stimulation in survivors of acute myocardial infarction for prediction of spontaneous ventricular tachyarrhythmias during follow-up: results, optimal stimulation protocol and cost-effective screening. J Am Coll Cardiol. 1991; 18(3): 780–788.
  146. Gatzoulis KA, Tsiachris D, Arsenos P, et al. Prognostic value of programmed ventricular stimulation for sudden death in selected high risk patients with structural heart disease and preserved systolic function. Int J Cardiol. 2014; 176(3): 1449–1451.
  147. Gatzoulis KA, Vouliotis AI, Tsiachris D, et al. Primary prevention of sudden cardiac death in a nonischemic dilated cardiomyopathy population: reappraisal of the role of programmed ventricular stimulation. Circ Arrhythm Electrophysiol. 2013; 6(3): 504–512.
  148. Brilakis ES, Shen WK, Hammill SC, et al. Role of programmed ventricular stimulation and implantable cardioverter defibrillators in patients with idiopathic dilated cardiomyopathy and syncope. Pacing Clin Electrophysiol. 2001; 24(11): 1623–1630.
  149. Brembilla-Perrot B, Suty-Selton C, Beurrier D, et al. Differences in mechanisms and outcomes of syncope in patients with coronary disease or idiopathic left ventricular dysfunction as assessed by electrophysiologic testing. J Am Coll Cardiol. 2004; 44(3): 594–601.
  150. Schmitt C, Barthel P, Ndrepepa G, et al. Value of programmed ventricular stimulation for prophylactic internal cardioverter-defibrillator implantation in postinfarction patients preselected by noninvasive risk stratifiers. J Am Coll Cardiol. 2001; 37(7): 1901–1907.
  151. Tsimos KP, Korantzopoulos P, Arsenos P, et al. Arrhythmic risk stratification in post-myocardial infarction patients with preserved ejection fraction: the PRESERVE EF study. Eur Heart J. 2019; 40(35): 2940–2949.
  152. Denis A, Sacher F, Derval N, et al. Diagnostic value of isoproterenol testing in arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2014; 7(4): 590–597.
  153. Merino JL, Carmona JR, Fernández-Lozano I, et al. Mechanisms of sustained ventricular tachycardia in myotonic dystrophy: implications for catheter ablation. Circulation. 1998; 98(6): 541–546.
  154. Pezawas T, Stix G, Kastner J. Unexplained syncope in patients with structural heart disease and no documented ventricular arrhythmias: value of electrophysiologically guided implantablecardioverter defibrillator therapy. Europace. 2003; 5(3): 305–312.
  155. Sroubek J, Probst V, Mazzanti A, et al. Programmed ventricular stimulation for risk stratification in the Brugada syndrome: a pooled analysis. Circulation. 2016; 133(7): 622–630.
  156. Nayyar S, Downar E, Bhaskaran AP, et al. Signature signal strategy: Electrogram-based ventricular tachycardia mapping. Heart Rhythm. 2020; 17(11): 2000–2009.
  157. Lazarus A, Varin J, Babuty D, et al. Long-term follow-up of arrhythmias in patients with myotonic dystrophy treated by pacing: a multicenter diagnostic pacemaker study. J Am Coll Cardiol. 2002; 40(9): 1645–1652.
  158. Tandri H, Asimaki A, Abraham T, et al. Prolonged RV endocardial activation duration: A novel marker of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Heart Rhythm. 2009; 6(6): 769–775.
  159. Gomes J, Finlay M, Ahmed AK, et al. Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin — A combined murine and human study. Eur Heart J. 2012; 33(15): 1942–1953.
  160. Orini M, Graham AJ, Srinivasan NT, et al. Evaluation of the reentry vulnerability index to predict ventricular tachycardia circuits using high-density contact mapping. Heart Rhythm. 2020; 17(4): 576–583.
  161. Jackson N, Gizurarson S, Viswanathan K, et al. Decrement evoked potential mapping: basis of a mechanistic strategy for ventricular tachycardia ablation. Circ Arrhythm Electrophysiol. 2015; 8(6): 1433–1442.
  162. Avella A, d’Amati G, Pappalardo A, et al. Diagnostic value of endomyocardial biopsy guided by electroanatomic voltage mapping in arrhythmogenic right ventricular cardiomyopathy/dysplasia. J Cardiovasc Electrophysiol. 2008; 19(11): 1127–1134.
  163. Wilde AAM, Behr ER. Genetic testing for inherited cardiac disease. Nat Rev Cardiol. 2013; 10(10): 571–583.
  164. Hosseini SM, Kim R, Udupa S, et al. National Institutes of Health Clinical Genome Resource Consortium. Reappraisal of reported genes for sudden arrhythmic death: evidence-based evaluation of gene validity for Brugada syndrome. Circulation. 2018; 138(12): 1195–1205.
  165. Ingles J, Goldstein J, Thaxton C, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med. 2019; 12(2): e002460.
  166. Adler A, Novelli V, Amin AS, et al. An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome. Circulation. 2020; 141(6): 418–428.
  167. Risgaard B, Jabbari R, Refsgaard L, et al. High prevalence of genetic variants previously associated with Brugada syndrome in new exome data. Clin Genet. 2013; 84(5): 489–495.
  168. James CA, Jongbloed JDH, Hershberger RE, et al. International evidence based reappraisal of genes associated with arrhythmogenic right ventricular cardiomyopathy using the clinical genome resource framework. Circ Genom Precis Med. 2021; 14(3): e003273.
  169. Lahrouchi N, Tadros R, Crotti L, et al. Transethnic genome-wide association study provides insights in the genetic architecture and heritability of long QT syndrome. Circulation. 2020; 142(4): 324–338.
  170. Wijeyeratne YD, Tanck MW, Mizusawa Y, et al. Mutation type and a genetic risk score associate variably with Brugada syndrome phenotype in families. Circ Genom Precis Med. 2020; 13(6): e002911.
  171. Harper AR, Goel A, Grace C, et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet. 2021; 53(2): 135–142.
  172. Tadros R, Francis C, Xu X, et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat Genet. 2021; 53(2): 128–134.
  173. Tadros R, Tan HL, El Mathari S, et al. Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores. Eur Heart J. 2019; 40(37): 3097–3107.
  174. Ware JS, Roberts AM, Cook SA. Next generation sequencing for clinical diagnostics and personalised medicine: implications for the next generation cardiologist. Heart. 2012; 98(4): 276–281.
  175. Ashar FN, Mitchell RN, Albert CM, et al. A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J. 2018; 39(44): 3961–3969.
  176. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5): 405–424.
  177. Ingles J, Lind JM, Phongsavan P, et al. Psychosocial impact of specialized cardiac genetic clinics for hypertrophic cardiomyopathy. Genet Med. 2008; 10(2): 117–120.
  178. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace. 2011; 13(8): 1077–1109.
  179. Conte G, Wilde A, Behr ER, et al. Importance of dedicated units for the management of patients with inherited arrhythmia syndromes. Circ Genom Precis Med. 2021; 14(2): e003313.
  180. Minier M, Probst V, Berthome P, et al. Age at diagnosis of Brugada syndrome: Influence on clinical characteristics and risk of arrhythmia. Heart Rhythm. 2020; 17(5): 743–749.
  181. Wong LCH, Roses-Noguer F, Till JA, et al. Cardiac evaluation of pediatric relatives in sudden arrhythmic death syndrome: a 2-center experience. Circ Arrhythm Electrophysiol. 2014; 7(5): 800–806.
  182. Mellor GJ, Blom LJ, Groeneveld SA, et al. Familial evaluation in idiopathic ventricular fibrillation: diagnostic yield and significance of j wave syndromes. Circ Arrhythm Electrophysiol. 2021; 14(3): e009089.
  183. Lahrouchi N, Raju H, Lodder EM, et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J Am Coll Cardiol. 2017; 69(17): 2134–2145.
  184. Faber TS, Gradinger R, Treusch S, et al. Incidence of ventricular tachyarrhythmias during permanent pacemaker therapy in low-risk patients results from the German multicentre EVENTS study. Eur Heart J. 2007; 28(18): 2238–2242.
  185. Middlekauff HR, Stevenson WG, Stevenson LW, et al. Syncope in advanced heart failure: high risk of sudden death regardless of origin of syncope. J Am Coll Cardiol. 1993; 21(1): 110–116.
  186. Noda T, Shimizu W, Taguchi A, et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J Am Coll Cardiol. 2005; 46(7): 1288–1294.
  187. Belhassen B, Viskin S. Idiopathic ventricular tachycardia and fibrillation. J Cardiovasc Electrophysiol. 1993; 4(3): 356–368.
  188. Zareba W, Platonov P. ECG patterns related to arrhythmias and sudden death: channelopathies, early repolarization, and pre-excitation. ESC CardioMed. 3rd ed. Oxford University Press 2022: 382–389.
  189. Voigt JU. Left ventricular function, heart failure, and resynchronization therapy. ESC CardioMed. 3rd ed. Oxford University Press 2022: 450–454.
  190. Edvardsen T. Cardiomyopathies, myocarditis, and the transplanted heart. ESC CardioMed. 3rd ed. Oxford University Press 2022: 456–460.
  191. Cygankiewicz I. Ambulatory ECG monitoring. ESC CardioMed. 3rd ed. Oxford University Press 2022: 393–400.
  192. Gray B, Kirby A, Kabunga P, et al. Twelve-lead ambulatory electrocardiographic monitoring in Brugada syndrome: Potential diagnostic and prognostic implications. Heart Rhythm. 2017; 14(6): 866–874.
  193. Karogiannis N, Senior R. Stress echocardiography. ESC CardioMed. 3rd ed. Oxford University Press 2022: 431–434.
  194. Nucifora G, Muser D, Masci PG, et al. Prevalence and prognostic value of concealed structural abnormalities in patients with apparently idiopathic ventricular arrhythmias of left versus right ventricular origin: a magnetic resonance imaging study. Circ Arrhythm Electrophysiol. 2014; 7(3): 456–462.
  195. Muser D, Nucifora G, Muser D, et al. Prognostic value of nonischemic ringlike left ventricular scar in patients with apparently idiopathic nonsustained ventricular arrhythmias. Circulation. 2021; 143(14): 1359–1373.
  196. Josephson ME, Callans DJ. Using the twelve-lead electrocardiogram to localize the site of origin of ventricular tachycardia. Heart Rhythm. 2005; 2(4): 443–446.
  197. Corrado D, Basso C, Leoni L, et al. Three-dimensional electroanatomic voltage mapping increases accuracy of diagnosing arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2005; 111(23): 3042–3050.
  198. Casella M, Dello Russo A, Bergonti M, et al. Diagnostic yield of electroanatomic voltage mapping in guiding endomyocardial biopsies. Circulation. 2020; 142(13): 1249–1260.
  199. Haanschoten DM, Adiyaman A, 't Hart NA, et al. Value of 3D mapping-guided endomyocardial biopsy in cardiac sarcoidosis: Case series and narrative review on the value of electro-anatomic mapping-guided endomyocardial biopsies. Eur J Clin Invest. 2021; 51(4): e13497.
  200. Tung R, Bauer B, Schelbert H, et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: The potential role of occult inflammation in arrhythmogenesis. Heart Rhythm. 2015; 12(12): 2488–2498.
  201. Palmisano A, Vignale D, Peretto G, et al. Hybrid FDG-PET/MR or FDG-PET/CT to detect disease activity in patients with persisting arrhythmias after myocarditis. JACC Cardiovasc Imaging. 2021; 14(1): 288–292.
  202. Venlet J, Piers SRD, Jongbloed JDH, et al. Isolated subepicardial right ventricular outflow tract scar in athletes with ventricular tachycardia. J Am Coll Cardiol. 2017; 69(5): 497–507.
  203. Geri G, Dumas F, Bougouin W, et al. Immediate percutaneous coronary intervention is associated with improved short- and long-term survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv. 2015; 8(10): e002303.
  204. Vyas A, Chan PS, Cram P, et al. Early coronary angiography and survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv. 2015; 8(10): e002321.
  205. Kalarus Z, Svendsen J, Capodanno D, et al. Cardiac arrhythmias in the emergency settings of acute coronary syndrome and revascularization: an European Heart Rhythm Association (EHRA) consensus document, endorsed by the European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Acute Cardiovascular Care Association (ACCA). Europace. 2019; 21(10): 1603–1604.
  206. Noc M, Fajadet J, Lassen JF, et al. Invasive coronary treatment strategies for out-of-hospital cardiac arrest: a consensus statement from the European association for percutaneous cardiovascular interventions (EAPCI)/stent for life (SFL) groups. EuroIntervention. 2014; 10(1): 31–37.
  207. Verma BR, Sharma V, Shekhar S, et al. Coronary angiography in patients with out-of-hospital cardiac arrest without ST-segment elevation: a systematic review and meta-analysis. JACC Cardiovasc Interv. 2020; 13(19): 2193–2205.
  208. Barbarawi M, Zayed Y, Kheiri B, et al. Optimal timing of coronary intervention in patients resuscitated from cardiac arrest without ST-segment elevation myocardial infarction (NSTEMI): A systematic review and meta-analysis. Resuscitation. 2019; 144: 137–144.
  209. Yang MC, Meng-Jun Wu, Xiao-Yan Xu, et al. Coronary angiography or not after cardiac arrest without ST segment elevation: A systematic review and meta-analysis. Medicine (Baltimore). 2020; 99(41): e22197.
  210. Khan MS, Shah SM, Mubashir A, et al. Early coronary angiography in patients resuscitated from out of hospital cardiac arrest without ST-segment elevation: A systematic review and meta-analysis. Resuscitation. 2017; 121: 127–134.
  211. Welsford M, Bossard M, Shortt C, et al. Does early coronary angiography improve survival after out-of-Hospital cardiac arrest? A systematic review with meta-analysis. Can J Cardiol. 2018; 34(2): 180–194.
  212. Chelly J, Mongardon N, Dumas F, et al. Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) registry. Resuscitation. 2012; 83(12): 1444–1450.
  213. Stiles MK, Wilde AAM, Abrams DJ, et al. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm. 2021; 18(1): e1–e50.
  214. Tseng ZH, Olgin JE, Vittinghoff E, et al. Prospective countywide surveillance and autopsy characterization of sudden cardiac death: POST SCD study. Circulation. 2018; 137(25): 2689–2700.
  215. Fellmann F, van El CG, Charron P, et al. European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death. Eur J Hum Genet. 2019; 27(12): 1763–1773.
  216. Yamamoto T, Takayama M, Sato N, et al. Inappropriate analyses of automated external defibrillators used during in-hospital ventricular fibrillation. Circ J. 2008; 72(4): 679–681.
  217. Sweeney MO, Ruetz LL, Belk P, et al. Bradycardia pacing-induced short-long-short sequences at the onset of ventricular tachyarrhythmias: a possible mechanism of proarrhythmia? J Am Coll Cardiol. 2007; 50(7): 614–622.
  218. Tseng ZH, Hayward RM, Clark NM, et al. Sudden death in patients with cardiac implantable electronic devices. JAMA Intern Med. 2015; 175(8): 1342–1350.
  219. Lacour P, Buschmann C, Storm C, et al. Cardiac implantable electronic device interrogation at forensic autopsy: an underestimated resource? Circulation. 2018; 137(25): 2730–2740.
  220. Curcio A, Mazzanti A, Bloise R, et al. Clinical presentation and outcome of brugada syndrome diagnosed with the new 2013 criteria. J Cardiovasc Electrophysiol. 2016; 27(8): 937–943.
  221. Haïssaguerre M, Shah DC, Jaïs P, et al. Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet. 2002; 359(9307): 677–678.
  222. Krahn AD, Healey JS, Simpson CS, et al. Systematic assessment of patients with unexplained cardiac arrest: Cardiac Arrest Survivors With Preserved Ejection Fraction Registry (CASPER). Circulation. 2009; 120(4): 278–285.
  223. van der Werf C, Hofman N, Tan HL, et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in The Netherlands. Heart Rhythm. 2010; 7(10): 1383–1389.
  224. Eckart RE, Scoville SL, Campbell CL, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004; 141(11): 829–834.
  225. Kunadian V, Chieffo A, Camici PG, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J. 2020; 41(37): 3504–3520.
  226. Rodrigues P, Joshi A, Williams H, et al. Diagnosis and prognosis in sudden cardiac arrest survivors without coronary artery disease: utility of a clinical approach using cardiac magnetic resonance imaging. Circ Cardiovasc Imaging. 2017; 10(12): e006709.
  227. White JA, Fine NM, Gula L, et al. Utility of cardiovascular magnetic resonance in identifying substrate for malignant ventricular arrhythmias. Circ Cardiovasc Imaging. 2012; 5(1): 12–20.
  228. Basso C, Perazzolo Marra M, Rizzo S, et al. Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation. 2015; 132(7): 556–566.
  229. Obeyesekere MN, Klein GJ, Modi S, et al. How to perform and interpret provocative testing for the diagnosis of Brugada syndrome, long-QT syndrome, and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol. 2011; 4(6): 958–964.
  230. Cheung CC, Mellor G, Deyell MW, et al. Comparison of ajmaline and procainamide provocation tests in the diagnosis of Brugada syndrome. JACC Clin Electrophysiol. 2019; 5(4): 504–512.
  231. Antzelevitch C, Yan G-X, Ackerman MJ, et al. J-Wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. Europace. 2017; 19(4): 665–694.
  232. Adler A, van der Werf C, Postema PG, et al. The phenomenon of "QT stunning": the abnormal QT prolongation provoked by standing persists even as the heart rate returns to normal in patients with long QT syndrome. Heart Rhythm. 2012; 9(6): 901–908.
  233. Dionne A, Fournier A, Dahdah N, et al. Dynamic QT interval changes from supine to standing in healthy children. Can J Cardiol. 2018; 34(1): 66–72.
  234. Foo FS, Stiles MK, Heaven D. Unmasking latent preexcitation of a right-sided accessory pathway with intravenous adenosine after unexplained sudden cardiac arrest. J Arrhythm. 2020; 36(5): 939–941.
  235. Marjamaa A, Hiippala A, Arrhenius B, et al. Intravenous epinephrine infusion test in diagnosis of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 2012; 23(2): 194–199.
  236. Ackerman MJ, Khositseth A, Tester DJ, et al. Epinephrine-Induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc. 2002; 77(5): 413–421.
  237. Shimizu W, Noda T, Takaki H, et al. Diagnostic value of epinephrine test for genotyping LQT1, LQT2, and LQT3 forms of congenital long QT syndrome. Heart Rhythm. 2004; 1(3): 276–283.
  238. Magnano AR, Talathoti N, Hallur R, et al. Sympathomimetic infusion and cardiac repolarization: the normative effects of epinephrine and isoproterenol in healthy subjects. J Cardiovasc Electrophysiol. 2006; 17(9): 983–989.
  239. Vyas H, Hejlik J, Ackerman MJ. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: diagnostic accuracy of the paradoxical QT response. Circulation. 2006; 113(11): 1385–1392.
  240. Waldmann V, Bougouin W, Karam N, et al. Coronary vasospasm-related sudden cardiac arrest in the community. J Am Coll Cardiol. 2018; 72(7): 814–815.
  241. Etienne P, Huchet F, Gaborit N, et al. Mental stress test: a rapid, simple, and efficient test to unmask long QT syndrome. Europace. 2018; 20(12): 2014–2020.
  242. Kop WJ, Krantz DS, Nearing BD, et al. Effects of acute mental stress and exercise on T-wave alternans in patients with implantable cardioverter defibrillators and controls. Circulation. 2004; 109(15): 1864–1869.
  243. Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011; 124(20): 2181–2184.
  244. Wang YS, Scheinman MM, Chien WW, et al. Patients with supraventricular tachycardia presenting with aborted sudden death: incidence, mechanism and long-term follow-up. J Am Coll Cardiol. 1991; 18(7): 1711–1719.
  245. Roberts JD, Gollob MH, Young C, et al. Bundle branch re-entrant ventricular tachycardia: novel genetic mechanisms in a life-threatening arrhythmia. JACC Clin Electrophysiol. 2017; 3(3): 276–288.
  246. Santangeli P, Hamilton-Craig C, Dello Russo A, et al. Imaging of scar in patients with ventricular arrhythmias of right ventricular origin: cardiac magnetic resonance versus electroanatomic mapping. J Cardiovasc Electrophysiol. 2011; 22(12): 1359–1366.
  247. Haïssaguerre M, Duchateau J, Dubois R, et al. Idiopathic ventricular fibrillation: role of purkinje system and microstructural myocardial abnormalities. JACC Clin Electrophysiol. 2020; 6(6): 591–608.
  248. Haïssaguerre M, Hocini M, Cheniti G, et al. Localized structural alterations underlying a subset of unexplained sudden cardiac death. Circ Arrhythm Electrophysiol. 2018; 11(7): e006120.
  249. Mellor G, Laksman ZWM, Tadros R, et al. Genetic testing in the evaluation of unexplained cardiac arrest: from the CASPER (Cardiac Arrest Survivors with Preserved Ejection Fraction Registry). Circ Cardiovasc Genet. 2017; 10(3): e001686.
  250. Burns C, Bagnall RD, Lam L, et al. Multiple gene variants in hypertrophic cardiomyopathy in the era of next-generation sequencing. Circ Cardiovasc Genet. 2017; 10(4): e001666.
  251. Karam N, Jabre P, Narayanan K, et al. Psychological support and medical screening of first-degree relatives of sudden cardiac arrest victims. JACC Clin Electrophysiol. 2020; 6(5): 586–587.
  252. Behr E, Wood DA, Wright M, et al. Cardiological assessment of first-degree relatives in sudden arrhythmic death syndrome. Lancet. 2003; 362(9394): 1457–1459.
  253. Tan HL, Hofman N, van La, et al. Sudden unexplained death: heritability and diagnostic yield of cardiological and genetic examination in surviving relatives. Circulation. 2005; 112(2): 207–213.
  254. Spoormans EM, Lemkes JS, Janssens GN, et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med. 2019; 380(15): 1397–1407.
  255. Kern KB, Radsel P, Jentzer JC, et al. Randomized pilot clinical trial of early coronary angiography versus no early coronary angiography after cardiac arrest without ST-segment elevation: the PEARL study. Circulation. 2020; 142(21): 2002–2012.
  256. Desch S, Freund A, Akin I, et al. Angiography after out-of-hospital cardiac arrest without ST-segment elevation. N Engl J Med. 2021; 385(27): 2544–2553.
  257. Arnaout M, Mongardon N, Deye N, et al. Out-of-hospital cardiac arrest from brain cause: epidemiology, clinical features, and outcome in a multicenter cohort*. Crit Care Med. 2015; 43(2): 453–460.
  258. Horner JM, Horner MM, Ackerman MJ. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2011; 8(11): 1698–1704.
  259. Perrin MJ, Angaran P, Laksman Z, et al. Exercise testing in asymptomatic gene carriers exposes a latent electrical substrate of arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2013; 62(19): 1772–1779.
  260. Waldmann V, Bougouin W, Karam N, et al. Characteristics and clinical assessment of unexplained sudden cardiac arrest in the real-world setting: focus on idiopathic ventricular fibrillation. Eur Heart J. 2018; 39(21): 1981–1987.
  261. Nakao K, Ohgushi M, Yoshimura M, et al. Hyperventilation as a specific test for diagnosis of coronary artery spasm. Am J Cardiol. 1997; 80(5): 545–549.
  262. Behr ER, Casey A, Sheppard M, et al. Sudden arrhythmic death syndrome: a national survey of sudden unexplained cardiac death. Heart. 2007; 93(5): 601–605.
  263. Basso C, Aguilera B, Banner J, et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 2017; 471(6): 691–705.
  264. de Noronha SV, Behr ER, Papadakis M, et al. The importance of specialist cardiac histopathological examination in the investigation of young sudden cardiac deaths. Europace. 2014; 16(6): 899–907.
  265. Gulino SP, Burns K, Gunther WM, et al. Improving forensic pathologic investigation of sudden death in the young: tools, guidance, and methods of cardiovascular dissection from the sudden death in the young case registry. Acad Forensic Pathol. 2018; 8(2): 347–391.
  266. Kjerrumgaard A, Jacobsen EM, Hansen BL, et al. Diagnostic yield in victims of sudden cardiac death and their relatives. Europace. 2020; 22(6): 964–971.
  267. Bjune T, Risgaard B, Kruckow L, et al. Post-mortem toxicology in young sudden cardiac death victims: a nationwide cohort study. Europace. 2018; 20(4): 614–621.
  268. Allan KS, Morrison LJ, Pinter A, et al. "Presumed cardiac" arrest in children and young adults: A misnomer? Resuscitation. 2017; 117: 73–79.
  269. Lahrouchi N, Raju H, Lodder EM, et al. The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy. Eur J Hum Genet. 2020; 28(1): 17–22.
  270. Tester DJ, Medeiros-Domingo A, Will ML, et al. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc. 2012; 87(6): 524–539.
  271. Papadakis M, Raju H, Behr ER, et al. Sudden cardiac death with autopsy findings of uncertain significance: potential for erroneous interpretation. Circ Arrhythm Electrophysiol. 2013; 6(3): 588–596.
  272. Jacobsen EM, Hansen BL, Kjerrumgaard A, et al. Diagnostic yield and long-term outcome of nonischemic sudden cardiac arrest survivors and their relatives: Results from a tertiary referral center. Heart Rhythm. 2020; 17(10): 1679–1686.
  273. Kjerrumgaard A, Jacobsen EM, Hansen BL, et al. Diagnostic findings and follow-up outcomes in relatives to young non-autopsied sudden death victims. Int J Cardiol. 2020; 318: 61–66.
  274. Shanks GW, Tester DJ, Ackerman JP, et al. Importance of variant interpretation in whole-exome molecular autopsy: population-based case series. Circulation. 2018; 137(25): 2705–2715.
  275. Narula N, Tester DJ, Paulmichl A, et al. Post-mortem Whole exome sequencing with gene-specific analysis for autopsy-negative sudden unexplained death in the young: a case series. Pediatr Cardiol. 2015; 36(4): 768–778.
  276. Miles CJ, Behr ER. The role of genetic testing in unexplained sudden death. Transl Res. 2016; 168: 59–73.
  277. Behr ER, Dalageorgou C, Christiansen M, et al. Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. Eur Heart J. 2008; 29(13): 1670–1680.
  278. Kumar S, Peters S, Thompson T, et al. Familial cardiological and targeted genetic evaluation: low yield in sudden unexplained death and high yield in unexplained cardiac arrest syndromes. Heart Rhythm. 2013; 10(11): 1653–1660.
  279. McGorrian C, Constant O, Harper N, et al. Family-based cardiac screening in relatives of victims of sudden arrhythmic death syndrome. Europace. 2013; 15(7): 1050–1058.
  280. Mellor G, Raju H, de Noronha SV, et al. Clinical characteristics and circumstances of death in the sudden arrhythmic death syndrome. Circ Arrhythm Electrophysiol. 2014; 7(6): 1078–1083.
  281. Papadakis M, Papatheodorou E, Mellor G, et al. The diagnostic yield of Brugada syndrome after sudden death with normal autopsy. J Am Coll Cardiol. 2018; 71(11): 1204–1214.
  282. Mellor G, Nelson CP, Robb C, et al. The prevalence and significance of the early repolarization pattern in sudden arrhythmic death syndrome families. Circ Arrhythm Electrophysiol. 2016; 9(6): e003960.
  283. Nunn LM, Lopes LR, Syrris P, et al. Diagnostic yield of molecular autopsy in patients with sudden arrhythmic death syndrome using targeted exome sequencing. Europace. 2016; 18(6): 888–896.
  284. van der Werf C, Stiekema L, Tan HL, et al. Low rate of cardiac events in first-degree relatives of diagnosis-negative young sudden unexplained death syndrome victims during follow-up. Heart Rhythm. 2014; 11(10): 1728–1732.
  285. Madhavan M, Friedman PA, Lennon RJ, et al. Implantable cardioverter-defibrillator therapy in patients with ventricular fibrillation out of hospital cardiac arrest secondary to acute coronary syndrome. J Am Heart Assoc. 2015; 4(2): e001255.
  286. Wyse DG, Friedman PL, Brodsky MA, et al. AVID Investigators. Life-threatening ventricular arrhythmias due to transient or correctable causes: high risk for death in follow-up. J Am Coll Cardiol. 2001; 38(6): 1718–1724.
  287. Goyal A, Spertus JA, Gosch K, et al. Serum potassium levels and mortality in acute myocardial infarction. JAMA. 2012; 307(2): 157–164.
  288. Hoppe LK, Muhlack DC, Koenig W, et al. Association of abnormal serum potassium levels with arrhythmias and cardiovascular mortality: a systematic review and meta-analysis of observational studies. Cardiovasc Drugs Ther. 2018; 32(2): 197–212.
  289. Ravn Jacobsen M, Jabbari R, Glinge C, et al. Potassium disturbances and risk of ventricular fibrillation among patients with ST-segment-elevation myocardial infarction. J Am Heart Assoc. 2020; 9(4): e014160.
  290. Ahmed W, Flynn M, Alpert M. Cardiovascular complications of weight reduction diets. Am J Med Sci. 2001; 321(4): 280–284.
  291. Stephenson V. In pharmacy nursing — a dynamic new field. Nurs RSA. 1988; 3(11-12): 51–53.
  292. Dumas F, Cariou A, Manzo-Silberman S, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ Cardiovasc Interv. 2010; 3(3): 200–207.
  293. Gibbs C, Thalamus J, Heldal K, et al. Predictors of mortality in high-risk patients with QT prolongation in a community hospital. EP Europace. 2017; 20(FI1): f99–f107.
  294. Simpson TF, Salazar JW, Vittinghoff E, et al. Association of QT-prolonging medications with risk of autopsy-defined causes of sudden death. JAMA Intern Med. 2020; 180(5): 698–706.
  295. Tzivoni D, Banai S, Schuger C, et al. Treatment of torsade de pointes with magnesium sulfate. Circulation. 1988; 77(2): 392–397.
  296. Ladejobi A, Pasupula DK, Adhikari S, et al. Implantable defibrillator therapy in cardiac arrest survivors with a reversible cause. Circ Arrhythm Electrophysiol. 2018; 11(3): e005940.
  297. Postema PG, Wolpert C, Amin AS, et al. Drugs and Brugada syndrome patients: review of the literature, recommendations, and an up-to-date website (www.brugadadrugs.org). Heart Rhythm. 2009; 6(9): 1335–1341.
  298. Schupp T, Behnes M, Zworowsky Mv, et al. Hypokalemia but not hyperkalemia is associated with recurrences of ventricular tachyarrhythmias in ICD recipients. Clin Lab. 2020; 66(3).
  299. Gupta A, Pasupula DK, Bhonsale A, et al. Implantable cardioverter-defibrillator therapy in device recipients who survived a cardiac arrest associated with a reversible cause. J Cardiovasc Electrophysiol. 2018; 29(10): 1413–1417.
  300. Marill KA, Wolfram S, Desouza IS, et al. Adenosine for wide-complex tachycardia: efficacy and safety. Crit Care Med. 2009; 37(9): 2512–2518.
  301. Lerman BB, Belardinelli L, West GA, et al. Adenosine-sensitive ventricular tachycardia: evidence suggesting cyclic AMP-mediated triggered activity. Circulation. 1986; 74(2): 270–280.
  302. Brugada J, Katritsis DG, Arbelo E, et al. 2019 ESC Guidelines for the management of patients with supraventricular tachycardiaThe Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC). Eur Heart J. 2020; 41(5): 655–720.
  303. Ortiz M, Martín A, Arribas F, et al. Randomized comparison of intravenous procainamide vs. intravenous amiodarone for the acute treatment of tolerated wide QRS tachycardia: the PROCAMIO study. Eur Heart J. 2017; 38(17): 1329–1335.
  304. Gill JS, Mehta D, Ward DE, et al. Efficacy of flecainide, sotalol, and verapamil in the treatment of right ventricular tachycardia in patients without overt cardiac abnormality. Br Heart J. 1992; 68(4): 392–397.
  305. Manz M, Mletzko R, Jung W, et al. Electrophysiological and haemodynamic effects of lidocaine and ajmaline in the management of sustained ventricular tachycardia. Eur Heart J. 1992; 13(8): 1123–1128.
  306. Buxton AE, Marchlinski FE, Doherty JU, et al. Repetitive, monomorphic ventricular tachycardia: clinical and electrophysiologic characteristics in patients with and patients without organic heart disease. Am J Cardiol. 1984; 54(8): 997–1002.
  307. Griffith MJ, Garratt CJ, Rowland E, et al. Effects of intravenous adenosine on verapamil-sensitive “idiopathic” ventricular tachycardia. Am J Cardiol. 1994; 73(11): 759–764.
  308. Buxton AE, Marchlinski FE, Doherty JU, et al. Hazards of intravenous verapamil for sustained ventricular tachycardia. Am J Cardiol. 1987; 59(12): 1107–1110.
  309. Rankin AC, Rae AP, Cobbe SM. Misuse of intravenous verapamil in patients with ventricular tachycardia. Lancet. 1987; 2(8557): 472–474.
  310. Pedersen CT, Kay GN, Kalman J, et al. EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Europace. 2014; 16(9): 1257–1283.
  311. Cronin EM, Bogun FM, Maury P, et al. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace. 2019; 21(8): 1143–1144.
  312. Kowlgi GN, Cha YM. Management of ventricular electrical storm: a contemporary appraisal. Europace. 2020; 22(12): 1768–1780.
  313. Guerra F, Shkoza M, Scappini L, et al. Role of electrical storm as a mortality and morbidity risk factor and its clinical predictors: a meta-analysis. Europace. 2014; 16(3): 347–353.
  314. Noda T, Kurita T, Nitta T, et al. Significant impact of electrical storm on mortality in patients with structural heart disease and an implantable cardiac defibrillator. Int J Cardiol. 2018; 255: 85–91.
  315. Soar J, Maconochie I, Wyckoff MH, et al. International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations: summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces. Circulation. 2019; 140(24): e826–e880.
  316. Eifling M, Razavi M, Massumi A. The evaluation and management of electrical storm. Tex Heart Inst J. 2011; 38(2): 111–121.
  317. Chatzidou S, Kontogiannis C, Tsilimigras DI, et al. Propranolol versus metoprolol for treatment of electrical storm in patients with implantable cardioverter-defibrillator. J Am Coll Cardiol. 2018; 71(17): 1897–1906.
  318. Connolly SJ, Dorian P, Roberts RS, et al. Comparison of beta-blockers, amiodarone plus beta-blockers, or sotalol for prevention of shocks from implantable cardioverter defibrillators: the OPTIC Study: a randomized trial. JAMA. 2006; 295(2): 165–171.
  319. Shiga T, Ikeda T, Shimizu W, et al. Efficacy and safety of landiolol in patients with ventricular tachyarrhythmias with or without renal impairment ― subanalysis of the J-land II study. Circ Rep. 2020; 2(8): 440–445.
  320. Kanamori K, Aoyagi T, Mikamo T, et al. Successful treatment of refractory electrical storm with landiolol after more than 100 electrical defibrillations. Int Heart J. 2015; 56(5): 555–557.
  321. Gorgels AP, van den Dool A, Hofs A, et al. Comparison of procainamide and lidocaine in terminating sustained monomorphic ventricular tachycardia. Am J Cardiol. 1996; 78(1): 43–46.
  322. Martí-Carvajal AJ, Simancas-Racines D, Anand V. Prophylactic lidocaine for myocardial infarction. Cochrane Database Syst Rev. 2015; 2015(8): CD008553.
  323. Viskin S, Chorin E, Viskin D, et al. Quinidine-responsive polymorphic ventricular tachycardia in patients with coronary heart disease. Circulation. 2019; 139(20): 2304–2314.
  324. Viskin S, Hochstadt A, Chorin E, et al. Quinidine-responsive out-of-hospital polymorphic ventricular tachycardia in patients with coronary heart disease. Europace. 2020; 22(2): 265–273.
  325. Martins RP, Urien JM, Barbarot N, et al. Effectiveness of deep sedation for patients with intractable electrical storm refractory to antiarrhythmic drugs. Circulation. 2020; 142(16): 1599–1601.
  326. Fudim M, Boortz-Marx R, Ganesh A, et al. Stellate ganglion blockade for the treatment of refractory ventricular arrhythmias: A systematic review and meta-analysis. J Cardiovasc Electrophysiol. 2017; 28(12): 1460–1467.
  327. Do DH, Bradfield J, Ajijola OA, et al. Thoracic epidural anesthesia can be effective for the short-term management of ventricular tachycardia storm. J Am Heart Assoc. 2017; 6(11): e007080.
  328. Vaseghi M, Barwad P, Malavassi Corrales FJ, et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol. 2017; 69(25): 3070–3080.
  329. Gatzoulis KA, Andrikopoulos GK, Apostolopoulos T, et al. Electrical storm is an independent predictor of adverse long-term outcome in the era of implantable defibrillator therapy. Europace. 2005; 7(2): 184–192.
  330. Carbucicchio C, Santamaria M, Trevisi N, et al. Catheter ablation for the treatment of electrical storm in patients with implantable cardioverter-defibrillators: short- and long-term outcomes in a prospective single-center study. Circulation. 2008; 117(4): 462–469.
  331. Vergara P, Tung R, Vaseghi M, et al. Successful ventricular tachycardia ablation in patients with electrical storm reduces recurrences and improves survival. Heart Rhythm. 2018; 15(1): 48–55.
  332. Komatsu Y, Hocini M, Nogami A, et al. Catheter ablation of refractory ventricular fibrillation storm after myocardial infarction. Circulation. 2019; 139(20): 2315–2325.
  333. Knecht S, Sacher F, Wright M, et al. Long-term follow-up of idiopathic ventricular fibrillation ablation: a multicenter study. J Am Coll Cardiol. 2009; 54(6): 522–528.
  334. Peichl P, Cihák R, Kozeluhová M, et al. Catheter ablation of arrhythmic storm triggered by monomorphic ectopic beats in patients with coronary artery disease. J Interv Card Electrophysiol. 2010; 27(1): 51–59.
  335. Le Pennec-Prigent S, Flecher E, Auffret V, et al. Effectiveness of extracorporeal life support for patients with cardiogenic shock due to intractable arrhythmic storm. Crit Care Med. 2017; 45(3): e281–e289.
  336. Mariani S, Napp LC, Lo Coco V, et al. Mechanical circulatory support for life-threatening arrhythmia: A systematic review. Int J Cardiol. 2020; 308: 42–49.
  337. Muser D, Liang JJ, Castro SA, et al. Outcomes with prophylactic use of percutaneous left ventricular assist devices in high-risk patients undergoing catheter ablation of scar-related ventricular tachycardia: A propensity-score matched analysis. Heart Rhythm. 2018; 15(10): 1500–1506.
  338. Mathuria N, Wu G, Rojas-Delgado F, et al. Outcomes of pre-emptive and rescue use of percutaneous left ventricular assist device in patients with structural heart disease undergoing catheter ablation of ventricular tachycardia. J Interv Card Electrophysiol. 2017; 48(1): 27–34.
  339. Patel K, Spertus J, Khariton Y, et al. Association between prompt defibrillation and epinephrine treatment with long-term survival after in-hospital cardiac arrest. Circulation. 2018; 137(19): 2041–2051.
  340. Vaseghi M, Gima J, Kanaan C, et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: intermediate and long-term follow-up. Heart Rhythm. 2014; 11(3): 360–366.
  341. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016; 37(27): 2129–2200.
  342. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599–3726.
  343. AlJaroudi WA, Refaat MM, Habib RH, et al. Effect of angiotensin-converting enzyme inhibitors and receptor blockers on appropriate implantable cardiac defibrillator shock in patients with severe systolic heart failure (from the GRADE Multicenter Study). Am J Cardiol. 2015; 115(7): 924–931.
  344. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003; 348(14): 1309–1321.
  345. McMurray JJV, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014; 371(11): 993–1004.
  346. Anker SD, Butler J, Packer M, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383(15): 1413–1424.
  347. Desai AS, McMurray JJV, Packer M, et al. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur Heart J. 2015; 36(30): 1990–1997.
  348. Hindricks G, Potpara T, Dagres N, et al. ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021; 42(5): 373–498.
  349. Connolly SJ, Gent M, Roberts RS, et al. Canadian implantable defibrillator study (CIDS) : a randomized trial of the implantable cardioverter defibrillator against amiodarone. Circulation. 2000; 101(11): 1297–1302.
  350. Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators.. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med. 1997; 337(22): 1576–1583.
  351. Kuck KH, Cappato R, Siebels J, et al. Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest : the Cardiac Arrest Study Hamburg (CASH). Circulation. 2000; 102(7): 748–754.
  352. Connolly SJ, Hallstrom AP, Cappato R, et al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg. Canadian Implantable Defibrillator Study. Eur Heart J. 2000; 21(24): 2071–2078.
  353. Moss AJ, Hall WJ, Cannom DS, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med. 1996; 335(26): 1933–1940.
  354. Moss AJ, Zareba W, Hall WJ, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002; 346(12): 877–883.
  355. Buxton AE, Lee KL, Fisher JD, et al. randomized study of the prevention of sudden death in patients with coronary artery dis- ease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med. 1999; 341(25): 1882–1890.
  356. Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005; 352(3): 225–237.
  357. Zabel M, Willems R, Lubinski A, et al. Clinical effectiveness of primary prevention implantable cardioverter-defibrillators: results of the EU-CERT-ICD controlled multicentre cohort study. Eur Heart J. 2020; 41(36): 3437–3447.
  358. Schrage B, Uijl A, Benson L, et al. Association between use of primary-prevention implantable cardioverter-defibrillators and mortality in patients with heart failure: a prospective propensity score-matched analysis from the Swedish Heart Failure Registry. Circulation. 2019; 140(19): 1530–1539.
  359. Køber L, Thune JJ, Nielsen JC, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016; 375(13): 1221–1230.
  360. Jukema JW, Timal RJ, Rotmans JI, et al. ICD2 Trial Investigators. Prophylactic use of implantable cardioverter-defibrillators in the prevention of sudden cardiac death in dialysis patients. Circulation. 2019; 139(23): 2628–2638.
  361. Sticherling C, Arendacka B, Svendsen JH, et al. Sex differences in outcomes of primary prevention implantable cardioverter-defibrillator therapy: combined registry data from eleven European countries. Europace. 2018; 20(6): 963–970.
  362. Junttila MJ, Pelli A, Kenttä T, et al. Appropriate shocks and mortality in patients with versus without diabetes with prophylactic implantable cardioverter defibrillators. Diabetes Care. 2019; 43(1): 196–200.
  363. Koller MT, Schaer B, Wolbers M, et al. Death without prior appropriate implantable cardioverter-defibrillator therapy: a competing risk study. Circulation. 2008; 117(15): 1918–1926.
  364. Cleland JGF, Halliday BP, Prasad SK. Selecting patients with nonischemic dilated cardiomyopathy for ICDs: myocardial function, fibrosis, and what's attached? J Am Coll Cardiol. 2017; 70(10): 1228–1231.
  365. Younis A, Goldberger JJ, Kutyifa V, et al. Predicted benefit of an implantable cardioverter-defibrillator: the MADIT-ICD benefit score. Eur Heart J. 2021; 42(17): 1676–1684.
  366. Knops RE, Olde Nordkamp LRA, Delnoy PPHM, et al. Subcutaneous or transvenous defibrillator therapy. N Engl J Med. 2020; 383(6): 526–536.
  367. Cleland JGF, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005; 352(15): 1539–1549.
  368. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004; 350(21): 2140–2150.
  369. Goldenberg I, Hall WJ, Beck CA, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009; 361(14): 1329–1338.
  370. Masri A, Altibi AM, Erqou S, et al. Wearable cardioverter-defibrillator therapy for the prevention of sudden cardiac death: a systematic review and meta-analysis. JACC Clin Electrophysiol. 2019; 5(2): 152–161.
  371. Garcia R, Combes N, Defaye P, et al. Wearable cardioverter-defibrillator in patients with a transient risk of sudden cardiac death: the WEARIT-France cohort study. Europace. 2021; 23(1): 73–81.
  372. Olgin JE, Pletcher MJ, Vittinghoff E, et al. Wearable cardioverter-defibrillator after myocardial infarction. N Engl J Med. 2018; 379(13): 1205–1215.
  373. Scott PA, Silberbauer J, McDonagh TA, et al. Impact of prolonged implantable cardioverter-defibrillator arrhythmia detection times on outcomes: a meta-analysis. Heart Rhythm. 2014; 11(5): 828–835.
  374. Tan VH, Wilton SB, Kuriachan V, et al. Impact of programming strategies aimed at reducing nonessential implantable cardioverter defibrillator therapies on mortality: a systematic review and meta-analysis. Circ Arrhythm Electrophysiol. 2014; 7(1): 164–170.
  375. Saeed M, Hanna I, Robotis D, et al. Programming implantable cardioverter-defibrillators in patients with primary prevention indication to prolong time to first shock: results from the PROVIDE study. J Cardiovasc Electrophysiol. 2014; 25(1): 52–59.
  376. Wilkoff BL, Fauchier L, Stiles MK, et al. 2015 HRS/EHRA/APHRS/SOLAECE expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Europace. 2016; 18(2): 159–183.
  377. Stiles MK, Fauchier L, Morillo CA, et al. 2019 HRS/EHRA/APHRS/LAHRS focused update to 2015 expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Europace. 2019; 21(9): 1442–1443.
  378. Barsheshet A, Moss AJ, McNitt S, et al. Long-term implications of cumulative right ventricular pacing among patients with an implantable cardioverter-defibrillator. Heart Rhythm. 2011; 8(2): 212–218.
  379. Wilkoff BL, Kudenchuk PJ, Buxton AE, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. 2002; 288(24): 3115–3123.
  380. Olshansky B, Day JD, Moore S, et al. Is dual-chamber programming inferior to single-chamber programming in an implantable cardioverter-defibrillator? Results of the INTRINSIC RV (Inhibition of Unnecessary RV Pacing With AVSH in ICDs) study. Circulation. 2007; 115(1): 9–16.
  381. Hindricks G, Kühl M, Dagres N. The implantable cardioverter defibrillator, conclusions on sudden cardiac death, and future perspective. ESC CardioMed. 3rd ed. Oxford University Press 2022: 2370–2376.
  382. Gasparini M, Proclemer A, Klersy C, et al. Effect of long-detection interval vs standard-detection interval for implantable cardioverter-defibrillators on antitachycardia pacing and shock delivery: the ADVANCE III randomized clinical trial. JAMA. 2013; 309(18): 1903–1911.
  383. Moss AJ, Schuger C, Beck CA, et al. Reduction in inappropriate therapy and mortality through ICD programming. N Engl J Med. 2012; 367(24): 2275–2283.
  384. Wilkoff BL, Ousdigian KT, Sterns LD, et al. A comparison of empiric to physician-tailored programming of implantable cardioverter-defibrillators: results from the prospective randomized multicenter EMPIRIC trial. J Am Coll Cardiol. 2006; 48(2): 330–339.
  385. Wilkoff BL, Williamson BD, Stern RS, et al. Strategic programming of detection and therapy parameters in implantable cardioverter-defibrillators reduces shocks in primary prevention patients: results from the PREPARE (Primary Prevention Parameters Evaluation) study. J Am Coll Cardiol. 2008; 52(7): 541–550.
  386. Gilliam FR, Hayes DL, Boehmer JP, et al. Real world evaluation of dual-zone ICD and CRT-D programming compared to single-zone programming: the ALTITUDE REDUCES study. J Cardiovasc Electrophysiol. 2011; 22(9): 1023–1029.
  387. Hernandez-Ojeda J, Arbelo E, Borras R, et al. Patients with Brugada syndrome and implanted cardioverter-defibrillators: long-term follow-up. J Am Coll Cardiol. 2017; 70(16): 1991–2002.
  388. Gold MR, Weiss R, Theuns DA, et al. Use of a discrimination algorithm to reduce inappropriate shocks with a subcutaneous implantable cardioverter-defibrillator. Heart Rhythm. 2014; 11(8): 1352–1358.
  389. Mesquita J, Cavaco D, Ferreira A, et al. Effectiveness of subcutaneous implantable cardioverter-defibrillators and determinants of inappropriate shock delivery. Int J Cardiol. 2017; 232: 176–180.
  390. Gold MR, Lambiase PD, El-Chami MF, et al. Primary results from the understanding outcomes with the S-ICD in primary prevention patients with low ejection fraction (UNTOUCHED) trial. Circulation. 2021; 143(1): 7–17.
  391. Wathen MS, DeGroot PJ, Sweeney MO, et al. Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators: Pacing Fast Ventricular Tachycardia Reduces Shock Therapies (PainFREE Rx II) trial results. Circulation. 2004; 110(17): 2591–2596.
  392. Gulizia MM, Piraino L, Scherillo M, et al. A randomized study to compare ramp versus burst antitachycardia pacing therapies to treat fast ventricular tachyarrhythmias in patients with implantable cardioverter defibrillators: the PITAGORA ICD trial. Circ Arrhythm Electrophysiol. 2009; 2(2): 146–153.
  393. Saxon LA, Hayes DL, Gilliam FR, et al. Long-term outcome after ICD and CRT implantation and influence of remote device follow-up: the ALTITUDE survival study. Circulation. 2010; 122(23): 2359–2367.
  394. Varma N, Piccini JP, Snell J, et al. The relationship between level of adherence to automatic wireless remote monitoring and survival in pacemaker and defibrillator patients. J Am Coll Cardiol. 2015; 65(24): 2601–2610.
  395. Guédon-Moreau L, Kouakam C, Klug D, et al. Decreased delivery of inappropriate shocks achieved by remote monitoring of ICD: a substudy of the ECOST trial. J Cardiovasc Electrophysiol. 2014; 25(7): 763–770.
  396. Varma N, Michalski J, Epstein AE, et al. Automatic remote monitoring of implantable cardioverter-defibrillator lead and generator performance: the Lumos-T Safely RedUceS RouTine Office Device Follow-Up (TRUST) trial. Circ Arrhythm Electrophysiol. 2010; 3(5): 428–436.
  397. Ploux S, Swerdlow CD, Strik M, et al. Towards eradication of inappropriate therapies for ICD lead failure by combining comprehensive remote monitoring and lead noise alerts. J Cardiovasc Electrophysiol. 2018; 29(8): 1125–1134.
  398. Ellenbogen KA, Gunderson BD, Stromberg KD, et al. Performance of Lead Integrity Alert to assist in the clinical diagnosis of implantable cardioverter defibrillator lead failures: analysis of different implantable cardioverter defibrillator leads. Circ Arrhythm Electrophysiol. 2013; 6(6): 1169–1177.
  399. Swerdlow CD, Gunderson BD, Ousdigian KT, et al. Downloadable software algorithm reduces inappropriate shocks caused by implantable cardioverter-defibrillator lead fractures: a prospective study. Circulation. 2010; 122(15): 1449–1455.
  400. Ruwald MH, Abu-Zeitone A, Jons C, et al. Impact of carvedilol and metoprolol on inappropriate implantable cardioverter-defibrillator therapy: the MADIT-CRT trial (Multicenter Automatic Defibrillator Implantation With Cardiac Resynchronization Therapy). J Am Coll Cardiol. 2013; 62(15): 1343–1350.
  401. Miyazaki S, Taniguchi H, Kusa S, et al. Catheter ablation of atrial tachyarrhythmias causing inappropriate implantable cardioverter-defibrillator shocks. Europace. 2015; 17(2): 289–294.
  402. Mainigi SK, Almuti K, Figueredo VM, et al. Usefulness of radiofrequency ablation of supraventricular tachycardia to decrease inappropriate shocks from implantable cardioverter-defibrillators. Am J Cardiol. 2012; 109(2): 231–237.
  403. Kosiuk J, Nedios S, Darma A, et al. Impact of single atrial fibrillation catheter ablation on implantable cardioverter defibrillator therapies in patients with ischaemic and non-ischaemic cardiomyopathies. Europace. 2014; 16(9): 1322–1326.
  404. Kirchhof P, Camm A, Goette A, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020; 383(14): 1305–1316.
  405. Gasparini M, Kloppe A, Lunati M, et al. Atrioventricular junction ablation in patients with atrial fibrillation treated with cardiac resynchronization therapy: positive impact on ventricular arrhythmias, implantable cardioverter-defibrillator therapies and hospitalizations. Eur J Heart Fail. 2018; 20(10): 1472–1481.
  406. Gasparini M, Galimberti P. Rate control: ablation and device therapy (ablate and pace). ESC CardioMed. 3rd ed. Oxford University Press 2022: 2159–2162.
  407. Kitamura T, Fukamizu S, Kawamura I, et al. Long-term efficacy of catheter ablation for paroxysmal atrial fibrillation in patients with Brugada syndrome and an implantable cardioverter-defibrillator to prevent inappropriate shock therapy. Heart Rhythm. 2016; 13(7): 1455–1459.
  408. Magyar-Russell G, Thombs B, Cai J, et al. The prevalence of anxiety and depression in adults with implantable cardioverter defibrillators: A systematic review. J Psychosom Res. 2011; 71(4): 223–231.
  409. Tzeis S, Kolb C, Baumert J, et al. Effect of depression on mortality in implantable cardioverter defibrillator recipients — findings from the prospective LICAD study. Pacing Clin Electrophysiol. 2011; 34(8): 991–997.
  410. Andersen CM, Theuns DA, Johansen JB, et al. Anxiety, depression, ventricular arrhythmias and mortality in patients with an implantable cardioverter defibrillator: 7 years' follow-up of the MIDAS cohort. Gen Hosp Psychiatry. 2020; 66: 154–160.
  411. Berg SK, Thygesen LC, Svendsen JH, et al. Anxiety predicts mortality in ICD patients: results from the cross-sectional national CopenHeartICD survey with register follow-up. Pacing Clin Electrophysiol. 2014; 37(12): 1641–1650.
  412. Thylén I, Moser DK, Strömberg A, et al. Concerns about implantable cardioverter-defibrillator shocks mediate the relationship between actual shocks and psychological distress. Europace. 2016; 18(6): 828–835.
  413. Pedersen SS, van Domburg RT, Theuns DA, et al. Concerns about the implantable cardioverter defibrillator: a determinant of anxiety and depressive symptoms independent of experienced shocks. Am Heart J. 2005; 149(4): 664–669.
  414. Frizelle DJ, Lewin B, Kaye G, et al. Development of a measure of the concerns held by people with implanted cardioverter defibrillators: the ICDC. Br J Health Psychol. 2006; 11(Pt 2): 293–301.
  415. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983; 67(6): 361–370.
  416. Frydensberg VS, Johansen JB, Möller S, et al. Anxiety and depression symptoms in Danish patients with an implantable cardioverter-defibrillator: prevalence and association with indication and sex up to 2 years of follow-up (data from the national DEFIB-WOMEN study). Europace. 2020; 22(12): 1830–1840.
  417. Hoogwegt MT, Kupper N, Theuns DA, et al. Undertreatment of anxiety and depression in patients with an implantable cardioverter-defibrillator: impact on health status. Health Psychol. 2012; 31(6): 745–753.
  418. Lane DA, Aguinaga L, Blomström-Lundqvist C, et al. Cardiac tachyarrhythmias and patient values and preferences for their management: the European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE). Europace. 2015; 17(12): 1747–1769.
  419. Dunbar SB, Dougherty CM, Sears SF, et al. Educational and psychological interventions to improve outcomes for recipients of implantable cardioverter defibrillators and their families: a scientific statement from the American Heart Association. Circulation. 2012; 126(17): 2146–2172.
  420. Sears SF, Sowell LD, Kuhl EA, et al. The ICD shock and stress management program: a randomized trial of psychosocial treatment to optimize quality of life in ICD patients. Pacing Clin Electrophysiol. 2007; 30(7): 858–864.
  421. Berg SK, Rasmussen TB, Herning M, et al. Cognitive behavioural therapy significantly reduces anxiety in patients with implanted cardioverter defibrillator compared with usual care: Findings from the Screen-ICD randomised controlled trial. Eur J Prev Cardiol. 2020; 27(3): 258–268.
  422. Schulz SM, Ritter O, Zniva R, et al. Efficacy of a web-based intervention for improving psychosocial well-being in patients with implantable cardioverter-defibrillators: the randomized controlled ICD-FORUM trial. Eur Heart J. 2020; 41(11): 1203–1211.
  423. van den Broek KC, Tekle FB, Habibović M, et al. Emotional distress, positive affect, and mortality in patients with an implantable cardioverter defibrillator. Int J Cardiol. 2013; 165(2): 327–332.
  424. Hauptman PJ, Chibnall JT, Guild C, et al. Patient perceptions, physician communication, and the implantable cardioverter-defibrillator. JAMA Intern Med. 2013; 173(7): 571–577.
  425. Cikes M, Jakus N, Claggett B, et al. PCHF-VAD registry. Cardiac implantable electronic devices with a defibrillator component and all-cause mortality in left ventricular assist device carriers: results from the PCHF-VAD registry. Eur J Heart Fail. 2019; 21(9): 1129–1141.
  426. Galand V, Flécher E, Auffret V, et al. ASSIST-ICD Investigators. Predictors and clinical impact of late ventricular arrhythmias in patients with continuous-flow left ventricular assist devices. JACC Clin Electrophysiol. 2018; 4(9): 1166–1175.
  427. Nakahara S, Chien C, Gelow J, et al. Ventricular arrhythmias after left ventricular assist device. Circ Arrhythm Electrophysiol. 2013; 6(3): 648–654.
  428. Clerkin KJ, Topkara VK, Demmer RT, et al. Implantable cardioverter-defibrillators in Patients with a continuous-flow left ventricular assist device: an analysis of the INTERMACS registry. JACC Heart Fail. 2017; 5(12): 916–926.
  429. Oz MC, Rose EA, Slater J, et al. Malignant ventricular arrhythmias are well tolerated in patients receiving long-term left ventricular assist devices. J Am Coll Cardiol. 1994; 24(7): 1688–1691.
  430. Potapov EV, Antonides C, Crespo-Leiro MG, et al. 2019 EACTS Expert Consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg. 2019; 56(2): 230–270.
  431. Makki N, Mesubi O, Steyers C, et al. Meta-analysis of the relation of ventricular arrhythmias to all-cause mortality after implantation of a left ventricular assist device. Am J Cardiol. 2015; 116(9): 1385–1390.
  432. Yoruk A, Sherazi S, Massey HT, et al. Predictors and clinical relevance of ventricular tachyarrhythmias in ambulatory patients with a continuous flow left ventricular assist device. Heart Rhythm. 2016; 13(5): 1052–1056.
  433. Bedi M, Kormos R, Winowich S, et al. Ventricular arrhythmias during left ventricular assist device support. Am J Cardiol. 2007; 99(8): 1151–1153.
  434. Brenyo A, Rao M, Koneru S, et al. Risk of mortality for ventricular arrhythmia in ambulatory LVAD patients. J Cardiovasc Electrophysiol. 2012; 23(5): 515–520.
  435. Vakil K, Kazmirczak F, Sathnur N, et al. Implantable cardioverter-defibrillator use in patients with left ventricular assist devices: a systematic review and meta-analysis. JACC Heart Fail. 2016; 4(10): 772–779.
  436. Refaat MM, Tanaka T, Kormos RL, et al. Survival benefit of implantable cardioverter-defibrillators in left ventricular assist device-supported heart failure patients. J Card Fail. 2012; 18(2): 140–145.
  437. Cantillon DJ, Tarakji KG, Kumbhani DJ, et al. Improved survival among ventricular assist device recipients with a concomitant implantable cardioverter-defibrillator. Heart Rhythm. 2010; 7(4): 466–471.
  438. Joyce E, Starling RC. HFrEF other treatment: ventricular assist devices. ESC CardioMed. 3rd ed. Oxford University Press, 2022 : 1884–1889.
  439. Younes A, Al-Kindi SG, Alajaji W, et al. Presence of implantable cardioverter-defibrillators and wait-list mortality of patients supported with left ventricular assist devices as bridge to heart transplantation. Int J Cardiol. 2017; 231: 211–215.
  440. Agrawal S, Garg L, Nanda S, et al. The role of implantable cardioverter-defibrillators in patients with continuous flow left ventricular assist devices – a meta-analysis. Int J Cardiol. 2016; 222: 379–384.
  441. Blomström-Lundqvist C, Traykov V, Erba PA, et al. European Heart Rhythm Association (EHRA) international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infections-endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), the Latin American Heart Rhythm Society (LAHRS), International Society for Cardiovascular Infectious Diseases (ISCVID) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Europace. 2020; 22(4): 515–549.
  442. Burri H, Starck C, Auricchio A, et al. EHRA expert consensus statement and practical guide on optimal implantation technique for conventional pacemakers and implantable cardioverter-defibrillators: endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin-American Heart Rhythm Society (LAHRS). Europace. 2021; 23(7): 983–1008.
  443. Tarakji KG, Mittal S, Kennergren C, et al. WRAP-IT Investigators. Antibacterial envelope to prevent cardiac implantable device infection. N Engl J Med. 2019; 380(20): 1895–1905.
  444. Atti V, Turagam MK, Garg J, et al. Subclavian and axillary vein access versus cephalic vein cutdown for cardiac implantable electronic device implantation: a meta-analysis. JACC Clin Electrophysiol. 2020; 6(6): 661–671.
  445. Benz AP, Vamos M, Erath JW, et al. Cephalic vs. subclavian lead implantation in cardiac implantable electronic devices: a systematic review and meta-analysis. Europace. 2019; 21(1): 121–129.
  446. Chan NY, Kwong NP, Cheong AP. Venous access and long-term pacemaker lead failure: comparing contrast-guided axillary vein puncture with subclavian puncture and cephalic cutdown. Europace. 2017; 19(7): 1193–1197.
  447. Defaye P, Boveda S, Klug D, et al. DAI-PP Investigators. Dual- vs. single-chamber defibrillators for primary prevention of sudden cardiac death: long-term follow-up of the Défibrillateur Automatique Implantable-Prévention Primaire registry. Europace. 2017; 19(9): 1478–1484.
  448. Dewland TA, Pellegrini CN, Wang Y, et al. Dual-chamber implantable cardioverter-defibrillator selection is associated with increased complication rates and mortality among patients enrolled in the NCDR implantable cardioverter-defibrillator registry. J Am Coll Cardiol. 2011; 58(10): 1007–1013.
  449. Friedman PA, Bradley D, Koestler C, et al. A prospective randomized trial of single- or dual-chamber implantable cardioverter-defibrillators to minimize inappropriate shock risk in primary sudden cardiac death prevention. Europace. 2014; 16(10): 1460–1468.
  450. Chen BW, Liu Q, Wang Xu, et al. Are dual-chamber implantable cardioverter-defibrillators really better than single-chamber ones? A systematic review and meta-analysis. J Interv Card Electrophysiol. 2014; 39(3): 273–280.
  451. Epstein LM, Love CJ, Wilkoff BL, et al. Superior vena cava defibrillator coils make transvenous lead extraction more challenging and riskier. J Am Coll Cardiol. 2013; 61(9): 987–989.
  452. Larsen JM, Hjortshøj SP, Nielsen JC, et al. Single-coil and dual-coil defibrillator leads and association with clinical outcomes in a complete Danish nationwide ICD cohort. Heart Rhythm. 2016; 13(3): 706–712.
  453. Kumar KR, Mandleywala SN, Madias C, et al. Single coil implantable cardioverter defibrillator leads in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2020; 125(12): 1896–1900.
  454. Friedman PA, Rasmussen MJ, Grice S, et al. Defibrillation thresholds are increased by right-sided implantation of totally transvenous implantable cardioverter defibrillators. Pacing Clin Electrophysiol. 1999; 22(8): 1186–1192.
  455. Stoevelaar R, Brinkman-Stoppelenburg A, Bhagwandien RE, et al. The incidence and impact of implantable cardioverter defibrillator shocks in the last phase of life: an integrated review. Eur J Cardiovasc Nurs. 2018; 17(6): 477–485.
  456. Kapa S, Mueller PS, Hayes DL, et al. Perspectives on withdrawing pacemaker and implantable cardioverter-defibrillator therapies at end of life: results of a survey of medical and legal professionals and patients. Mayo Clin Proc. 2010; 85(11): 981–990.
  457. Padeletti L, Arnar DO, Boncinelli L, et al. EHRA Expert Consensus Statement on the management of cardiovascular implantable electronic devices in patients nearing end of life or requesting withdrawal of therapy. Europace. 2010; 12(10): 1480–1489.
  458. Stoevelaar R, Brinkman-Stoppelenburg A, van Driel AG, et al. Trends in time in the management of the implantable cardioverter defibrillator in the last phase of life: a retrospective study of medical records. Eur J Cardiovasc Nurs. 2019; 18(6): 449–457.
  459. Kirkpatrick JN, Gottlieb M, Sehgal P, et al. Deactivation of implantable cardioverter defibrillators in terminal illness and end of life care. Am J Cardiol. 2012; 109(1): 91–94.
  460. Stevenson WG, Khan H, Sager P, et al. Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation. 1993; 88(4 Pt 1): 1647–1670.
  461. de Bakker JM, van Capelle FJ, Janse MJ, et al. Slow conduction in the infarcted human heart. 'Zigzag' course of activation. Circulation. 1993; 88(3): 915–926.
  462. de Chillou C, Lacroix D, Klug D, et al. Isthmus characteristics of reentrant ventricular tachycardia after myocardial infarction. Circulation. 2002; 105(6): 726–731.
  463. Hsia HH, Callans DJ, Marchlinski FE. Characterization of endocardial electrophysiological substrate in patients with nonischemic cardiomyopathy and monomorphic ventricular tachycardia. Circulation. 2003; 108(6): 704–710.
  464. Soejima K, Stevenson WG, Sapp JL, et al. Endocardial and epicardial radiofrequency ablation of ventricular tachycardia associated with dilated cardiomyopathy: the importance of low-voltage scars. J Am Coll Cardiol. 2004; 43(10): 1834–1842.
  465. Miljoen H, State S, de Chillou C, et al. Electroanatomic mapping characteristics of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Europace. 2005; 7(6): 516–524.
  466. Priori SG, Blomström-Lundqvist C, Mazzanti A, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015; 36(41): 2793–2867.
  467. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS Guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018; 72(14): 1677–1749.
  468. Towbin JA, McKenna WJ, Abrams DJ, et al. HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy: executive summary. Heart Rhythm. 2019; 16(11): e373–e407.
  469. Moss AJ, Greenberg H, Case RB, et al. Long-term clinical course of patients after termination of ventricular tachyarrhythmia by an implanted defibrillator. Circulation. 2004; 110(25): 3760–3765.
  470. Poole JE, Johnson GW, Hellkamp AS, et al. Prognostic importance of defibrillator shocks in patients with heart failure. N Engl J Med. 2008; 359(10): 1009–1017.
  471. Sapp JL, Wells GA, Parkash R, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med. 2016; 375(2): 111–121.
  472. Piccini JP, Berger JS, O'Connor CM. Amiodarone for the prevention of sudden cardiac death: a meta-analysis of randomized controlled trials. Eur Heart J. 2009; 30(10): 1245–1253.
  473. Palaniswamy C, Kolte D, Harikrishnan P, et al. Catheter ablation of postinfarction ventricular tachycardia: ten-year trends in utilization, in-hospital complications, and in-hospital mortality in the United States. Heart Rhythm. 2014; 11(11): 2056–2063.
  474. Caceres J, Jazayeri M, McKinnie J, et al. Sustained bundle branch reentry as a mechanism of clinical tachycardia. Circulation. 1989; 79(2): 256–270.
  475. Blanck Z, Dhala A, Deshpande S, et al. Bundle branch reentrant ventricular tachycardia:. J Cardiovasc Electrophysiol. 1993; 4(3): 253–262.
  476. Chen H, Shi L, Yang B, et al. Electrophysiological characteristics of bundle branch reentry ventricular tachycardia in patients without structural heart disease. Circ Arrhythm Electrophysiol. 2018; 11(7): e006049.
  477. Pathak RK, Fahed J, Santangeli P, et al. Long-term outcome of catheter ablation for treatment of bundle branch re-entrant tachycardia. JACC Clin Electrophysiol. 2018; 4(3): 331–338.
  478. Stevenson WG, Wilber DJ, Natale A, et al. Irrigated radiofrequency catheter ablation guided by electroanatomic mapping for recurrent ventricular tachycardia after myocardial infarction: the multicenter thermocool ventricular tachycardia ablation trial. Circulation. 2008; 118(25): 2773–2782.
  479. Della Bella P, Baratto F, Tsiachris D, et al. Management of ventricular tachycardia in the setting of a dedicated unit for the treatment of complex ventricular arrhythmias: long-term outcome after ablation. Circulation. 2013; 127(13): 1359–1368.
  480. Maury P, Baratto F, Zeppenfeld K, et al. Radio-frequency ablation as primary management of well-tolerated sustained monomorphic ventricular tachycardia in patients with structural heart disease and left ventricular ejection fraction over 30%. Eur Heart J. 2014; 35(22): 1479–1485.
  481. Tung R, Vaseghi M, Frankel D, et al. Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: an International VT Ablation Center Collaborative Group study. Heart Rhythm. 2015; 12(9): 1997–2007.
  482. Santangeli P, Tung R, Xue Y, et al. Long-term outcome with catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy. Circ Arrhythm Electrophysiol. 2015; 8(6): 1413–1421.
  483. Marchlinski FE, Haffajee CI, Beshai JF, et al. Long-term success of irrigated radiofrequency catheter ablation of sustained ventricular tachycardia: post-approval THERMOCOOL VT trial. J Am Coll Cardiol. 2016; 67(6): 674–683.
  484. Reddy VY, Reynolds MR, Neuzil P, et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N Engl J Med. 2007; 357(26): 2657–2665.
  485. Kuck KH, Schaumann A, Eckardt L, et al. Catheter ablation of stable ventricular tachycardia before defibrillator implantation in patients with coronary heart disease (VTACH): a multicentre randomised controlled trial. Lancet. 2010; 375(9708): 31–40.
  486. Anter E, Kleber A, Rottmann M, et al. Infarct-related ventricular tachycardia. JACC: Clinical Electrophysiology. 2018; 4(8): 1033–1048.
  487. Marchlinski FE, Callans DJ, Gottlieb CD, et al. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation. 2000; 101(11): 1288–1296.
  488. de Chillou C, Groben L, Magnin-Poull I, et al. Localizing the critical isthmus of postinfarct ventricular tachycardia: the value of pace-mapping during sinus rhythm. Heart Rhythm. 2014; 11(2): 175–181.
  489. Jaïs P, Maury P, Khairy P, et al. Elimination of local abnormal ventricular activities. Circulation. 2012; 125(18): 2184–2196.
  490. Berruezo A, Fernández-Armenta J. Lines, circles, channels, and clouds: looking for the best design for substrate-guided ablation of ventricular tachycardia. Europace. 2014; 16(7): 943–945.
  491. Di Biase L, Burkhardt JD, Lakkireddy D, et al. Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: the VISTA randomized multicenter trial. J Am Coll Cardiol. 2015; 66(25): 2872–2882.
  492. Berruezo A, Fernández-Armenta J, Andreu D, et al. Scar dechanneling: new method for scar-related left ventricular tachycardia substrate ablation. Circ Arrhythm Electrophysiol. 2015; 8(2): 326–336.
  493. Haïssaguerre M, Shoda M, Jaïs P, et al. Mapping and ablation of idiopathic ventricular fibrillation. Circulation. 2002; 106(8): 962–967.
  494. Shirai Y, Liang JJ, Santangeli P, et al. Comparison of the ventricular tachycardia circuit between patients with ischemic and nonischemic cardiomyopathies: detailed characterization by entrainment. Circ Arrhythm Electrophysiol. 2019; 12(7): e007249.
  495. Bhaskaran A, Tung R, Stevenson WG, et al. Catheter ablation of VT in non-ischaemic cardiomyopathies: endocardial, epicardial and intramural approaches. Heart Lung Circ. 2019; 28(1): 84–101.
  496. Tung R, Raiman M, Liao H, et al. Simultaneous endocardial and epicardial delineation of 3D reentrant ventricular tachycardia. J Am Coll Cardiol. 2020; 75(8): 884–897.
  497. Dinov B, Fiedler L, Schönbauer R, et al. Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy: results from the Prospective Heart Centre of Leipzig VT (HELP-VT) Study. Circulation. 2014; 129(7): 728–736.
  498. Proietti R, Essebag V, Beardsall J, et al. Substrate-guided ablation of haemodynamically tolerated and untolerated ventricular tachycardia in patients with structural heart disease: effect of cardiomyopathy type and acute success on long-term outcome. Europace. 2015; 17(3): 461–467.
  499. Ebert M, Richter S, Dinov B, et al. Evaluation and management of ventricular tachycardia in patients with dilated cardiomyopathy. Heart Rhythm. 2019; 16(4): 624–631.
  500. Proietti R, Lichelli L, Lellouche N, et al. The challenge of optimising ablation lesions in catheter ablation of ventricular tachycardia. J Arrhythm. 2021; 37(1): 140–147.
  501. Tokuda M, Sobieszczyk P, Eisenhauer AC, et al. Transcoronary ethanol ablation for recurrent ventricular tachycardia after failed catheter ablation: an update. Circ Arrhythm Electrophysiol. 2011; 4(6): 889–896.
  502. Kreidieh B, Rodríguez-Mañero M, Schurmann P, et al. Retrograde coronary venous ethanol infusion for ablation of refractory ventricular tachycardia. Circ Arrhythm Electrophysiol. 2016; 9(7): e004352.
  503. Nguyen DT, Tzou WS, Sandhu A, et al. Prospective multicenter experience with cooled radiofrequency ablation using high impedance irrigant to target deep myocardial substrate refractory to standard ablation. JACC Clin Electrophysiol. 2018; 4(9): 1176–1185.
  504. Stevenson WG, Tedrow UB, Reddy V, et al. Infusion needle radiofrequency ablation for treatment of refractory ventricular arrhythmias. J Am Coll Cardiol. 2019; 73(12): 1413–1425.
  505. Igarashi M, Nogami A, Fukamizu S, et al. Acute and long-term results of bipolar radiofrequency catheter ablation of refractory ventricular arrhythmias of deep intramural origin. Heart Rhythm. 2020; 17(9): 1500–1507.
  506. Della Bella P, Peretto G, Paglino G, et al. Bipolar radiofrequency ablation for ventricular tachycardias originating from the interventricular septum: Safety and efficacy in a pilot cohort study. Heart Rhythm. 2020; 17(12): 2111–2118.
  507. Cuculich PS, Schill MR, Kashani R, et al. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med. 2017; 377(24): 2325–2336.
  508. Robinson CG, Samson PP, Moore KMS, et al. Phase I/II trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia. Circulation. 2019; 139(3): 313–321.
  509. Anter E, Hutchinson MD, Deo R, et al. Surgical ablation of refractory ventricular tachycardia in patients with nonischemic cardiomyopathy. Circ Arrhythm Electrophysiol. 2011; 4(4): 494–500.
  510. Fernández-Armenta J, Berruezo A, Andreu D, et al. Three-dimensional architecture of scar and conducting channels based on high resolution ce-CMR: insights for ventricular tachycardia ablation. Circ Arrhythm Electrophysiol. 2013; 6(3): 528–537.
  511. Mahida S, Sacher F, Dubois R, et al. Cardiac imaging in patients with ventricular tachycardia. Circulation. 2017; 136(25): 2491–2507.
  512. Andreu D, Penela D, Acosta J, et al. Cardiac magnetic resonance-aided scar dechanneling: Influence on acute and long-term outcomes. Heart Rhythm. 2017; 14(8): 1121–1128.
  513. Kuo L, Liang JJ, Nazarian S, et al. Multimodality imaging to guide ventricular tachycardia ablation in patients with non-ischaemic cardiomyopathy. Arrhythm Electrophysiol Rev. 2020; 8(4): 255–264.
  514. Roca-Luque I, Van Breukelen A, Alarcon F, et al. Ventricular scar channel entrances identified by new wideband cardiac magnetic resonance sequence to guide ventricular tachycardia ablation in patients with cardiac defibrillators. Europace. 2020; 22(4): 598–606.
  515. Betensky BP, Marchlinski FE. Outcomes of catheter ablation of ventricular tachycardia in the setting of structural heart disease. Curr Cardiol Rep. 2016; 18(7): 68.
  516. Dukkipati SR, Koruth JS, Choudry S, et al. Catheter ablation of ventricular tachycardia in structural heart disease. J Am Coll Cardiol. 2017; 70(23): 2924–2941.
  517. Zeppenfeld K. Ventricular tachycardia ablation in nonischemic cardiomyopathy. JACC Clin Electrophysiol. 2018; 4(9): 1123–1140.
  518. Guandalini GS, Liang JJ, Marchlinski FE. Ventricular tachycardia ablation. JACC Clin Electrophysiol. 2019; 5(12): 1363–1383.
  519. Peichl P, Wichterle D, Pavlu L, et al. Complications of catheter ablation of ventricular tachycardia: a single-center experience. Circ Arrhythm Electrophysiol. 2014; 7(4): 684–690.
  520. Katz DF, Turakhia MP, Sauer WH, et al. Safety of ventricular tachycardia ablation in clinical practice: findings from 9699 hospital discharge records. Circ Arrhythm Electrophysiol. 2015; 8(2): 362–370.
  521. Cheung JW, Yeo I, Ip JE, et al. Outcomes, costs, and 30-day readmissions after catheter ablation of myocardial infarct-associated ventricular tachycardia in the real world: nationwide readmissions database 2010 to 2015. Circ Arrhythm Electrophysiol. 2018; 11(11): e006754.
  522. Hendriks AA, Akca F, Dabiri Abkenari L, et al. Safety and clinical outcome of catheter ablation of ventricular arrhythmias using contact force sensing: consecutive case series. J Cardiovasc Electrophysiol. 2015; 26(11): 1224–1229.
  523. Nogami A. Purkinje-related arrhythmias part I: monomorphic ventricular tachycardias. Pacing Clin Electrophysiol. 2011; 34(5): 624–650.
  524. Lerman BB. Mechanism, diagnosis, and treatment of outflow tract tachycardia. Nat Rev Cardiol. 2015; 12(10): 597–608.
  525. Kobayashi Y. Idiopathic ventricular premature contraction and ventricular tachycardia: distribution of the origin, diagnostic algorithm, and catheter ablation. J Nippon Med Sch. 2018; 85(2): 87–94.
  526. Tada H, Ito S, Naito S, et al. Idiopathic ventricular arrhythmia arising from the mitral annulus: a distinct subgroup of idiopathic ventricular arrhythmias. J Am Coll Cardiol. 2005; 45(6): 877–886.
  527. Wasmer K, Köbe J, Dechering DG, et al. Ventricular arrhythmias from the mitral annulus: patient characteristics, electrophysiological findings, ablation, and prognosis. Heart Rhythm. 2013; 10(6): 783–788.
  528. Tada H, Tadokoro K, Ito S, et al. Idiopathic ventricular arrhythmias originating from the tricuspid annulus: Prevalence, electrocardiographic characteristics, and results of radiofrequency catheter ablation. Heart Rhythm. 2007; 4(1): 7–16.
  529. Yamada T, Doppalapudi H, McElderry HT, et al. Electrocardiographic and electrophysiological characteristics in idiopathic ventricular arrhythmias originating from the papillary muscles in the left ventricle: relevance for catheter ablation. Circ Arrhythm Electrophysiol. 2010; 3(4): 324–331.
  530. Macias C, Nakamura K, Tung R, et al. Importance of delayed enhanced cardiac MRI in idiopathic RVOT-VT: differentiating mimics including early stage ARVC and cardiac sarcoidosis. J Atr Fibrillation. 2014; 7(4): 1097.
  531. Heeger CH, Hayashi K, Kuck KH, et al. Catheter ablation of idiopathic ventricular arrhythmias arising from the cardiac outflow tracts — recent insights and techniques for the successful treatment of common and challenging cases. Circ J. 2016; 80(5): 1073–1086.
  532. Pathak RK, Ariyarathna N, Garcia FC, et al. Catheter ablation of idiopathic ventricular arrhythmias. Heart Lung Circ. 2019; 28(1): 102–109.
  533. Yamada T, McElderry H, Doppalapudi H, et al. Idiopathic ventricular arrhythmias originating from the aortic root prevalence, electrocardiographic and electrophysiologic characteristics, and results of radiofrequency catheter ablation. J Am Coll Cardiol. 2008; 52(2): 139–147.
  534. Van Herendael H, Garcia F, Lin D, et al. Idiopathic right ventricular arrhythmias not arising from the outflow tract: prevalence, electrocardiographic characteristics, and outcome of catheter ablation. Heart Rhythm. 2011; 8(4): 511–518.
  535. Latchamsetty R, Yokokawa M, Morady F, et al. Multicenter outcomes for catheter ablation of idiopathic premature ventricular complexes. JACC Clin Electrophysiol. 2015; 1(3): 116–123.
  536. Liu Y, Fang Z, Yang B, et al. Catheter ablation of fascicular ventricular tachycardia: long-term clinical outcomes and mechanisms of recurrence. Circ Arrhytm Electrophysiol. 2015; 8(6): 1443–1451.
  537. Hayashi T, Liang JJ, Shirai Y, et al. Trends in successful ablation sites and outcomes of ablation for idiopathic outflow tract ventricular arrhythmias. JACC Clin Electrophysiol. 2020; 6(2): 221–230.
  538. Farré J, Wellens HJ. Philippe Coumel: a founding father of modern arrhythmology. Europace. 2004; 6(5): 464–465.
  539. Neira V, Enriquez A, Simpson C, et al. Update on long QT syndrome. J Cardiovasc Electrophysiol. 2019; 30(12): 3068–3078.
  540. Winbo A, Paterson DJ. The brain-heart connection in sympathetically triggered inherited arrhythmia syndromes. Heart Lung Circ. 2020; 29(4): 529–537.
  541. Schwartz PJ, Priori SG, Cerrone M, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004; 109(15): 1826–1833.
  542. Surman TL, Stuklis RG, Chan JC. Thoracoscopic sympathectomy for long QT syndrome. Literature review and case study. Heart Lung Circ. 2019; 28(3): 486–494.
  543. Orvin K, Eisen A, Goldenberg I, et al. Outcome of contemporary acute coronary syndrome complicated by ventricular tachyarrhythmias. Europace. 2016; 18(2): 219–226.
  544. Demirel F, Rasoul S, Elvan A, et al. Impact of out-of-hospital cardiac arrest due to ventricular fibrillation in patients with ST-elevation myocardial infarction admitted for primary percutaneous coronary intervention: Impact of ventricular fibrillation in STEMI patients. Eur Heart J Acute Cardiovasc Care. 2015; 4(1): 16–23.
  545. Mehta RH, Starr AZ, Lopes RD, et al. Incidence of and outcomes associated with ventricular tachycardia or fibrillation in patients undergoing primary percutaneous coronary intervention. JAMA. 2009; 301(17): 1779–1789.
  546. Demidova MM, Carlson J, Erlinge D, et al. Predictors of ventricular fibrillation at reperfusion in patients with acute ST-elevation myocardial infarction treated by primary percutaneous coronary intervention. Am J Cardiol. 2015; 115(4): 417–422.
  547. Cheng YJ, Li ZY, Yao FJ, et al. Early repolarization is associated with a significantly increased risk of ventricular arrhythmias and sudden cardiac death in patients with structural heart diseases. Heart Rhythm. 2017; 14(8): 1157–1164.
  548. Dumas F, Bougouin W, Geri G, et al. Emergency percutaneous coronary intervention in post-cardiac arrest patients without ST-segment elevation pattern: insights from the PROCAT II registry. JACC Cardiovasc Interv. 2016; 9(10): 1011–1018.
  549. Chatterjee S, Chaudhuri D, Vedanthan R, et al. Early intravenous beta-blockers in patients with acute coronary syndrome — a meta-analysis of randomized trials. Int J Cardiol. 2013; 168(2): 915–921.
  550. Roolvink V, Ibáñez B, Ottervanger J, et al. Early intravenous beta-blockers in patients with ST-segment elevation myocardial infarction before primary percutaneous coronary intervention. J Am Coll Cardiol. 2016; 67(23): 2705–2715.
  551. Piccini JP, Hranitzky PM, Kilaru R, et al. Relation of mortality to failure to prescribe beta blockers acutely in patients with sustained ventricular tachycardia and ventricular fibrillation following acute myocardial infarction (from the VALsartan In Acute myocardial iNfarcTion trial [VALIANT] Registry). Am J Cardiol. 2008; 102(11): 1427–1432.
  552. Nademanee K, Taylor R, Bailey WE, et al. Treating electrical storm : sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation. 2000; 102(7): 742–747.
  553. Bundgaard JS, Jacobsen PK, Grand J, et al. Deep sedation as temporary bridge to definitive treatment of ventricular arrhythmia storm. Eur Heart J Acute Cardiovasc Care. 2020; 9(6): 657–664.
  554. Piccini JP, Schulte PJ, Pieper KS, et al. Antiarrhythmic drug therapy for sustained ventricular arrhythmias complicating acute myocardial infarction. Crit Care Med. 2011; 39(1): 78–83.
  555. Dorian P, Cass D, Schwartz B, et al. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N Engl J Med. 2002; 346(12): 884–890.
  556. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med. 1991; 324(12): 781–788.
  557. Baudry G, Sonneville R, Waintraub X, et al. Extracorporeal membrane oxygenation to support life-threatening drug-refractory electrical storm. Crit Care Med. 2020; 48(10): e856–e863.
  558. Demidova MM, Smith JG, Höijer CJ, et al. Prognostic impact of early ventricular fibrillation in patients with ST-elevation myocardial infarction treated with primary PCI. Eur Heart J Acute Cardiovasc Care. 2012; 1(4): 302–311.
  559. Podolecki T, Lenarczyk R, Kowalczyk J, et al. Prognostic significance of complex ventricular arrhythmias complicating ST-segment elevation myocardial infarction. Am J Cardiol. 2018; 121(7): 805–809.
  560. Bougouin W, Marijon E, Puymirat E, et al. Incidence of sudden cardiac death after ventricular fibrillation complicating acute myocardial infarction: a 5-year cause-of-death analysis of the FAST-MI 2005 registry. Eur Heart J. 2014; 35(2): 116–122.
  561. Liang JJ, Hodge DO, Mehta RA, et al. Outcomes in patients with sustained ventricular tachyarrhythmias occurring within 48 h of acute myocardial infarction: when is ICD appropriate? Europace. 2014; 16(12): 1759–1766.
  562. Ahn JM, Lee KiH, Yoo SY, et al. Prognosis of variant angina manifesting as aborted sudden cardiac death. J Am Coll Cardiol. 2016; 68(2): 137–145.
  563. Sueda S, Kohno H. Optimal medications and appropriate implantable cardioverter-defibrillator shocks in aborted sudden cardiac death due to coronary spasm. Intern Med. 2018; 57(10): 1361–1369.
  564. Rodríguez-Mañero M, Oloriz T, le Polain de Waroux JB, et al. Long-term prognosis of patients with life-threatening ventricular arrhythmias induced by coronary artery spasm. Europace. 2018; 20(5): 851–858.
  565. Pouleur AC, Barkoudah E, Uno H, et al. Sudden death in patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. N Engl J Med. 2005; 352(25): 2581–2588.
  566. Busk M, Maeng M, Kristensen SD, et al. Timing, causes, and predictors of death after three years' follow-up in the Danish Multicenter Randomized Study of Fibrinolysis versus Primary Angioplasty in Acute Myocardial Infarction (DANAMI-2) trial. Am J Cardiol. 2009; 104(2): 210–215.
  567. St John Sutton M, Pfeffer MA, Plappert T, et al. Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation. 1994; 89(1): 68–75.
  568. Søholm H, Lønborg J, Andersen MJ, et al. Repeated echocardiography after first ever ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention--is it necessary? Eur Heart J Acute Cardiovasc Care. 2015; 4(6): 528–536.
  569. Steinbeck G, Andresen D, Seidl K, et al. Defibrillator implantation early after myocardial infarction. N Engl J Med. 2009; 361(15): 1427–1436.
  570. Hohnloser SH, Kuck KH, Dorian P, et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med. 2004; 351(24): 2481–2488.
  571. Exner DV, Kavanagh KM, Slawnych MP, et al. Noninvasive risk assessment early after a myocardial infarction the REFINE study. J Am Coll Cardiol. 2007; 50(24): 2275–2284.
  572. Zaman S, Narayan A, Thiagalingam A, et al. Long-term arrhythmia-free survival in patients with severe left ventricular dysfunction and no inducible ventricular tachycardia after myocardial infarction. Circulation. 2014; 129(8): 848–854.
  573. Daubert MA, White JA, Al-Khalidi HR, et al. Cardiac remodeling after large ST-elevation myocardial infarction in the current therapeutic era. Am Heart J. 2020; 223: 87–97.
  574. Chew DS, Heikki H, Schmidt G, et al. Change in left ventricular ejection fraction following first myocardial infarction and outcome. JACC Clin Electrophysiol. 2018; 4(5): 672–682.
  575. Bänsch D, Oyang F, Antz M, et al. Successful catheter ablation of electrical storm after myocardial infarction. Circulation. 2003; 108(24): 3011–3016.
  576. Altmann DR, Mutschelknauss M, Ehl N, et al. Prevalence of severely impaired left ventricular ejection fraction after reperfused ST-elevation myocardial infarction. Swiss Med Wkly. 2013; 143: w13869.
  577. Shen L, Jhund PS, McMurray JJV, et al. Declining risk of sudden death in heart failure. N Engl J Med. 2017; 377(1): 41–51.
  578. Cairns J, Connolly S, Roberts R, et al. Randomised trial of outcome after myocardial infarction in patients with frequent or repetitive ventricular premature depolarisations: CAMIAT. Lancet. 1997; 349(9053): 675–682.
  579. Julian DG, Camm AJ, Frangin G, et al. Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. European Myocardial Infarct Amiodarone Trial Investigators. Lancet. 1997; 349(9053): 667–674.
  580. Clemens M, Peichl P, Wichterle D, et al. Catheter ablation of ventricular tachycardia as the first-line therapy in patients with coronary artery disease and preserved left ventricular systolic function: long-term results. J Cardiovasc Electrophysiol. 2015; 26(10): 1105–1110.
  581. Pacifico A, Hohnloser SH, Williams JH, et al. Prevention of implantable-defibrillator shocks by treatment with sotalol. D, L-Sotalol Implantable Cardioverter-Defibrillator Study Group. N Engl J Med. 1999; 340(24): 1855–1862.
  582. Willems S, Tilz RR, Steven D, et al. Preventive or deferred ablation of ventricular tachycardia in patients with ischemic cardiomyopathy and implantable defibrillator (BERLIN VT): a multicenter randomized trial. Circulation. 2020; 141(13): 1057–1067.
  583. Kuck KH, Tilz RR, Deneke T, et al. SMS Investigators. Impact of substrate modification by catheter ablation on implantable cardioverter-defibrillator interventions in patients with unstable ventricular arrhythmias and coronary artery disease: results from the multicenter randomized controlled SMS (substrate modification study). Circ Arrhythm Electrophysiol. 2017; 10(3).
  584. Olshansky B, Hahn EA, Hartz VL, et al. Clinical significance of syncope in the electrophysiologic study versus electrocardiographic monitoring (ESVEM) trial. The ESVEM Investigators. Am Heart J. 1999; 137(5): 878–886.
  585. Molossi S, Agrawal H, Mery CM, et al. Outcomes in anomalous aortic origin of a coronary artery following a prospective standardized approach. Circ Cardiovasc Interv. 2020; 13(2): e008445.
  586. Krasuski RA, Magyar D, Hart S, et al. Long-term outcome and impact of surgery on adults with coronary arteries originating from the opposite coronary cusp. Circulation. 2011; 123(2): 154–162.
  587. Jegatheeswaran A, Devlin PJ, McCrindle BW, et al. Features associated with myocardial ischemia in anomalous aortic origin of a coronary artery: A Congenital Heart Surgeons' Society study. J Thorac Cardiovasc Surg. 2019; 158(3): 822–834.e3.
  588. Jegatheeswaran A, Devlin PJ, Williams WG, et al. Outcomes after anomalous aortic origin of a coronary artery repair: A Congenital Heart Surgeons' Society Study. J Thorac Cardiovasc Surg. 2020; 160(3): 757–771.e5.
  589. Hoffmayer KS, Bhave PD, Marcus GM, et al. An electrocardiographic scoring system for distinguishing right ventricular outflow tract arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy from idiopathic ventricular tachycardia. Heart Rhythm. 2013; 10(4): 477–482.
  590. Yokokawa M, Siontis KC, Kim HM, et al. Value of cardiac magnetic resonance imaging and programmed ventricular stimulation in patients with frequent premature ventricular complexes undergoing radiofrequency ablation. Heart Rhythm. 2017; 14(11): 1695–1701.
  591. Muser D, Santangeli P, Castro S, et al. Risk stratification of patients with apparently idiopathic premature ventricular contractions. JACC: Clinical Electrophysiology. 2020; 6(6): 722–735.
  592. Kjekshus J, Bathen J, Orning OM, et al. A double-blind, crossover comparison of flecainide acetate and disopyramide phosphate in the treatment of ventricular premature complexes. Am J Cardiol. 1984; 53(5): 72B–78B.
  593. Hamon D, Swid MA, Rajendran PS, et al. Premature ventricular contraction diurnal profiles predict distinct clinical characteristics and beta-blocker responses. J Cardiovasc Electrophysiol. 2019; 30(6): 836–843.
  594. Primeau R, Agha A, Giorgi C, et al. Long term efficacy and toxicity of amiodarone in the treatment of refractory cardiac arrhythmias. Can J Cardiol. 1989; 5(2): 98–104.
  595. Ling Z, Liu Z, Su Li, et al. Radiofrequency ablation versus antiarrhythmic medication for treatment of ventricular premature beats from the right ventricular outflow tract: prospective randomized study. Circ Arrhythm Electrophysiol. 2014; 7(2): 237–243.
  596. Baksiene D, Sileikiene R, Sileikis V, et al. Idiopathic ventricular tachycardia in children: curative therapy with radiofrequency ablation. Medicina (Kaunas). 2007; 43(10): 803–807.
  597. Blaufox AD, Felix GL, Saul JP, et al. Radiofrequency catheter ablation in infants. Circulation. 2001; 104(23): 2803–2808.
  598. Lapage MJ, Bradley DJ, Dick M. Verapamil in infants: an exaggerated fear? Pediatr Cardiol. 2013; 34(7): 1532–1534.
  599. Lee AKY, Andrade J, Hawkins NM, et al. Outcomes of untreated frequent premature ventricular complexes with normal left ventricular function. Heart. 2019; 105(18): 1408–1413.
  600. Baman TS, Lange DC, Ilg KJ, et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm. 2010; 7(7): 865–869.
  601. van Huls van Taxis CFB, Piers SRD, de Riva Silva M, et al. Fatigue as presenting symptom and a high burden of premature ventricular contractions are independently associated with increased ventricular wall stress in patients with normal left ventricular function. Circ Arrhythm Electrophysiol. 2015; 8(6): 1452–1459.
  602. Sharma N, Cortez D, Imundo J. High burden of premature ventricular contractions in structurally normal hearts: To worry or not in pediatric patients? Ann Noninvasive Electrocardiol. 2019; 24(6): e12663.
  603. Niwano S, Wakisaka Y, Niwano H, et al. Prognostic significance of frequent premature ventricular contractions originating from the ventricular outflow tract in patients with normal left ventricular function. Heart. 2009; 95(15): 1230–1237.
  604. Krittayaphong R, Sriratanasathavorn C, Dumavibhat C, et al. Electrocardiographic predictors of long-term outcomes after radiofrequency ablation in patients with right-ventricular outflow tract tachycardia. Europace. 2006; 8(8): 601–606.
  605. Komatsu Y, Nogami A, Kurosaki K, et al. Fascicular ventricular tachycardia originating from papillary muscles: Purkinje network involvement in the reentrant circuit. Circ Arrhythm Electrophysiol. 2017; 10(3): e004549.
  606. Kirk CR, Gibbs JL, Thomas R, et al. Cardiovascular collapse after verapamil in supraventricular tachycardia. Arch Dis Child. 1987; 62(12): 1265–1266.
  607. Duffee DF, Shen WK, Smith HC. Suppression of frequent premature ventricular contractions and improvement of left ventricular function in patients with presumed idiopathic dilated cardiomyopathy. Mayo Clin Proc. 1998; 73(5): 430–433.
  608. Chugh SS, Shen WK, Luria DM, et al. First evidence of premature ventricular complex-induced cardiomyopathy: a potentially reversible cause of heart failure. J Cardiovasc Electrophysiol. 2000; 11(3): 328–329.
  609. Penela D, Van Huls Van Taxis C, Aguinaga L, et al. Neurohormonal, structural, and functional recovery pattern after premature ventricular complex ablation is independent of structural heart disease status in patients with depressed left ventricular ejection fraction: a prospective multicenter study. J Am Coll Cardiol. 2013; 62(13): 1195–1202.
  610. Penela D, Acosta J, Aguinaga L, et al. Ablation of frequent PVC in patients meeting criteria for primary prevention ICD implant: Safety of withholding the implant. Heart Rhythm. 2015; 12(12): 2434–2442.
  611. Voskoboinik A, Hadjis A, Alhede C, et al. Predictors of adverse outcome in patients with frequent premature ventricular complexes: The ABC-VT risk score. Heart Rhythm. 2020; 17(7): 1066–1074.
  612. Lee A, Denman R, Haqqani HM. Ventricular ectopy in the context of left ventricular systolic dysfunction: risk factors and outcomes following catheter ablation. Heart Lung Circ. 2019; 28(3): 379–388.
  613. Sadron Blaye-Felice M, Hamon D, Sacher F, et al. Premature ventricular contraction-induced cardiomyopathy: related clinical and electrophysiologic parameters. Heart Rhythm. 2016; 13(1): 103–110.
  614. Penela D, Fernández-Armenta J, Aguinaga L, et al. Clinical recognition of pure premature ventricular complex-induced cardiomyopathy at presentation. Heart Rhythm. 2017; 14(12): 1864–1870.
  615. Aquaro GD, Pingitore A, Strata E, et al. Cardiac magnetic resonance predicts outcome in patients with premature ventricular complexes of left bundle branch block morphology. J Am Coll Cardiol. 2010; 56(15): 1235–1243.
  616. Oebel S, Dinov B, Arya A, et al. ECG morphology of premature ventricular contractions predicts the presence of myocardial fibrotic substrate on cardiac magnetic resonance imaging in patients undergoing ablation. J Cardiovasc Electrophysiol. 2017; 28(11): 1316–1323.
  617. Mountantonakis SE, Frankel DS, Gerstenfeld EP, et al. Reversal of outflow tract ventricular premature depolarization-induced cardiomyopathy with ablation: effect of residual arrhythmia burden and preexisting cardiomyopathy on outcome. Heart Rhythm. 2011; 8(10): 1608–1614.
  618. Zang M, Zhang T, Mao J, et al. Beneficial effects of catheter ablation of frequent premature ventricular complexes on left ventricular function. Heart. 2014; 100(10): 787–793.
  619. Wijnmaalen AP, Delgado V, Schalij MJ, et al. Beneficial effects of catheter ablation on left ventricular and right ventricular function in patients with frequent premature ventricular contractions and preserved ejection fraction. Heart. 2010; 96(16): 1275–1280.
  620. Bogun F, Crawford T, Reich S, et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm. 2007; 4(7): 863–867.
  621. Sarrazin JF, Labounty T, Kuhne M, et al. Impact of radiofrequency ablation of frequent post-infarction premature ventricular complexes on left ventricular ejection fraction. Heart Rhythm. 2009; 6(11): 1543–1549.
  622. El Kadri M, Yokokawa M, Labounty T, et al. Effect of ablation of frequent premature ventricular complexes on left ventricular function in patients with nonischemic cardiomyopathy. Heart Rhythm. 2015; 12(4): 706–713.
  623. Lakkireddy D, Di Biase L, Ryschon K, et al. Radiofrequency ablation of premature ventricular ectopy improves the efficacy of cardiac resynchronization therapy in nonresponders. J Am Coll Cardiol. 2012; 60(16): 1531–1539.
  624. Singh SN, Fletcher RD, Fisher SG, et al. Amiodarone in patients with congestive heart failure and asymptomatic ventricular arrhythmia. N Engl J Med. 1995; 333(2): 77–82.
  625. Zhong L, Lee YH, Huang XM, et al. Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions: a single-center retrospective study. Heart Rhythm. 2014; 11(2): 187–193.
  626. Hyman MC, Mustin D, Supple G, et al. Class IC antiarrhythmic drugs for suspected premature ventricular contraction-induced cardiomyopathy. Heart Rhythm. 2018; 15(2): 159–163.
  627. Laurent G, Saal S, Amarouch MY, et al. Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol. 2012; 60(2): 144–156.
  628. Calloe K, Broendberg AK, Christensen AH, et al. Multifocal atrial and ventricular premature contractions with an increased risk of dilated cardiomyopathy caused by a Na1.5 gain-of-function mutation (G213D). Int J Cardiol. 2018; 257: 160–167.
  629. Mann SA, Castro ML, Ohanian M, et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol. 2012; 60(16): 1566–1573.
  630. Beckermann TM, McLeod K, Murday V, et al. Novel SCN5A mutation in amiodarone-responsive multifocal ventricular ectopy-associated cardiomyopathy. Heart Rhythm. 2014; 11(8): 1446–1453.
  631. Doisne N, Waldmann V, Redheuil A, et al. A novel gain-of-function mutation in SCN5A responsible for multifocal ectopic Purkinje-related premature contractions. Hum Mutat. 2020; 41(4): 850–859.
  632. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008; 29(2): 270–276.
  633. Codd MB, Sugrue DD, Gersh BJ, et al. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975-1984. Circulation. 1989; 80(3): 564–572.
  634. Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017; 390(10092): 400–414.
  635. Beggs SAS, Jhund PS, Jackson CE, et al. Non-ischaemic cardiomyopathy, sudden death and implantable defibrillators: a review and meta-analysis. Heart. 2018; 104(2): 144–150.
  636. Towbin JA, Lowe AM, Colan SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006; 296(15): 1867–1876.
  637. Pahl E, Sleeper LA, Canter CE, et al. Incidence of and risk factors for sudden cardiac death in children with dilated cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry. J Am Coll Cardiol. 2012; 59(6): 607–615.
  638. Bharucha T, Lee KJ, Daubeney PEF, et al. Sudden death in childhood cardiomyopathy: results from a long-term national population-based study. J Am Coll Cardiol. 2015; 65(21): 2302–2310.
  639. Pinto YM, Elliott PM, Arbustini E, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016; 37(23): 1850–1858.
  640. Asselbergs FW, Sammani A, Elliott P, et al. Differences between familial and sporadic dilated cardiomyopathy: ESC EORP Cardiomyopathy & Myocarditis registry. ESC Heart Fail. 2021; 8(1): 95–105.
  641. Ader F, De Groote P, Réant P, et al. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clin Genet. 2019; 96(4): 317–329.
  642. Kayvanpour E, Sedaghat-Hamedani F, Amr A, et al. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol. 2017; 106(2): 127–139.
  643. Ortiz-Genga MF, Cuenca S, Dal Ferro M, et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J Am Coll Cardiol. 2016; 68(22): 2440–2451.
  644. van den Hoogenhof MMG, Beqqali A, Amin AS, et al. RBM20 mutations induce an arrhythmogenic dilated cardiomyopathy related to disturbed calcium handling. Circulation. 2018; 138(13): 1330–1342.
  645. Gigli M, Merlo M, Graw S, et al. Genetic risk of arrhythmic phenotypes in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2019; 74(11): 1480–1490.
  646. Heliö T, Elliott P, Koskenvuo JW, et al. ESC EORP cardiomyopathy registry: real-life practice of genetic counselling and testing in adult cardiomyopathy patients. ESC Heart Fail. 2020; 7(5): 3013–3021.
  647. Butt JH, Yafasova A, Elming MB, et al. Age and outcomes of primary prevention implantable cardioverter-defibrillators in patients with nonischemic systolic heart failure. Circulation. 2017; 136(19): 1772–1780.
  648. Kristensen SL, Levy WC, Shadman R, et al. Risk models for prediction of implantable cardioverter-defibrillator benefit: insights from the DANISH trial. JACC Heart Fail. 2019; 7(8): 717–724.
  649. Wolff G, Lin Y, Karathanos A, et al. Implantable cardioverter/defibrillators for primary prevention in dilated cardiomyopathy post-DANISH: an updated meta-analysis and systematic review of randomized controlled trials. Clin Res Cardiol. 2017; 106(7): 501–513.
  650. Kadish A, Dyer A, Daubert JP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med. 2004; 350(21): 2151–2158.
  651. Klem I, Klein M, Khan M, et al. Relationship of LVEF and myocardial scar to long-term mortality risk and mode of death in patients with nonischemic cardiomyopathy. Circulation. 2021; 143(14): 1343–1358.
  652. van Rijsingen IAW, Arbustini E, Elliott PM, et al. Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study. J Am Coll Cardiol. 2012; 59(5): 493–500.
  653. Thuillot M, Maupain C, Gandjbakhch E, et al. External validation of risk factors for malignant ventricular arrhythmias in lamin A/C mutation carriers. Eur J Heart Fail. 2019; 21(2): 253–254.
  654. Pasotti M, Klersy C, Pilotto A, et al. Long-term outcome and risk stratification in dilated cardiolaminopathies. J Am Coll Cardiol. 2008; 52(15): 1250–1260.
  655. Skjølsvik ET, Hasselberg NE, Dejgaard LA, et al. Exercise is associated with impaired left ventricular systolic function in patients with lamin A/C genotype. J Am Heart Assoc. 2020; 9(2): e012937.
  656. Verstraelen TE, van Lint FHM, Bosman LP, et al. Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers-reaching the frontiers of individual risk prediction. Eur Heart J. 2021; 42(29): 2842–2850.
  657. Knight BP, Goyal R, Pelosi F, et al. Outcome of patients with nonischemic dilated cardiomyopathy and unexplained syncope treated with an implantable defibrillator. J Am Coll Cardiol. 1999; 33(7): 1964–1970.
  658. Desai AS, Fang JC, Maisel WH, et al. Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy: a meta-analysis of randomized controlled trials. JAMA. 2004; 292(23): 2874–2879.
  659. Merlo M, Gentile P, Artico J, et al. Arrhythmic risk stratification in patients with dilated cardiomyopathy and intermediate left ventricular dysfunction. J Cardiovasc Med (Hagerstown). 2019; 20(5): 343–350.
  660. Zecchin M, Di Lenarda A, Gregori D, et al. Are nonsustained ventricular tachycardias predictive of major arrhythmias in patients with dilated cardiomyopathy on optimal medical treatment? Pacing Clin Electrophysiol. 2008; 31(3): 290–299.
  661. Link MS, Costeas XF, Griffith JL, et al. High incidence of appropriate implantable cardioverter-defibrillator therapy in patients with syncope of unknown etiology and inducible ventricular arrhythmias. J Am Coll Cardiol. 1997; 29(2): 370–375.
  662. Di Marco A, Brown PF, Bradley J, et al. Improved risk stratification for ventricular arrhythmias and sudden death in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2021; 77(23): 2890–2905.
  663. Kumar S, Romero J, Mehta NK, et al. Long-term outcomes after catheter ablation of ventricular tachycardia in patients with and without structural heart disease. Heart Rhythm. 2016; 13(10): 1957–1963.
  664. Muser D, Santangeli P, Castro SA, et al. Long-term outcome after catheter ablation of ventricular tachycardia in patients with nonischemic dilated cardiomyopathy. Circ Arrhythm Electrophysiol. 2016; 9(10): e004328.
  665. Kumar S, Androulakis AFA, Sellal JM, et al. Multicenter experience with catheter ablation for ventricular tachycardia in lamin A/C cardiomyopathy. Circ Arrhythm Electrophysiol. 2016; 9(8): e004357.
  666. Oloriz T, Silberbauer J, Maccabelli G, et al. Catheter ablation of ventricular arrhythmia in nonischemic cardiomyopathy: anteroseptal versus inferolateral scar sub-types. Circ Arrhythm Electrophysiol. 2014; 7(3): 414–423.
  667. Francone M. Role of cardiac magnetic resonance in the evaluation of dilated cardiomyopathy: diagnostic contribution and prognostic significance. ISRN Radiol. 2014; 2014: 365404.
  668. Goldberger JJ, Subačius H, Patel T, et al. Sudden cardiac death risk stratification in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2014; 63(18): 1879–1889.
  669. Ebert M, Wijnmaalen AP, de Riva M, et al. Prevalence and prognostic impact of pathogenic variants in patients with dilated cardiomyopathy referred for ventricular tachycardia ablation. JACC Clin Electrophysiol. 2020; 6(9): 1103–1114.
  670. Corrado D, Link MS, Calkins H. Arrhythmogenic right ventricular cardiomyopathy. N Engl J Med. 2017; 376(15): 1489–1490.
  671. Quarta G, Muir A, Pantazis A, et al. Familial evaluation in arrhythmogenic right ventricular cardiomyopathy: impact of genetics and revised task force criteria. Circulation. 2011; 123(23): 2701–2709.
  672. Bhonsale A, Groeneweg JA, James CA, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J. 2015; 36(14): 847–855.
  673. Rigato I, Bauce B, Rampazzo A, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2013; 6(6): 533–542.
  674. te Riele AS, James CA, Groeneweg JA, et al. Approach to family screening in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Eur Heart J. 2015; 37(9): 755–763.
  675. Chivulescu M, Lie ØH, Popescu BA, et al. High penetrance and similar disease progression in probands and in family members with arrhythmogenic cardiomyopathy. Eur Heart J. 2020; 41(14): 1401–1410.
  676. Rastegar N, Te Riele AS, James CA, et al. Fibrofatty changes: incidence at cardiac MR imaging in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Radiology. 2016; 280(2): 405–412.
  677. Aquaro GD, Barison A, Todiere G, et al. Usefulness of combined functional assessment by cardiac magnetic resonance and tissue characterization versus task force criteria for diagnosis of arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2016; 118(11): 1730–1736.
  678. te Riele ASJM, Bhonsale A, James CA, et al. Incremental value of cardiac magnetic resonance imaging in arrhythmic risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62(19): 1761–1769.
  679. Corrado D, van Tintelen PJ, McKenna WJ, et al. Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. Eur Heart J. 2020; 41(14): 1414–1429.
  680. Sen-Chowdhry S, Syrris P, Ward D, et al. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation. 2007; 115(13): 1710–1720.
  681. Cipriani A, Bauce B, De Lazzari M, et al. Arrhythmogenic right ventricular cardiomyopathy: characterization of left ventricular phenotype and differential diagnosis with dilated cardiomyopathy. J Am Heart Assoc. 2020; 9(5): e014628.
  682. Corrado D, Perazzolo Marra M, Zorzi A, et al. Diagnosis of arrhythmogenic cardiomyopathy: the Padua criteria. Int J Cardiol. 2020; 319(1): 106–114.
  683. Saberniak J, Hasselberg NE, Borgquist R, et al. Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members. Eur J Heart Fail. 2014; 16(12): 1337–1344.
  684. Lie ØH, Dejgaard LA, Saberniak J, et al. Harmful effects of exercise intensity and exercise duration in patients with arrhythmogenic cardiomyopathy. JACC Clin Electrophysiol. 2018; 4(6): 744–753.
  685. James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013; 62(14): 1290–1297.
  686. Ruwald AC, Marcus F, Estes NA, et al. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2015; 36(27): 1735–1743.
  687. Sawant AC, Te Riele AS, Tichnell C, et al. Safety of American Heart Association-recommended minimum exercise for desmosomal mutation carriers. Heart Rhythm. 2016; 13(1): 199–207.
  688. Thiene G, Nava A, Corrado D, et al. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med. 1988; 318(3): 129–133.
  689. Finocchiaro G, Papadakis M, Robertus JL, et al. Etiology of sudden death in sports: insights from a United Kingdom regional registry. J Am Coll Cardiol. 2016; 67(18): 2108–2115.
  690. Marcus GM, Glidden DV, Polonsky B, et al. Efficacy of antiarrhythmic drugs in arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2009; 54(7): 609–615.
  691. Hulot JS, Jouven X, Empana JP, et al. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004; 110(14): 1879–1884.
  692. Wang W, Cadrin-Tourigny J, Bhonsale A, et al. Arrhythmic outcome of arrhythmogenic right ventricular cardiomyopathy patients without implantable defibrillators. J Cardiovasc Electrophysiol. 2018; 29(10): 1396–1402.
  693. Pinamonti B, Dragos AM, Pyxaras SA, et al. Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results from a 10-year registry. Eur Heart J. 2011; 32(9): 1105–1113.
  694. Brun F, Groeneweg JA, Gear K, et al. Risk stratification in arrhythmic right ventricular cardiomyopathy without implantable cardioverter-defibrillators. JACC Clin Electrophysiol. 2016; 2(5): 558–564.
  695. Bhonsale A, James CA, Tichnell C, et al. Incidence and predictors of implantable cardioverter-defibrillator therapy in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy undergoing implantable cardioverter-defibrillator implantation for primary prevention. J Am Coll Cardiol. 2011; 58(14): 1485–1496.
  696. Corrado D, Calkins H, Link MS, et al. Prophylactic implantable defibrillator in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia and no prior ventricular fibrillation or sustained ventricular tachycardia. Circulation. 2010; 122(12): 1144–1152.
  697. Platonov PG, Haugaa KH, Bundgaard H, et al. Primary prevention of sudden cardiac death with implantable cardioverter-defibrillator therapy in patients with arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2019; 123(7): 1156–1162.
  698. Link MS, Laidlaw D, Polonsky B, et al. Ventricular arrhythmias in the North American multidisciplinary study of ARVC: predictors, characteristics, and treatment. J Am Coll Cardiol. 2014; 64(2): 119–125.
  699. Schinkel AFL. Implantable cardioverter defibrillators in arrhythmogenic right ventricular dysplasia/cardiomyopathy: patient outcomes, incidence of appropriate and inappropriate interventions, and complications. Circ Arrhythm Electrophysiol. 2013; 6(3): 562–568.
  700. Corrado D, Leoni L, Link MS, et al. Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circulation. 2003; 108(25): 3084–3091.
  701. Mazzanti A, Ng K, Faragli A, et al. Arrhythmogenic right ventricular cardiomyopathy: clinical course and predictors of arrhythmic risk. J Am Coll Cardiol. 2016; 68(23): 2540–2550.
  702. Cadrin-Tourigny J, Bosman LP, Wang W, et al. Sudden cardiac death prediction in arrhythmogenic right ventricular cardiomyopathy: a multinational collaboration. Circ Arrhythm Electrophysiol. 2021; 14(1): e008509.
  703. Bosman LP, Sammani A, James CA, et al. Predicting arrhythmic risk in arrhythmogenic right ventricular cardiomyopathy: A systematic review and meta-analysis. Heart Rhythm. 2018; 15(7): 1097–1107.
  704. Saguner AM, Vecchiati A, Baldinger SH, et al. Different prognostic value of functional right ventricular parameters in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circ Cardiovasc Imaging. 2014; 7(2): 230–239.
  705. Saguner AM, Medeiros-Domingo A, Schwyzer MA, et al. Usefulness of inducible ventricular tachycardia to predict long-term adverse outcomes in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2013; 111(2): 250–257.
  706. Orgeron GM, Te Riele A, Tichnell C, et al. Performance of the 2015 international task force consensus statement risk stratification algorithm for implantable cardioverter-defibrillator placement in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Arrhythm Electrophysiol. 2018; 11(2): e005593.
  707. Orgeron GM, James CA, Te Riele A, et al. Implantable cardioverter-defibrillator therapy in arrhythmogenic right ventricular dysplasia/cardiomyopathy: predictors of appropriate therapy, outcomes, and complications. J Am Heart Assoc. 2017; 6(6): e006242.
  708. Wichter T, Borggrefe M, Haverkamp W, et al. Efficacy of antiarrhythmic drugs in patients with arrhythmogenic right ventricular disease. Results in patients with inducible and noninducible ventricular tachycardia. Circulation. 1992; 86(1): 29–37.
  709. Mahida S, Venlet J, Saguner AM, et al. Ablation compared with drug therapy for recurrent ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy: Results from a multicenter study. Heart Rhythm. 2019; 16(4): 536–543.
  710. Ermakov S, Gerstenfeld EP, Svetlichnaya Y, et al. Use of flecainide in combination antiarrhythmic therapy in patients with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2017; 14(4): 564–569.
  711. Canpolat U, Kabakçi G, Aytemir K, et al. Fragmented QRS complex predicts the arrhythmic events in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. J Cardiovasc Electrophysiol. 2013; 24(11): 1260–1266.
  712. Martin A, Crawford J, Skinner J, et al. High arrhythmic burden but low mortality during long-term follow-up in arrhythmogenic right ventricular cardiomyopathy. Heart, Lung and Circulation. 2016; 25(3): 275–281.
  713. Santangeli P, Dello Russo A, Pieroni M, et al. Fragmented and delayed electrograms within fibrofatty scar predict arrhythmic events in arrhythmogenic right ventricular cardiomyopathy: results from a prospective risk stratification study. Heart Rhythm. 2012; 9(8): 1200–1206.
  714. Berruezo A, Fernández-Armenta J, Mont L, et al. Combined endocardial and epicardial catheter ablation in arrhythmogenic right ventricular dysplasia incorporating scar dechanneling technique. Circ Arrhythm Electrophysiol. 2012; 5(1): 111–121.
  715. Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020; 142(25): e533–e557.
  716. Chan RH, Maron BJ, Olivotto I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014; 130(6): 484–495.
  717. He D, Ye M, Zhang L, et al. Prognostic significance of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy. Heart Lung. 2018; 47(2): 122–126.
  718. Weissler-Snir A, Dorian P, Rakowski H, et al. Primary prevention implantable cardioverter-defibrillators in hypertrophic cardiomyopathy-Are there predictors of appropriate therapy? Heart Rhythm. 2021; 18(1): 63–70.
  719. Khanna S, Wen I, Bhat A, et al. The role of multi-modality imaging in the diagnosis of cardiac amyloidosis: a focused update. Front Cardiovasc Med. 2020; 7: 590557.
  720. Pradella S, Grazzini G, De Amicis C, et al. Cardiac magnetic resonance in hypertrophic and dilated cardiomyopathies. Radiol Med. 2020; 125(11): 1056–1071.
  721. Rosmini S, Biagini E, O’Mahony C, et al. Relationship between aetiology and left ventricular systolic dysfunction in hypertrophic cardio- myopathy. Heart. 2017; 103(4): 300–306.
  722. Ho CY, Day SM, Ashley EA, et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy. Circulation. 2018; 138(14): 1387–1398.
  723. Kim HY, Park JE, Lee SC, et al. Genotype-related clinical characteristics and myocardial fibrosis and their association with prognosis in hypertrophic cardiomyopathy. J Clin Med. 2020; 9(6): 1671.
  724. Maron BJ, Maron MS, Semsarian C, et al. Double or compound sarcomere mutations in hypertrophic cardiomyopathy: a potential link to sudden death in the absence of conventional risk factors. Heart Rhythm. 2012; 9(1): 57–63.
  725. Wang J, Wang Y, Zou Y, et al. Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy. Eur J Heart Fail. 2014; 16(9): 950–957.
  726. Semsarian C, Ingles J, Maron MS, et al. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015; 65(12): 1249–1254.
  727. Maron BJ, Rowin EJ, Casey SA, et al. Hypertrophic cardiomyopathy in adulthood associated with low cardiovascular mortality with contemporary management strategies. J Am Coll Cardiol. 2015; 65(18): 1915–1928.
  728. O'Mahony C, Jichi F, Ommen SR, et al. International external validation study of the 2014 European Society of Cardiology guidelines on sudden cardiac death prevention in hypertrophic cardiomyopathy (EVIDENCE-HCM). Circulation. 2018; 137(10): 1015–1023.
  729. Vriesendorp PA, Schinkel AFL, Liebregts M, et al. Validation of the 2014 European Society of Cardiology guidelines risk prediction model for the primary prevention of sudden cardiac death in hypertrophic cardiomyopathy. Circ Arrhythm Electrophysiol. 2015; 8(4): 829–835.
  730. Lorenzini M, Anastasiou Z, O'Mahony C, et al. Mortality among referral patients with hypertrophic cardiomyopathy vs the general European population. JAMA Cardiol. 2020; 5(1): 73–80.
  731. Maron BJ, Rowin EJ, Casey SA, et al. Risk stratification and outcome of patients with hypertrophic cardiomyopathy >=60 years of age. Circulation. 2013; 127(5): 585–593.
  732. Gimeno JR, Tomé-Esteban M, Lofiego C, et al. Exercise-induced ventricular arrhythmias and risk of sudden cardiac death in patients with hypertrophic cardiomyopathy. Eur Heart J. 2009; 30(21): 2599–2605.
  733. Pelliccia A, Lemme E, Maestrini V, et al. Does sport participation worsen the clinical course of hypertrophic cardiomyopathy? Clinical outcome of hypertrophic cardiomyopathy in athletes. Circulation. 2018; 137(5): 531–533.
  734. Dejgaard LA, Haland TF, Lie OH, et al. Vigorous exercise in patients with hypertrophic cardiomyopathy. Int J Cardiol. 2018; 250: 157–163.
  735. Monserrat L, Elliott P, Gimeno J, et al. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003; 42(5): 873–879.
  736. Rowin EJ, Maron BJ, Carrick RT, et al. Outcomes in patients with hypertrophic cardiomyopathy and left ventricular systolic dysfunction. J Am Coll Cardiol. 2020; 75(24): 3033–3043.
  737. Rowin EJ, Maron BJ, Haas TS, et al. Hypertrophic cardiomyopathy with left ventricular apical aneurysm: implications for risk stratification and management. J Am Coll Cardiol. 2017; 69(7): 761–773.
  738. Sadoul N, Prasad K, Elliott PM, et al. Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy. Circulation. 1997; 96(9): 2987–2991.
  739. Elliott PM, Poloniecki J, Dickie S, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol. 2000; 36(7): 2212–2218.
  740. Behr ER, Elliott P, McKenna WJ. Role of invasive EP testing in the evaluation and management of hypertrophic cardiomyopathy. Cardiac Electrophysiol Rev. 2002; 6(4): 482–486.
  741. Gatzoulis KA, Georgopoulos S, Antoniou CK, et al. Programmed ventricular stimulation predicts arrhythmic events and survival in hypertrophic cardiomyopathy. Int J Cardiol. 2018; 254: 175–181.
  742. Norrish G, Qu C, Field E, et al. External validation of the HCM Risk-Kids model for predicting sudden cardiac death in childhood hypertrophic cardiomyopathy. Eur J Prev Cardiol. 2022; 29(4): 678–686.
  743. Petryka-Mazurkiewicz J, Ziolkowska L, Kowalczyk-Domagala M, et al. LGE for risk stratification in primary prevention in children with HCM. JACC Cardiovasc Imaging. 2020; 13(12): 2684–2686.
  744. Elliott PM, Sharma S, Varnava A, et al. Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999; 33(6): 1596–1601.
  745. Cecchi F, Maron BJ, Epstein SE. Long-term outcome of patients with hypertrophic cardiomyopathy successfully resuscitated after cardiac arrest. J Am Coll Cardiol. 1989; 13(6): 1283–1288.
  746. Maron BJ, Spirito P, Shen WK, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA. 2007; 298(4): 405–412.
  747. Melacini P, Maron BJ, Bobbo F, et al. Evidence that pharmacological strategies lack efficacy for the prevention of sudden death in hypertrophic cardiomyopathy. Heart. 2007; 93(6): 708–710.
  748. McKenna WJ, Oakley CM, Krikler DM, et al. Improved survival with amiodarone in patients with hypertrophic cardiomyopathy and ventricular tachycardia. Br Heart J. 1985; 53(4): 412–416.
  749. Link MS, Bockstall K, Weinstock J, et al. Ventricular tachyarrhythmias in patients with hypertrophic cardiomyopathy and defibrillators: triggers, treatment, and implications. J Cardiovasc Electrophysiol. 2017; 28(5): 531–537.
  750. Dallaglio PD, di Marco A, Moreno Weidmann Z, et al. Antitachycardia pacing for shock prevention in patients with hypertrophic cardiomyopathy and ventricular tachycardia. Heart Rhythm. 2020; 17(7): 1084–1091.
  751. Adduci C, Semprini L, Palano F, et al. Safety and efficacy of anti-tachycardia pacing in patients with hypertrophic cardiomyopathy implanted with an ICD. Pacing Clin Electrophysiol. 2019; 42(6): 610–616.
  752. Vaseghi M, Hu TY, Tung R, et al. Outcomes of catheter ablation of ventricular tachycardia based on etiology in nonischemic heart disease: an international ventricular tachycardia ablation center collaborative study. JACC Clin Electrophysiol. 2018; 4(9): 1141–1150.
  753. Igarashi M, Nogami A, Kurosaki K, et al. Radiofrequency catheter ablation of ventricular tachycardia in patients with hypertrophic cardiomyopathy and apical aneurysm. JACC Clin Electrophysiol. 2018; 4(3): 339–350.
  754. Dukkipati SR, d'Avila A, Soejima K, et al. Long-term outcomes of combined epicardial and endocardial ablation of monomorphic ventricular tachycardia related to hypertrophic cardiomyopathy. Circ Arrhythm Electrophysiol. 2011; 4(2): 185–194.
  755. Ross SB, Singer ES, Driscoll E, et al. Genetic architecture of left ventricular noncompaction in adults. Hum Genome Var. 2020; 7: 33.
  756. Weir-McCall JR, Yeap PM, Papagiorcopulo C, et al. Left ventricular noncompaction: anatomical phenotype or distinct cardiomyopathy? J Am Coll Cardiol. 2016; 68(20): 2157–2165.
  757. Aung N, Doimo S, Ricci F, et al. Prognostic significance of left ventricular noncompaction: systematic review and meta-analysis of observational studies. Circ Cardiovasc Imaging. 2020; 13(1): e009712.
  758. Grigoratos C, Barison A, Ivanov A, et al. Meta-analysis of the prognostic role of late gadolinium enhancement and global systolic impairment in left ventricular noncompaction. JACC Cardiovasc Imaging. 2019; 12(11 Pt 1): 2141–2151.
  759. Richard P, Ader F, Roux M, et al. Targeted panel sequencing in adult patients with left ventricular non-compaction reveals a large gen- etic heterogeneity. Clin Genet. 2019; 95(3): 356–367.
  760. Seferović PM, Polovina M, Bauersachs J, et al. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019; 21(5): 553–576.
  761. Baig S, Edward N, Kotecha D, et al. Ventricular arrhythmia and sudden cardiac death in Fabry disease: a systematic review of risk factors in clinical practice. EP Europace. 2017; 20(FI2): f153–f161.
  762. Sperry BW, Ikram A, Hachamovitch R, et al. Efficacy of chemotherapy for light-chain amyloidosis in patients presenting with symptomatic heart failure. J Am Coll Cardiol. 2016; 67(25): 2941–2948.
  763. Kristen AV, Dengler TJ, Hegenbart U, et al. Prophylactic implantation of cardioverter-defibrillator in patients with severe cardiac amyloidosis and high risk for sudden cardiac death. Heart Rhythm. 2008; 5(2): 235–240.
  764. Merino JL, Peinado R. Arrhythmias associated with neuromuscular disorders. Card Electrophysiol Rev. 2002; 6(1-2): 132–135.
  765. Punnoose AR, Kaltman JR, Pastor W, et al. Cardiac disease burden and risk of mortality in hospitalized muscular dystrophy patients. Pediatr Cardiol. 2016; 37(7): 1290–1296.
  766. Wahbi K, Meune C, Porcher R, et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. JAMA. 2012; 307(12): 1292–1301.
  767. Lallemand B, Clementy N, Bernard-Brunet A, et al. The evolution of infrahissian conduction time in myotonic dystrophy patients: clinical implications. Heart. 2012; 98(4): 291–296.
  768. Nogami A. Bundle branch reentry tachycardia. In: ESC CardioMed. 3rd ed. Oxford University Press 2022: 2270–2275.
  769. Sanna T, Dello Russo A, Toniolo D, et al. Cardiac features of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutations. Eur Heart J. 2003; 24(24): 2227–2236.
  770. Menon SC, Etheridge SP, Liesemer KN, et al. Predictive value of myocardial delayed enhancement in Duchenne muscular dystrophy. Pediatr Cardiol. 2014; 35(7): 1279–1285.
  771. Florian A, Ludwig A, Engelen M, et al. Left ventricular systolic function and the pattern of late-gadolinium-enhancement independently and additively predict adverse cardiac events in muscular dystrophy patients. J Cardiovasc Magn Reson. 2014; 16: 81.
  772. Prystowsky EN, Pritchett EL, Roses AD, et al. The natural history of conduction system disease in myotonic muscular dystrophy as determined by serial electrophysiologic studies. Circulation. 1979; 60(6): 1360–1364.
  773. Trachtenberg BH, Hare JM. Inflammatory cardiomyopathic syndromes. Circ Res. 2017; 121(7): 803–818.
  774. Hulsmans M, Clauss S, Xiao L, et al. Macrophages facilitate electrical conduction in the heart. Cell. 2017; 169(3): 510–522.e20.
  775. Youker KA, Assad-Kottner C, Cordero-Reyes AM, et al. High proportion of patients with end-stage heart failure regardless of aetiology demonstrates anti-cardiac antibody deposition in failing myocardium: humoral activation, a potential contributor of disease progression. Eur Heart J. 2014; 35(16): 1061–1068.
  776. Adamo L, Rocha-Resende C, Prabhu SD, et al. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020; 17(5): 269–285.
  777. Sagar S, Liu P, Cooper L. Myocarditis. Lancet. 2012; 379(9817): 738–747.
  778. Ammirati E, Cipriani M, Moro C, et al. Clinical presentation and outcome in a contemporary cohort of patients with acute myocarditis: multicenter Lombardy registry. Circulation. 2018; 138(11): 1088–1099.
  779. Fabre A, Sheppard MN. Sudden adult death syndrome and other non-ischaemic causes of sudden cardiac death. Heart. 2006; 92(3): 316–320.
  780. Lynge TH, Nielsen TS, Gregers Winkel Bo, et al. Sudden cardiac death caused by myocarditis in persons aged 1-49 years: a nationwide study of 14 294 deaths in Denmark. Forensic Sci Res. 2019; 4(3): 247–256.
  781. Maron BJ, Udelson JE, Bonow RO, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015; 66(21): 2362–2371.
  782. Kindermann I, Barth C, Mahfoud F, et al. Update on myocarditis. J Am Coll Cardiol. 2012; 59(9): 779–792.
  783. Caforio ALP, Pankuweit S, Arbustini E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013; 34(33): 2636–2648a.
  784. Singh V, Mendirichaga R, Savani GT, et al. Comparison of utilization trends, indications, and complications of endomyocardial biopsy in native versus donor hearts (from the nationwide inpatient sample 2002 to 2014). Am J Cardiol. 2018; 121(3): 356–363.
  785. Aoyama N, Izumi T, Hiramori K, et al. National survey of fulminant myocarditis in Japan: therapeutic guidelines and long-term prognosis of using percutaneous cardiopulmonary support for fulminant myocarditis (special report from a scientific committee). Circ J. 2002; 66(2): 133–144.
  786. Shah Z, Mohammed M, Vuddanda V, et al. National trends, gender, management, and outcomes of patients hospitalized for myocarditis. Am J Cardiol. 2019; 124(1): 131–136.
  787. Anderson BR, Silver ES, Richmond ME, et al. Usefulness of arrhythmias as predictors of death and resource utilization in children with myocarditis. Am J Cardiol. 2014; 114(9): 1400–1405.
  788. Kandolin R, Lehtonen J, Salmenkivi K, et al. Diagnosis, treatment, and outcome of giant-cell myocarditis in the era of combined immunosuppression. Circ Heart Fail. 2013; 6(1): 15–22.
  789. Cooper LT, Berry GJ, Shabetai R. Idiopathic giant-cell myocarditis--natural history and treatment. Multicenter Giant Cell Myocarditis Study Group Investigators. N Engl J Med. 1997; 336(26): 1860–1866.
  790. McMurray JJV, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart H. 2012; 33(14): 1787–1847.
  791. Blauwet LA, Cooper LT. Myocarditis. Prog Cardiovasc Dis. 2010; 52(4): 274–288.
  792. JCS Joint Working Group. Guidelines for diagnosis and treatment of myocarditis (JCS 2009): digest version. Circ J. 2011; 75(3): 734–743.
  793. Ali-Ahmed F, Dalgaard F, Al-Khatib SM. Sudden cardiac death in patients with myocarditis: Evaluation, risk stratification, and management. Am Heart J. 2020; 220: 29–40.
  794. Rosier L, Zouaghi A, Barré V, et al. High risk of sustained ventricular arrhythmia recurrence after acute myocarditis. J Clin Med. 2020; 9(3): 848.
  795. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006; 113(14): 1807–1816.
  796. D'Ambrosio A, Patti G, Manzoli A, et al. The fate of acute myocarditis between spontaneous improvement and evolution to dilated cardiomyopathy: a review. Heart. 2001; 85(5): 499–504.
  797. Kasper EK, Agema WRP, Hutchins GM, et al. The causes of dilated cardiomyopathy: A clinicopathologic review of 673 consecutive patients. J Am Coll Cardiol. 1994; 23(3): 586–590.
  798. Grün S, Schumm J, Greulich S, et al. Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol. 2012; 59(18): 1604–1615.
  799. Bennett MK, Gilotra NA, Harrington C, et al. Evaluation of the role of endomyocardial biopsy in 851 patients with unexplained heart failure from 2000-2009. Circ Heart Fail. 2013; 6(4): 676–684.
  800. Schumm J, Greulich S, Wagner A, et al. Cardiovascular magnetic resonance risk stratification in patients with clinically suspected myocarditis. J Cardiovasc Magn Reson. 2014; 16: 14.
  801. Dello Russo A, Casella M, Pieroni M, et al. Drug-refractory ventricular tachycardias after myocarditis: endocardial and epicardial radiofrequency catheter ablation. Circ Arrhythm Electrophysiol. 2012; 5(3): 492–498.
  802. Maccabelli G, Tsiachris D, Silberbauer J, et al. Imaging and epicardial substrate ablation of ventricular tachycardia in patients late after myocarditis. Europace. 2014; 16(9): 1363–1372.
  803. Berte B, Sacher F, Cochet H, et al. Postmyocarditis ventricular tachycardia in patients with epicardial-only scar: a specific entity requiring a specific approach. J Cardiovasc Electrophysiol. 2015; 26(1): 42–50.
  804. Maleszewski JJ, Orellana VM, Hodge DO, et al. Long-term risk of recurrence, morbidity and mortality in giant cell myocarditis. Am J Cardiol. 2015; 115(12): 1733–1738.
  805. El-Assaad I, Al-Kindi SG, Oliveira GH, et al. Implantable cardioverter-defibrillator and wait-list outcomes in pediatric patients awaiting heart transplantation. Heart Rhythm. 2015; 12(12): 2443–2448.
  806. Ekström K, Lehtonen J, Kandolin R, et al. Long-term outcome and its predictors in giant cell myocarditis. Eur J Heart Fail. 2016; 18(12): 1452–1458.
  807. Rybicki BA, Iannuzzi MC, Frederick MM, et al. Familial aggregation of sarcoidosis. A case-control etiologic study of sarcoidosis (ACCESS). Am J Respir Crit Care Med. 2001; 164(11): 2085–2091.
  808. Muchtar E, Blauwet LA, Gertz MA. Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017; 121(7): 819–837.
  809. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014; 11(7): 1305–1323.
  810. Birnie DH, Kandolin R, Nery PB, et al. Cardiac manifestations of sarcoidosis: diagnosis and management. Eur Heart J. 2017; 38(35): 2663–2670.
  811. Trivieri MG, Spagnolo P, Birnie D, et al. Challenges in cardiac and pulmonary sarcoidosis: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 76(16): 1878–1901.
  812. Kandolin R, Lehtonen J, Airaksinen J, et al. Cardiac sarcoidosis: epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. 2015; 131(7): 624–632.
  813. Hoogendoorn JC, Sramko M, Venlet J, et al. Electroanatomical voltage mapping to distinguish right-sided cardiac sarcoidosis from arrhythmogenic right ventricular cardiomyopathy. JACC Clin Electrophysiol. 2020; 6(6): 696–707.
  814. Banba K, Kusano KF, Nakamura K, et al. Relationship between arrhythmogenesis and disease activity in cardiac sarcoidosis. Heart Rhythm. 2007; 4(10): 1292–1299.
  815. Takaya Y, Kusano KF, Nakamura K, et al. Outcomes in patients with high-degree atrioventricular block as the initial manifestation of cardiac sarcoidosis. Am J Cardiol. 2015; 115(4): 505–509.
  816. Nordenswan HK, Lehtonen J, Ekström K, et al. Outcome of cardiac sarcoidosis presenting with high-grade atrioventricular block. Circ Arrhythm Electrophysiol. 2018; 11(8): e006145.
  817. Greulich S, Deluigi CC, Gloekler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013; 6(4): 501–511.
  818. Nadel J, Lancefield T, Voskoboinik A, et al. Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death. Eur Heart J Cardiovasc Imaging. 2015; 16(6): 634–641.
  819. Murtagh G, Laffin LJ, Beshai JF, et al. Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2016; 9(1): e003738.
  820. Ekström K, Lehtonen J, Hänninen H, et al. Magnetic resonance imaging as a predictor of survival free of life-threatening arrhythmias and transplantation in cardiac sarcoidosis. J Am Heart Assoc. 2016; 5(5).
  821. Coleman GC, Shaw PW, Balfour PC, et al. Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis. JACC Cardiovasc Imaging. 2017; 10(4): 411–420.
  822. Aizer A, Stern EH, Gomes JA, et al. Usefulness of programmed ventricular stimulation in predicting future arrhythmic events in patients with cardiac sarcoidosis. Am J Cardiol. 2005; 96(2): 276–282.
  823. Mehta D, Mori N, Goldbarg SH, et al. Primary prevention of sudden cardiac death in silent cardiac sarcoidosis: role of programmed ventricular stimulation. Circ Arrhythm Electrophysiol. 2011; 4(1): 43–48.
  824. Okada DR, Smith J, Derakhshan A, et al. Electrophysiology study for risk stratification in patients with cardiac sarcoidosis and abnormal cardiac imaging. Int J Cardiol Heart Vasc. 2019; 23: 100342.
  825. Zipse MM, Tzou WS, Schuller JL, et al. Electrophysiologic testing for diagnostic evaluation and risk stratification in patients with suspected cardiac sarcoidosis with preserved left and right ventricular systolic function. J Cardiovasc Electrophysiol. 2019; 30(10): 1939–1948.
  826. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014; 63(4): 329–336.
  827. Crawford T, Mueller G, Sarsam S, et al. Magnetic resonance imaging for identifying patients with cardiac sarcoidosis and preserved or mildly reduced left ventricular function at risk of ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2014; 7(6): 1109–1115.
  828. Schuller JL, Zipse M, Crawford T, et al. Implantable cardioverter defibrillator therapy in patients with cardiac sarcoidosis. J Cardiovasc Electrophysiol. 2012; 23(9): 925–929.
  829. Betensky BP, Tschabrunn CM, Zado ES, et al. Long-term follow-up of patients with cardiac sarcoidosis and implantable cardioverter-defibrillators. Heart Rhythm. 2012; 9(6): 884–891.
  830. Kron J, Sauer W, Schuller J, et al. Efficacy and safety of implantable cardiac defibrillators for treatment of ventricular arrhythmias in patients with cardiac sarcoidosis. Europace. 2013; 15(3): 347–354.
  831. Mohsen A, Jimenez A, Hood RE, et al. Cardiac sarcoidosis: electrophysiological outcomes on long-term follow-up and the role of the implantable cardioverter-defibrillator. J Cardiovasc Electrophysiol. 2014; 25(2): 171–176.
  832. Azoulay LD, Waintraub X, Haroche J, et al. Factors associated with implantable cardioverter defibrillators appropriate therapy in cardiac sarcoidosis: a meta-analysis. Sarcoidosis Vasc Diffuse Lung Dis. 2020; 37(1): 17–23.
  833. Smedema JP, van Geuns RJ, Ector J, et al. Right ventricular involvement and the extent of left ventricular enhancement with magnetic resonance predict adverse outcome in pulmonary sarcoidosis. ESC Heart Fail. 2018; 5(1): 157–171.
  834. Velangi PS, Chen KHA, Kazmirczak F, et al. Right ventricular abnormalities on cardiovascular magnetic resonance imaging in patients with sarcoidosis. JACC Cardiovasc Imaging. 2020; 13(6): 1395–1405.
  835. Ise T, Hasegawa T, Morita Y, et al. Extensive late gadolinium enhancement on cardiovascular magnetic resonance predicts adverse outcomes and lack of improvement in LV function after steroid therapy in cardiac sarcoidosis. Heart. 2014; 100(15): 1165–1172.
  836. Yodogawa K, Seino Y, Ohara T, et al. Effect of corticosteroid therapy on ventricular arrhythmias in patients with cardiac sarcoidosis. Ann Noninvasive Electrocardiol. 2011; 16(2): 140–147.
  837. Naruse Y, Sekiguchi Y, Nogami A, et al. Systematic treatment approach to ventricular tachycardia in cardiac sarcoidosis. Circ Arrhythm Electrophysiol. 2014; 7(3): 407–413.
  838. Segawa M, Fukuda K, Nakano M, et al. Time course and factors correlating with ventricular tachyarrhythmias after introduction of steroid therapy in cardiac sarcoidosis. Circ Arrhythm Electrophysiol. 2016; 9(6): e003353.
  839. Kumar S, Barbhaiya C, Nagashima K, et al. Ventricular tachycardia in cardiac sarcoidosis: characterization of ventricular substrate and outcomes of catheter ablation. Circ Arrhythm Electrophysiol. 2015; 8(1): 87–93.
  840. Muser D, Santangeli P, Liang J, et al. Characterization of the electroanatomic substrate in cardiac sarcoidosis. JACC: Clinical Electrophysiology. 2018; 4(3): 291–303.
  841. Jefic D, Joel B, Good E, et al. Role of radiofrequency catheter ablation of ventricular tachycardia in cardiac sarcoidosis: report from a multicenter registry. Heart Rhythm. 2009; 6(2): 189–195.
  842. Papageorgiou N, Providência R, Bronis K, et al. Catheter ablation for ventricular tachycardia in patients with cardiac sarcoidosis: a systematic review. Europace. 2018; 20(4): 682–691.
  843. Siontis KC, Santangeli P, Muser D, et al. Outcomes associated with catheter ablation of ventricular tachycardia in patients with cardiac sarcoidosis. JAMA Cardiol. 2022; 7(2): 175–183.
  844. Hoogendoorn JC, Venlet J, Out YNJ, et al. The precordial R' wave: A novel discriminator between cardiac sarcoidosis and arrhythmogenic right ventricular cardiomyopathy in patients presenting with ventricular tachycardia. Heart Rhythm. 2021; 18(9): 1539–1547.
  845. Bern C. Chagas’ disease. N Engl J Med. 2015; 373(5): 456–466.
  846. Bocchi EA, Bestetti RB, Scanavacca MI, et al. Chronic Chagas heart disease management: from etiology to cardiomyopathy treatment. J Am Coll Cardiol. 2017; 70(12): 1510–1524.
  847. Nunes MCP, Dones W, Morillo CA, et al. Chagas disease. J Am Coll Cardiol. 2013; 62(9): 767–776.
  848. Nunes MC, Beaton A, Acquatella H, et al. Chagas cardiomyopathy: an update of current clinical knowledge and management: a scientific statement from the American Heart Association. Circulation. 2018; 138(12): e169–e209.
  849. Rassi A, Rassi A, Little WC, et al. Development and validation of a risk score for predicting death in Chagas' heart disease. N Engl J Med. 2006; 355(8): 799–808.
  850. Senra T, Ianni BM, Costa ACP, et al. Long-Term prognostic value of myocardial fibrosis in patients with Chagas cardiomyopathy. J Am Coll Cardiol. 2018; 72(21): 2577–2587.
  851. Rassi FM, Minohara L, Rassi A, et al. Systematic review and meta-analysis of clinical outcome after implantable cardioverter-defibrillator therapy in patients with Chagas heart disease. JACC Clin Electrophysiol. 2019; 5(10): 1213–1223.
  852. Cardinalli-Neto A, Bestetti RB, Cordeiro JA, et al. Predictors of all-cause mortality for patients with chronic Chagas' heart disease receiving implantable cardioverter defibrillator therapy. J Cardiovasc Electrophysiol. 2007; 18(12): 1236–1240.
  853. Muratore CA, Batista Sa LA, Chiale PA, et al. Implantable cardioverter defibrillators and Chagas' disease: results of the ICD Registry Latin America. Europace. 2009; 11(2): 164–168.
  854. Martinelli M, de Siqueira SF, Sternick EB, et al. Long-term follow-up of implantable cardioverter-defibrillator for secondary prevention in Chagas' heart disease. Am J Cardiol. 2012; 110(7): 1040–1045.
  855. Gali WL, Sarabanda AV, Baggio JM, et al. Implantable cardioverter-defibrillators for treatment of sustained ventricular arrhythmias in patients with Chagas' heart disease: comparison with a control group treated with amiodarone alone. Europace. 2014; 16(5): 674–680.
  856. Carmo AAL, de Sousa MR, Agudelo JF, et al. Implantable cardioverter-defibrillator in Chagas heart disease: A systematic review and meta-analysis of observational studies. Int J Cardiol. 2018; 267: 88–93.
  857. Stein C, Migliavaca CB, Colpani V, et al. Amiodarone for arrhythmia in patients with Chagas disease: A systematic review and individual patient data meta-analysis. PLoS Negl Trop Dis. 2018; 12(8): e0006742.
  858. Sosa E, Scanavacca M, D'Avila A, et al. Endocardial and epicardial ablation guided by nonsurgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia. J Cardiovasc Electrophysiol. 1998; 9(3): 229–239.
  859. Soto-Becerra R, Bazan V, Bautista W, et al. Ventricular tachycardia in the setting of chagasic cardiomyopathy: use of voltage mapping to characterize endoepicardial nonischemic scar distribution. Circ Arrhythm Electrophysiol. 2017; 10(11): e004950.
  860. Pisani CF, Romero J, Lara S, et al. Efficacy and safety of combined endocardial/epicardial catheter ablation for ventricular tachycardia in Chagas disease: A randomized controlled study. Heart Rhythm. 2020; 17(9): 1510–1518.
  861. Chizner MA, Pearle DL, deLeon AC. The natural history of aortic stenosis in adults. Am Heart J. 1980; 99(4): 419–424.
  862. Delahaye JP, Gare JP, Viguier E, et al. Natural history of severe mitral regurgitation. Eur Heart J. 1991; 12(Suppl B): 5–9.
  863. Groves P. Valve disease: Surgery of valve disease: late results and late complications. Heart. 2001; 86(6): 715–721.
  864. Blackstone EH, Kirklin JW. Death and other time-related events after valve replacement. Circulation. 1985; 72(4): 753–767.
  865. Urena M, Webb JG, Eltchaninoff H, et al. Late cardiac death in patients undergoing transcatheter aortic valve replacement: incidence and predictors of advanced heart failure and sudden cardiac death. J Am Coll Cardiol. 2015; 65(5): 437–448.
  866. Yang F, Shah B, Iwai S, et al. ICD implantation and arrhythmia-free survival in patients with depressed LV function following surgery for valvular heart disease. Pacing Clin Electrophysiol. 2008; 31(11): 1419–1424.
  867. Valles AG, Khawaja FJ, Gersh BJ, et al. Implantable cardioverter defibrillators in patients with valvular cardiomyopathy. J Cardiovasc Electrophysiol. 2012; 23(12): 1326–1332.
  868. Rodríguez-Mañero M, Barrio-López MT, Assi EA, et al. Primary prevention of sudden death in patients with valvular cardiomyopathy. Rev Esp Cardiol (Engl Ed). 2016; 69(3): 272–278.
  869. Fischer-Rasokat U, Renker M, Liebetrau C, et al. Long-term survival in patients with or without implantable cardioverter defibrillator after transcatheter aortic valve implantation. J Clin Med. 2021; 10(13): 2929.
  870. Nies RJ, Frerker C, Adam M, et al. Is there a benefit of ICD treatment in patients with persistent severely reduced systolic left ventricular function after TAVI? Clin Res Cardiol. 2022; 111(5): 492–501.
  871. Eckart RE, Hruczkowski TW, Tedrow UB, et al. Sustained ventricular tachycardia associated with corrective valve surgery. Circulation. 2007; 116(18): 2005–2011.
  872. Liang JJ, Castro SA, Muser D, et al. Electrophysiologic substrate, safety, procedural approaches, and outcomes of Catheter ablation for ventricular tachycardia in patients after aortic valve replacement. JACC Clin Electrophysiol. 2019; 5(1): 28–38.
  873. Delling FN, Vasan RS. Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation. 2014; 129(21): 2158–2170.
  874. Nalliah CJ, Mahajan R, Elliott AD, et al. Mitral valve prolapse and sudden cardiac death: a systematic review and meta-analysis. Heart. 2019; 105(2): 144–151.
  875. Nishimura RA, McGoon MD, Shub C, et al. Echocardiographically documented mitral-valve prolapse. Long-term follow-up of 237 patients. N Engl J Med. 1985; 313(21): 1305–1309.
  876. Perazzolo Marra M, Basso C, De Lazzari M, et al. Morphofunctional abnormalities of mitral annulus and arrhythmic mitral valve prolapse. Circ Cardiovasc Imaging. 2016; 9(8): e005030.
  877. Sriram CS, Syed FF, Ferguson ME, et al. Malignant bileaflet mitral valve prolapse syndrome in patients with otherwise idiopathic out-of-hospital cardiac arrest. J Am Coll Cardiol. 2013; 62(3): 222–230.
  878. Kitkungvan D, Nabi F, Kim RJ, et al. Myocardial fibrosis in patients with primary mitral regurgitation with and without prolapse. J Am Coll Cardiol. 2018; 72(8): 823–834.
  879. Nordhues BD, Siontis KC, Scott CG, et al. Bileaflet mitral valve prolapse and risk of ventricular dysrhythmias and death. J Cardiovasc Electrophysiol. 2016; 27(4): 463–468.
  880. Essayagh B, Sabbag A, Antoine C, et al. Presentation and outcome of arrhythmic mitral valve prolapse. J Am Coll Cardiol. 2020; 76(6): 637–649.
  881. Narasimhan C, Jazayeri MR, Sra J, et al. Ventricular tachycardia in valvular heart disease: facilitation of sustained bundle-branch reentry by valve surgery. Circulation. 1997; 96(12): 4307–4313.
  882. Moons P, Bovijn L, Budts W, et al. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation. 2010; 122(22): 2264–2272.
  883. Marelli AJ, Ionescu-Ittu R, Mackie AS, et al. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014; 130(9): 749–756.
  884. Koyak Z, Harris L, de Groot JR, et al. Sudden cardiac death in adult congenital heart disease. Circulation. 2012; 126(16): 1944–1954.
  885. Gallego P, Gonzalez AE, Sanchez-Recalde A, et al. Incidence and predictors of sudden cardiac arrest in adults with congenital heart defects repaired before adult life. Am J Cardiol. 2012; 110(1): 109–117.
  886. Ghai A, Silversides C, Harris L, et al. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of fallot. J Am Coll Cardiol. 2002; 40(9): 1675–1680.
  887. Khairy P, Landzberg MJ, Gatzoulis MA, et al. Value of programmed ventricular stimulation after tetralogy of fallot repair: a multicenter study. Circulation. 2004; 109(16): 1994–2000.
  888. Kapel GFL, Sacher F, Dekkers OM, et al. Arrhythmogenic anatomical isthmuses identified by electroanatomical mapping are the substrate for ventricular tachycardia in repaired tetralogy of Fallot. Eur Heart J. 2017; 38(4): 268–276.
  889. Atallah J, Gonzalez Corcia MC, Walsh EP, et al. Ventricular arrhythmia and life-threatening events in patients with repaired tetralogy of Fallot. Am J Cardiol. 2020; 132: 126–132.
  890. Kammeraad JAE, van Deurzen CHM, Sreeram N, et al. Predictors of sudden cardiac death after Mustard or Senning repair for transposition of the great arteries. J Am Coll Cardiol. 2004; 44(5): 1095–1102.
  891. Schwerzmann M, Salehian O, Harris L, et al. Ventricular arrhythmias and sudden death in adults after a Mustard operation for transposition of the great arteries. Eur Heart J. 2009; 30(15): 1873–1879.
  892. Miyazaki A, Sakaguchi H, Ohuchi H, et al. Efficacy of hemodynamic-based management of tachyarrhythmia after repair of tetralogy of Fallot. Circ J. 2012; 76(12): 2855–2862.
  893. Harrison DA, Siu SC, Hussain F, et al. Sustained ventricular tachycardia in adult patients late after repair of tetralogy of Fallot. J Am Coll Cardiol. 1997; 30(5): 1368–1373.
  894. Sabate Rotes A, Connolly HM, Warnes CA, et al. Ventricular arrhythmia risk stratification in patients with tetralogy of Fallot at the time of pulmonary valve replacement. Circ Arrhythm Electrophysiol. 2015; 8(1): 110–116.
  895. Khairy P, Harris L, Landzberg MJ, et al. Sudden death and defibrillators in transposition of the great arteries with intra-atrial baffles: a multicenter study. Circ Arrhythm Electrophysiol. 2008; 1(4): 250–257.
  896. Roca-Luque I, Rivas Gándara N, Dos Subirà L, et al. Intra-atrial re-entrant tachycardia in patients with congenital heart disease: factors associated with disease severity. Europace. 2018; 20(8): 1343–1351.
  897. Zeppenfeld K, Schalij MJ, Bartelings MM, et al. Catheter ablation of ventricular tachycardia after repair of congenital heart disease: electroanatomic identification of the critical right ventricular isthmus. Circulation. 2007; 116(20): 2241–2252.
  898. Kriebel T, Saul JP, Schneider H, et al. Noncontact mapping and radiofrequency catheter ablation of fast and hemodynamically unstable ventricular tachycardia after surgical repair of tetralogy of Fallot. J Am Coll Cardiol. 2007; 50(22): 2162–2168.
  899. van Zyl M, Kapa S, Padmanabhan D, et al. Mechanism and outcomes of catheter ablation for ventricular tachycardia in adults with repaired congenital heart disease. Heart Rhythm. 2016; 13(7): 1449–1454.
  900. Laredo M, Frank R, Waintraub X, et al. Ten-year outcomes of monomorphic ventricular tachycardia catheter ablation in repaired tetralogy of Fallot. Arch Cardiovasc Dis. 2017; 110(5): 292–302.
  901. Kapel GFL, Reichlin T, Wijnmaalen AP, et al. Re-entry using anatomically determined isthmuses: a curable ventricular tachycardia in repaired congenital heart disease. Circ Arrhythm Electrophysiol. 2015; 8(1): 102–109.
  902. Bokma JP, de Wilde KC, Vliegen HW, et al. Value of cardiovascular magnetic resonance imaging in noninvasive risk stratification in tetralogy of fallot. JAMA Cardiol. 2017; 2(6): 678–683.
  903. Koyak Z, de Groot JR, Bouma BJ, et al. Symptomatic but not asymptomatic non-sustained ventricular tachycardia is associated with appropriate implantable cardioverter therapy in tetralogy of Fallot. Int J Cardiol. 2013; 167(4): 1532–1535.
  904. Khairy P, Harris L, Landzberg MJ, et al. Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation. 2008; 117(3): 363–370.
  905. Koyak Z, de Groot JR, Van Gelder IC, et al. Implantable cardioverter defibrillator therapy in adults with congenital heart disease: who is at risk of shocks? Circ Arrhythm Electrophysiol. 2012; 5(1): 101–110.
  906. Cochet H, Iriart X, Allain-Nicolaï A, et al. Focal scar and diffuse myocardial fibrosis are independent imaging markers in repaired tetralogy of Fallot. Eur Heart J Cardiovasc Imaging. 2019; 20(9): 990–1003.
  907. Babu-Narayan SV, Kilner PJ, Li W, et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of fallot and its relationship to adverse markers of clinical outcome. Circulation. 2006; 113(3): 405–413.
  908. Gatzoulis MA, Balaji S, Webber SA, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000; 356(9234): 975–981.
  909. Bokma JP, Winter MM, Vehmeijer JT, et al. QRS fragmentation is superior to QRS duration in predicting mortality in adults with tetralogy of Fallot. Heart. 2017; 103(9): 666–671.
  910. Egbe A, Kothapalli S, Borlaug B, et al. Mechanism and risk factors for death in adults with tetralogy of Fallot. Am J Cardiol. 2019; 124(5): 803–807.
  911. Survivors of out-of-hospital cardiac arrest with apparently normal heart. Need for definition and standardized clinical evaluation. Consensus statement of the joint steering committees of the unexplained cardiac arrest registry of Europe and of the idiopathic ventricular fibrillation registry of the United States. Circulation. 1997; 95(1): 265–272.
  912. Leenhardt A, Glaser E, Burguera M, et al. Short-coupled variant of torsade de pointes. A new electrocardiographic entity in the spectrum of idiopathic ventricular tachyarrhythmias. Circulation. 1994; 89(1): 206–215.
  913. Eisenberg SJ, Scheinman MM, Duller NK, et al. Sudden cardiac death and polymorphous ventricular tachycardia in pationts with normal QT intervals and normal systolic cardiac function. Am J Cardiol. 1995; 75(10): 687–692.
  914. Asatryan B, Schaller A, Seiler J, et al. Usefulness of genetic testing in sudden cardiac arrest survivors with or without previous clinical evidence of heart disease. Am J Cardiol. 2019; 123(12): 2031–2038.
  915. Visser M, Dooijes D, van der Smagt JJ, et al. Next-generation sequencing of a large gene panel in patients initially diagnosed with idiopathic ventricular fibrillation. Heart Rhythm. 2017; 14(7): 1035–1040.
  916. Honarbakhsh S, Srinivasan N, Kirkby C, et al. Medium-term outcomes of idiopathic ventricular fibrillation survivors and family screening: a multicentre experience. Europace. 2017; 19(11): 1874–1880.
  917. Meissner MD, Lehmann MH, Steinman RT, et al. Ventricular fibrillation in patients without significant structural heart disease: A multicenter experience with implantable cardioverter-defibrillator therapy. J Am Coll Cardiol. 1993; 21(6): 1406–1412.
  918. Conte G, Caputo ML, Regoli F, et al. True idiopathic ventricular fibrillation in out-of-hospital cardiac arrest survivors in the Swiss Canton Ticino: prevalence, clinical features, and long-term follow-up. Europace. 2017; 19(2): 259–266.
  919. Stampe NK, Jespersen CB, Glinge C, et al. Clinical characteristics and risk factors of arrhythmia during follow-up of patients with idiopathic ventricular fibrillation. J Cardiovasc Electrophysiol. 2020; 31(10): 2677–2686.
  920. Conte G, Belhassen B, Lambiase P, et al. Out-of-hospital cardiac arrest due to idiopathic ventricular fibrillation in patients with normal electrocardiograms: results from a multicentre long-term registry. Europace. 2019; 21(11): 1670–1677.
  921. Blom LJ, Visser M, Christiaans I, et al. Incidence and predictors of implantable cardioverter-defibrillator therapy and its complications in idiopathic ventricular fibrillation patients. Europace. 2019; 21(10): 1519–1526.
  922. Malhi N, Cheung CC, Deif B, et al. Challenge and impact of quinidine access in sudden death syndromes: a national experience. JACC Clin Electrophysiol. 2019; 5(3): 376–382.
  923. Belhassen B, Glick A, Viskin S. Excellent long-term reproducibility of the electrophysiologic efficacy of quinidine in patients with idiopathic ventricular fibrillation and Brugada syndrome. Pacing Clin Electrophysiol. 2009; 32(3): 294–301.
  924. Belhassen B, Shapira I, Shoshani D, et al. Idiopathic ventricular fibrillation: inducibility and beneficial effects of class I antiarrhythmic agents. Circulation. 1987; 75(4): 809–816.
  925. Viskin S, Belhassen B. Idiopathic ventricular fibrillation. Am Heart J. 1990; 120(3): 661–671.
  926. Konigstein M, Rosso R, Topaz G, et al. Effects of electrophysiologic-guided therapy with Class IA antiarrhythmic drugs on the long-term outcome of patients with idiopathic ventricular fibrillation with or without the Brugada syndrome. J Cardiovasc Electrophysiol. 1999; 10(10): 1301–1312.
  927. Sadek MM, Benhayon D, Sureddi R, et al. Idiopathic ventricular arrhythmias originating from the moderator band: Electrocardiographic characteristics and treatment by catheter ablation. Heart Rhythm. 2015; 12(1): 67–75.
  928. Van Herendael H, Zado ES, Haqqani H, et al. Catheter ablation of ventricular fibrillation: importance of left ventricular outflow tract and papillary muscle triggers. Heart Rhythm. 2014; 11(4): 566–573.
  929. Santoro F, Di Biase L, Hranitzky P, et al. Ventricular fibrillation triggered by PVCs from papillary muscles: clinical features and ablation. J Cardiovasc Electrophysiol. 2014; 25(11): 1158–1164.
  930. Nakamura T, Schaeffer B, Tanigawa S, et al. Catheter ablation of polymorphic ventricular tachycardia/fibrillation in patients with and without structural heart disease. Heart Rhythm. 2019; 16(7): 1021–1027.
  931. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation. 1991; 84(3): 1136–1144.
  932. Schwartz PJ, Ackerman MJ, Antzelevitch C, et al. Inherited cardiac arrhythmias. Nat Rev Dis Primers. 2020; 6(1): 58.
  933. Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand. 1971; 60(5): 559–564.
  934. Tawil R, Ptacek LJ, Pavlakis SG, et al. Andersen's syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann Neurol. 1994; 35(3): 326–330.
  935. Splawski I, Timothy KW, Decher N, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A. 2005; 102(23): 8089–8096; discussion 8086–8088.
  936. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. Am Heart J. 1957; 54(1): 59–68.
  937. Schwartz PJ, Moss AJ, Vincent GM, et al. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993; 88(2): 782–784.
  938. Rautaharju PM, Zhang ZM, Prineas R, et al. Assessment of prolonged QT and JT intervals in ventricular conduction defects. Am J Cardiol. 2004; 93(8): 1017–1021.
  939. Viskin S, Postema PG, Bhuiyan ZA, et al. The response of the QT interval to the brief tachycardia provoked by standing: a bedside test for diagnosing long QT syndrome. J Am Coll Cardiol. 2010; 55(18): 1955–1961.
  940. Mazzanti A, Maragna R, Vacanti G, et al. Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome. J Am Coll Cardiol. 2018; 71(15): 1663–1671.
  941. Behr ER, Roden D. Drug-induced arrhythmia: pharmacogenomic prescribing? Eur Heart J. 2013; 34(2): 89–95.
  942. Weeke PE, Kellemann JS, Jespersen CB, et al. Long-term proarrhythmic pharmacotherapy among patients with congenital long QT syndrome and risk of arrhythmia and mortality. Eur Heart J. 2019; 40(37): 3110–3117.
  943. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001; 103(1): 89–95.
  944. Chockalingam P, Crotti L, Girardengo G, et al. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2: higher recurrence of events under metoprolol. J Am Coll Cardiol. 2012; 60(20): 2092–2099.
  945. Ahn J, Kim HJ, Choi JI, et al. Effectiveness of beta-blockers depending on the genotype of congenital long-QT syndrome: A meta-analysis. PLoS One. 2017; 12(10): e0185680.
  946. Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004; 292(11): 1341–1344.
  947. Mazzanti A, Trancuccio A, Kukavica D, et al. Independent validation and clinical implications of the risk prediction model for long QT syndrome (1-2-3-LQTS-Risk): comment. Europace. 2021; 24(4): 697–698.
  948. Mazzanti A, Maragna R, Faragli A, et al. Gene-Specific therapy with mexiletine reduces arrhythmic events in patients with long QT syndrome type 3. J Am Coll Cardiol. 2016; 67(9): 1053–1058.
  949. Ruan Y, Liu N, Bloise R, et al. Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation. 2007; 116(10): 1137–1144.
  950. Zhu W, Mazzanti A, Voelker TL, et al. Predicting patient response to the antiarrhythmic mexiletine based on genetic variation. Circ Res. 2019; 124(4): 539–552.
  951. Priori SG, Napolitano C, Schwartz PJ, et al. The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge. Circulation. 2000; 102(9): 945–947.
  952. Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation. 2000; 101(6): 616–623.
  953. Jons C, Moss AJ, Goldenberg I, et al. Risk of fatal arrhythmic events in long QT syndrome patients after syncope. J Am Coll Cardiol. 2010; 55(8): 783–788.
  954. Liu JF, Jons C, Moss AJ, et al. Risk factors for recurrent syncope and subsequent fatal or near-fatal events in children and adolescents with long QT syndrome. J Am Coll Cardiol. 2011; 57(8): 941–950.
  955. Seth R, Moss AJ, McNitt S, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007; 49(10): 1092–1098.
  956. Goldenberg I, Horr S, Moss A, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011; 57(1): 51–59.
  957. Jang SY, Cho Y, Kim NK, et al. Video-assisted thoracoscopic left cardiac sympathetic denervation in patients with hereditary ventricular arrhythmias. Pacing Clin Electrophysiol. 2017; 40(3): 232–241.
  958. Waddell-Smith KE, Ertresvaag KN, Li J, et al. Physical and psychological consequences of left cardiac sympathetic denervation in long-QT syndrome and catecholaminergic polymorphic ventricular tachycardia. Circ Arrhythm Electrophysiol. 2015; 8(5): 1151–1158.
  959. Anderson HN, Bos JM, Rohatgi RK, et al. The effect of left cardiac sympathetic denervation on exercise in patients with long QT syndrome. JACC Clin Electrophysiol. 2019; 5(9): 1084–1090.
  960. Bos JM, Bos KM, Johnson JN, et al. Left cardiac sympathetic denervation in long QT syndrome: analysis of therapeutic nonresponders. Circ Arrhythm Electrophysiol. 2013; 6(4): 705–711.
  961. Bhandari AK, Shapiro WA, Morady F, et al. Electrophysiologic testing in patients with the long QT syndrome. Circulation. 1985; 71(1): 63–71.
  962. Zareba W, Moss AJ, Daubert JP, et al. Implantable cardioverter defibrillator in high-risk long QT syndrome patients. J Cardiovasc Electrophysiol. 2003; 14(4): 337–341.
  963. Schwartz PJ, Spazzolini C, Priori SG, et al. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation. 2010; 122(13): 1272–1282.
  964. Delannoy E, Sacher F, Maury P, et al. Cardiac characteristics and long-term outcome in Andersen-Tawil syndrome patients related to KCNJ2 mutation. Europace. 2013; 15(12): 1805–1811.
  965. Inoue YY, Aiba T, Kawata H, et al. Different responses to exercise between Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia. Europace. 2018; 20(10): 1675–1682.
  966. Krych M, Biernacka EK, Ponińska J, et al. Andersen-Tawil syndrome: Clinical presentation and predictors of symptomatic arrhythmias — possible role of polymorphisms K897T in KCNH2 and H558R in SCN5A gene. J Cardiol. 2017; 70(5): 504–510.
  967. Mazzanti A, Guz D, Trancuccio A, et al. Natural history and risk stratification in Andersen-Tawil syndrome type 1. J Am Coll Cardiol. 2020; 75(15): 1772–1784.
  968. Zhang Li, Benson DW, Tristani-Firouzi M, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation. 2005; 111(21): 2720–2726.
  969. Horigome H, Ishikawa Y, Kokubun N, et al. Multivariate analysis of TU wave complex on electrocardiogram in Andersen-Tawil syndrome with KCNJ2 mutations. Ann Noninvasive Electrocardiol. 2020; 25(3): e12721.
  970. Miyamoto K, Aiba T, Kimura H, et al. Efficacy and safety of flecainide for ventricular arrhythmias in patients with Andersen-Tawil syndrome with KCNJ2 mutations. Heart Rhythm. 2015; 12(3): 596–603.
  971. Radwański PB, Greer-Short A, Poelzing S. Inhibition of Na+ channels ameliorates arrhythmias in a drug-induced model of Andersen-Tawil syndrome. Heart Rhythm. 2013; 10(2): 255–263.
  972. Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002; 110(3): 381–388.
  973. Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005; 111(5): 659–670.
  974. Savastano S, Rordorf R, Vicentini A, et al. A comprehensive electrocardiographic, molecular, and echocardiographic study of Brugada syndrome: validation of the 2013 diagnostic criteria. Heart Rhythm. 2014; 11(7): 1176–1183.
  975. Richter S, Sarkozy A, Paparella G, et al. Number of electrocardiogram leads displaying the diagnostic coved-type pattern in Brugada syndrome: a diagnostic consensus criterion to be revised. Eur Heart J. 2010; 31(11): 1357–1364.
  976. Veltmann C, Papavassiliu T, Konrad T, et al. Insights into the location of type I ECG in patients with Brugada syndrome: correlation of ECG and cardiovascular magnetic resonance imaging. Heart Rhythm. 2012; 9(3): 414–421.
  977. Adler A, Rosso R, Chorin E, et al. Risk stratification in Brugada syndrome: Clinical characteristics, electrocardiographic parameters, and auxiliary testing. Heart Rhythm. 2016; 13(1): 299–310.
  978. Hasdemir C, Payzin S, Kocabas U, et al. High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia. Heart Rhythm. 2015; 12(7): 1584–1594.
  979. Behr ER, Ben-Haim Y, Ackerman MJ, et al. Brugada syndrome and reduced right ventricular outflow tract conduction reserve: a final common pathway? Eur Heart J. 2021; 42(11): 1073–1081.
  980. Probst V, Veltmann C, Eckardt L, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: Results from the FINGER Brugada syndrome registry. Circulation. 2010; 121(5): 635–643.
  981. Amin AS, Meregalli PG, Bardai A, et al. Fever increases the risk for cardiac arrest in the Brugada syndrome. Ann Intern Med. 2008; 149(3): 216–218.
  982. Adler A, Topaz G, Heller K, et al. Fever-induced Brugada pattern: how common is it and what does it mean? Heart Rhythm. 2013; 10(9): 1375–1382.
  983. Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002; 105(11): 1342–1347.
  984. Rizzo A, Borio G, Sieira J, et al. Ajmaline testing and the Brugada syndrome. Am J Cardiol. 2020; 135: 91–98.
  985. Poli S, Toniolo M, Maiani M, et al. Management of untreatable ventricular arrhythmias during pharmacologic challenges with sodium channel blockers for suspected Brugada syndrome. Europace. 2018; 20(2): 234–242.
  986. Hasdemir C, Juang JJM, Kose S, et al. Coexistence of atrioventricular accessory pathways and drug-induced type 1 Brugada pattern. Pacing Clin Electrophysiol. 2018; 41(9): 1078–1092.
  987. Probst V, Wilde AAM, Barc J, et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ Cardiovasc Genet. 2009; 2(6): 552–557.
  988. Meregalli PG, Tan HL, Probst V, et al. Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm. 2009; 6(3): 341–348.
  989. Ishikawa T, Kimoto H, Mishima H, et al. Functionally validated SCN5A variants allow interpretation of pathogenicity and prediction of lethal events in Brugada syndrome. Eur Heart J. 2021; 42(29): 2854–2863.
  990. Gehi AK, Duong TD, Metz LD, et al. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J Cardiovasc Electrophysiol. 2006; 17(6): 577–583.
  991. McNamara DA, Goldberger J, Berendsen M, et al. Implantable defibrillators versus medical therapy for cardiac channelopathies. Cochrane Database Syst Rev. 2015; 2015(10): CD011168.
  992. Priori SG, Gasparini M, Napolitano C, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J Am Coll Cardiol. 2012; 59(1): 37–45.
  993. Dereci A, Yap SC, Schinkel AFL. Meta-analysis of clinical outcome after implantable cardioverter-defibrillator implantation in patients with brugada syndrome. JACC Clin Electrophysiol. 2019; 5(2): 141–148.
  994. Conte G, Sieira J, Ciconte G, et al. Implantable cardioverter-defibrillator therapy in Brugada syndrome: a 20-year single-center experience. J Am Coll Cardiol. 2015; 65(9): 879–888.
  995. Mascia G, Della Bona R, Ameri P, et al. Brugada syndrome and syncope: A systematic review. J Cardiovasc Electrophysiol. 2020; 31(12): 3334–3338.
  996. Subramanian M, Prabhu MA, Harikrishnan MS, et al. The utility of exercise testing in risk stratification of asymptomatic patients with type 1 Brugada pattern. J Cardiovasc Electrophysiol. 2017; 28(6): 677–683.
  997. Kubala M, Aissou L, Traulle S, et al. Use of implantable loop recorders in patients with Brugada syndrome and suspected risk of ventricular arrhythmia. Europace. 2011; 14(6): 898–902.
  998. Sakhi R, Assaf A, Theuns DA, et al. Outcome of insertable cardiac monitors in symptomatic patients with Brugada syndrome at low risk of sudden cardiac death. Cardiology. 2020; 145(7): 413–420.
  999. Scrocco C, Ben-Haim Y, Devine B, et al. Role of subcutaneous implantable loop recorder for the diagnosis of arrhythmias in Brugada syndrome: A United Kingdom single-center experience. Heart Rhythm. 2022; 19(1): 70–78.
  1000. Sieira J, Brugada P. Brugada syndrome: defining the risk in asymptomatic patients. Arrhythm Electrophysiol Rev. 2016; 5(3): 164–169.
  1001. Nishizaki M, Sakurada H, Yamawake N, et al. Low risk for arrhythmic events in asymptomatic patients with drug-induced type 1 ECG. Do patients with drug-induced Brugada type ECG have poor prognosis? (Con). Circ J. 2010; 74(11): 2464–2473.
  1002. Conte G, de Asmundis C, Sieira J, et al. Prevalence and clinical impact of early repolarization pattern and QRS-fragmentation in high-risk patients with Brugada syndrome. Circ J. 2016; 80(10): 2109–2116.
  1003. Kataoka N, Mizumaki K, Nakatani Y, et al. Paced QRS fragmentation is associated with spontaneous ventricular fibrillation in patients with Brugada syndrome. Heart Rhythm. 2016; 13(7): 1497–1503.
  1004. Probst V, Goronflot T, Anys S, et al. Robustness and relevance of predictive score in sudden cardiac death for patients with Brugada syndrome. Eur Heart J. 2021; 42(17): 1687–1695.
  1005. Honarbakhsh S, Providencia R, Garcia-Hernandez J, et al. A primary prevention clinical risk score model for patients with Brugada syndrome (BRUGADA-RISK). JACC Clin Electrophysiol. 2021; 7(2): 210–222.
  1006. Andorin A, Gourraud JB, Mansourati J, et al. The QUIDAM study: Hydroquinidine therapy for the management of Brugada syndrome patients at high arrhythmic risk. Heart Rhythm. 2017; 14(8): 1147–1154.
  1007. Belhassen B, Rahkovich M, Michowitz Y, et al. Management of Bbrugada syndrome: thirty-three-year experience using electrophysiologically guided therapy with class 1A antiarrhythmic drugs. Circ Arrhythm Electrophysiol. 2015; 8(6): 1393–1402.
  1008. Ohgo T, Okamura H, Noda T, et al. Acute and chronic management in patients with Brugada syndrome associated with electrical storm of ventricular fibrillation. Heart Rhythm. 2007; 4(6): 695–700.
  1009. Nademanee K, Raju H, de Noronha SV, et al. Fibrosis, connexin-43, and conduction abnormalities in the Brugada syndrome. J Am Coll Cardiol. 2015; 66(18): 1976–1986.
  1010. Nademanee K, Haissaguerre M, Hocini M, et al. Mapping and ablation of ventricular fibrillation associated with early repolarization syndrome. Circulation. 2019; 140(18): 1477–1490.
  1011. Nademanee K, Veerakul G, Chandanamattha P, et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation. 2011; 123(12): 1270–1279.
  1012. Zhang P, Tung R, Zhang Z, et al. Characterization of the epicardial substrate for catheter ablation of Brugada syndrome. Heart Rhythm. 2016; 13(11): 2151–2158.
  1013. Haïssaguerre M, Extramiana F, Hocini M, et al. Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation. 2003; 108(8): 925–928.
  1014. Brugada J, Pappone C, Berruezo A, et al. Brugada syndrome phenotype elimination by epicardial substrate ablation. Circ Arrhythm Electrophysiol. 2015; 8(6): 1373–1381.
  1015. Pappone C, Brugada J, Vicedomini G, et al. Electrical substrate elimination in 135 consecutive patients with Brugada syndrome. Circ Arrhythm Electrophysiol. 2017; 10(5): e005053.
  1016. Yamagata K, Horie M, Aiba T, et al. Genotype-Phenotype correlation of SCN5A mutation for the clinical and electrocardiographic characteristics of probands with Brugada syndrome. Circulation. 2017; 135(23): 2255–2270.
  1017. Haïssaguerre M, Derval N, Sacher F, et al. Sudden cardiac arrest associated with early repolarization. N Engl J Med. 2008; 358(19): 2016–2023.
  1018. Rosso R, Kogan E, Belhassen B, et al. J-point elevation in survivors of primary ventricular fibrillation and matched control subjects: incidence and clinical significance. J Am Coll Cardiol. 2008; 52(15): 1231–1238.
  1019. Macfarlane PW, Antzelevitch C, Haissaguerre M, et al. The early repolarization pattern: a consensus paper. J Am Coll Cardiol. 2015; 66(4): 470–477.
  1020. Tikkanen JT, Anttonen O, Junttila MJ, et al. Long-term outcome associated with early repolarization on electrocardiography. N Engl J Med. 2009; 361(26): 2529–2537.
  1021. Sinner MF, Reinhard W, Müller M, et al. Association of early repolarization pattern on ECG with risk of cardiac and all-cause mortality: a population-based prospective cohort study (MONICA/KORA). PLoS Med. 2010; 7(7): e1000314.
  1022. Nunn LM, Bhar-Amato J, Lowe MD, et al. Prevalence of J-point elevation in sudden arrhythmic death syndrome families. J Am Coll Cardiol. 2011; 58(3): 286–290.
  1023. Watanabe H, Nogami A, Ohkubo K, et al. Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ Arrhythm Electrophysiol. 2011; 4(6): 874–881.
  1024. Chauveau S, Janin A, Till M, et al. Early repolarization syndrome caused by de novo duplication of KCND3 detected by next-generation sequencing. HeartRhythm Case Rep. 2017; 3(12): 574–578.
  1025. Takayama K, Ohno S, Ding WG, et al. A de novo gain-of-function KCND3 mutation in early repolarization syndrome. Heart Rhythm. 2019; 16(11): 1698–1706.
  1026. Rosso R, Glikson E, Belhassen B, et al. Distinguishing "benign" from "malignant early repolarization": the value of the ST-segment morphology. Heart Rhythm. 2012; 9(2): 225–229.
  1027. Tikkanen JT, Junttila MJ, Anttonen O, et al. Early repolarization: electrocardiographic phenotypes associated with favorable long- term outcome. Circulation. 2011; 123(23): 2666–2673.
  1028. Nademanee K, Veerakul G, Mower M, et al. Defibrillator Versus beta-Blockers for Unexplained Death in Thailand (DEBUT): a randomized clinical trial. Circulation. 2003; 107(17): 2221–2226.
  1029. Brugada J, Brugada R, Brugada P. Pharmacological and device approach to therapy of inherited cardiac diseases associated with cardiac arrhythmias and sudden death. J Electrocardiol. 2000; 33(Suppl): 41–47.
  1030. Haïssaguerre M, Sacher F, Nogami A, et al. Characteristics of recurrent ventricular fibrillation associated with inferolateral early repolarization role of drug therapy. J Am Coll Cardiol. 2009; 53(7): 612–619.
  1031. Aizawa Y, Chinushi M, Hasegawa K, et al. Electrical storm in idiopathic ventricular fibrillation is associated with early repolarization. J Am Coll Cardiol. 2013; 62(11): 1015–1019.
  1032. Patocskai B, Barajas-Martinez H, Hu D, et al. Cellular and ionic mechanisms underlying the effects of cilostazol, milrinone, and isoproterenol to suppress arrhythmogenesis in an experimental model of early repolarization syndrome. Heart Rhythm. 2016; 13(6): 1326–1334.
  1033. Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves and electrical storms in patients with early repolarization. N Engl J Med. 2008; 358(19): 2078–2079.
  1034. Rodríguez-Capitán J, Fernández-Meseguer A, García-Pinilla J, et al. Frequency of different electrocardiographic abnormalities in a large cohort of Spanish workers. Europace. 2017; 19(11): 1855–1863.
  1035. Sun GZ, Ye N, Chen YT, et al. Early repolarization pattern in the general population: Prevalence and associated factors. Int J Cardiol. 2017; 230: 614–618.
  1036. Wu SH, Lin XX, Cheng YJ, et al. Early repolarization pattern and risk for arrhythmia death: a meta-analysis. J Am Coll Cardiol. 2013; 61(6): 645–650.
  1037. Malhi N, So PP, Cheung CC, et al. Early repolarization pattern inheritance in the cardiac arrest survivors with preserved ejection fraction registry (CASPER). JACC Clin Electrophysiol. 2018; 4(11): 1473–1479.
  1038. Sinner MF, Porthan K, Noseworthy PA, et al. A meta-analysis of genome-wide association studies of the electrocardiographic early repolarization pattern. Heart Rhythm. 2012; 9(10): 1627–1634.
  1039. Adhikarla C, Boga M, Wood AD, et al. Natural history of the electrocardiographic pattern of early repolarization in ambulatory patients. Am J Cardiol. 2011; 108(12): 1831–1835.
  1040. Mahida S, Derval N, Sacher F, et al. Role of electrophysiological studies in predicting risk of ventricular arrhythmia in early repolarization syndrome. J Am Coll Cardiol. 2015; 65(2): 151–159.
  1041. Aizawa Y, Sato A, Watanabe H, et al. Dynamicity of the J-wave in idiopathic ventricular fibrillation with a special reference to pause-dependent augmentation of the J-wave. J Am Coll Cardiol. 2012; 59(22): 1948–1953.
  1042. Priori SG, Mazzanti A, Santiago DJ, et al. Precision medicine in catecholaminergic polymorphic ventricular tachycardia: JACC focus seminar 5/5. J Am Coll Cardiol. 2021; 77(20): 2592–2612.
  1043. Bezzina CR, Lahrouchi N, Priori SG. Genetics of sudden cardiac death. Circ Res. 2015; 116(12): 1919–1936.
  1044. Kimura H, Zhou J, Kawamura M, et al. Phenotype variability in patients carrying KCNJ2 mutations. Circ Cardiovasc Genet. 2012; 5(3): 344–353.
  1045. Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002; 106(1): 69–74.
  1046. Krahn AD, Gollob M, Yee R, et al. Diagnosis of unexplained cardiac arrest: role of adrenaline and procainamide infusion. Circulation. 2005; 112(15): 2228–2234.
  1047. Hayashi M, Denjoy I, Extramiana F, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009; 119(18): 2426–2434.
  1048. Leren IS, Saberniak J, Majid E, et al. Nadolol decreases the incidence and severity of ventricular arrhythmias during exercise stress testing compared with β1-selective β-blockers in patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2016; 13(2): 433–440.
  1049. Peltenburg PJ, Kallas D, Bos JM, et al. An international multicenter cohort study on β-blockers for the treatment of symptomatic children with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2022; 145(5): 333–344.
  1050. van der Werf C, Nederend I, Hofman N, et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ Arrhythm Electrophysiol. 2012; 5(4): 748–756.
  1051. Watanabe H, Chopra N, Laver D, et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med. 2009; 15(4): 380–383.
  1052. Wang G, Zhao Na, Zhong S, et al. Safety and efficacy of flecainide for patients with catecholaminergic polymorphic ventricular tachycardia: A systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(34): e16961.
  1053. van der Werf C, Kannankeril PJ, Sacher F, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011; 57(22): 2244–2254.
  1054. Padfield GJ, AlAhmari L, Lieve KVV, et al. Flecainide monotherapy is an option for selected patients with catecholaminergic polymorphic ventricular tachycardia intolerant of β-blockade. Heart Rhythm. 2016; 13(2): 609–613.
  1055. Roses-Noguer F, Jarman JWE, Clague JR, et al. Outcomes of defibrillator therapy in catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2014; 11(1): 58–66.
  1056. De Ferrari GM, Dusi V, Spazzolini C, et al. Clinical management of catecholaminergic polymorphic ventricular tachycardia: the role of left cardiac sympathetic denervation. Circulation. 2015; 131(25): 2185–2193.
  1057. Roston TM, Jones K, Hawkins NM, et al. Implantable cardioverter-defibrillator use in catecholaminergic polymorphic ventricular tachycardia: A systematic review. Heart Rhythm. 2018; 15(12): 1791–1799.
  1058. van der Werf C, Lieve KV, Bos JM, et al. Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest. Eur Heart J. 2019; 40(35): 2953–2961.
  1059. Leenhardt A, Lucet V, Denjoy I, et al. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995; 91(5): 1512–1519.
  1060. Kannankeril PJ, Moore JP, Cerrone M, et al. Efficacy of flecainide in the treatment of catecholaminergic polymorphic ventricular tachycardia: a randomized clinical trial. JAMA Cardiol. 2017; 2(7): 759–766.
  1061. Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011; 57(7): 802–812.
  1062. Thorsen K, Dam VS, Kjaer-Sorensen K, et al. Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome. Nat Commun. 2017; 8(1): 1696.
  1063. Mazzanti A, Kanthan A, Monteforte N, et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014; 63(13): 1300–1308.
  1064. Dhutia H, Malhotra A, Parpia S, et al. The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br J Sports Med. 2016; 50(2): 124–129.
  1065. Gallagher MM, Magliano G, Yap YG, et al. Distribution and prognostic significance of QT intervals in the lowest half centile in 12,012 apparently healthy persons. Am J Cardiol. 2006; 98(7): 933–935.
  1066. Anttonen O, Junttila MJ, Rissanen H, et al. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation. 2007; 116(7): 714–720.
  1067. Kobza R, Roos M, Niggli B, et al. Prevalence of long and short QT in a young population of 41,767 predominantly male Swiss conscripts. Heart Rhythm. 2009; 6(5): 652–657.
  1068. Giustetto C, Schimpf R, Mazzanti A, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011; 58(6): 587–595.
  1069. Raschwitz LS, El-Battrawy I, Schlentrich K, et al. Long-term follow-up of patients with short QT syndrome: clinical profile and outcome. J Am Heart Assoc. 2018; 7(23): e010073.
  1070. Mazzanti A, Maragna R, Vacanti G, et al. Hydroquinidine prevents life-threatening arrhythmic events in patients with short QT syndrome. J Am Coll Cardiol. 2017; 70(24): 3010–3015.
  1071. El-Battrawy I, Besler J, Li X, et al. Impact of antiarrhythmic drugs on the outcome of short QT syndrome. Front Pharmacol. 2019; 10: 771.
  1072. Malik M. Drug-Induced QT/QTC interval shortening: lessons from drug-induced qt/qtc prolongation. Drug Saf. 2016; 39(7): 647–659.
  1073. Giustetto C, Scrocco C, Schimpf R, et al. Usefulness of exercise test in the diagnosis of short QT syndrome. Europace. 2015; 17(4): 628–634.
  1074. Mason JW, Ramseth DJ, Chanter DO, et al. Electrocardiographic reference ranges derived from 79,743 ambulatory subjects. J Electrocardiol. 2007; 40(3): 228–234.
  1075. Bun SS, Msury P, Giustetto C, et al. Electrical storm in short-QT syndrome successfully treated with isoproterenol. J Cardiovasc Electrophysiol. 2012; 23(9): 1028–1030.
  1076. Siu SC, Sermer M, Colman JM, et al. Prospective multicenter study of pregnancy outcomes in women with heart disease. Circulation. 2001; 104(5): 515–521.
  1077. Drenthen W, Pieper PG, Roos-Hesselink JW, et al. Outcome of pregnancy in women with congenital heart disease: a literature review. J Am Coll Cardiol. 2007; 49(24): 2303–2311.
  1078. Roos-Hesselink JW, Ruys TPE, Stein JI, et al. Outcome of pregnancy in patients with structural or ischaemic heart disease: results of a registry of the European Society of Cardiology. Eur Heart J. 2013; 34(9): 657–665.
  1079. Linde C, Bongiorni MG, Birgersdotter-Green U, et al. Sex differences in cardiac arrhythmia: a consensus document of the European Heart Rhythm Association, endorsed by the Heart Rhythm Society and Asia Pacific Heart Rhythm Society. Europace. 2018; 20(10): 1565–1565ao.
  1080. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018; 39: 3165–3241.
  1081. Silversides CK, Harris L, Haberer K, et al. Recurrence rates of arrhythmias during pregnancy in women with previous tachyarrhythmia and impact on fetal and neonatal outcomes. Am J Cardiol. 2006; 97(8): 1206–1212.
  1082. Sliwa K, Mebazaa A, Hilfiker-Kleiner D, et al. Clinical characteristics of patients from the worldwide registry on peripartum cardiomyopathy (PPCM). Eur J Heart Failure. 2017; 19(9): 1131–1141.
  1083. Ware JS, Li J, Mazaika E, et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N Engl J Med. 2016; 374(3): 233–241.
  1084. Wang YC, Chen CH, Su HY, et al. The impact of maternal cardioversion on fetal haemodynamics. Eur J Obstet Gynecol Reprod Biol. 2006; 126(2): 268–269.
  1085. Barnes EJ, Eben F, Patterson D. Direct current cardioversion during pregnancy should be performed with facilities available for fetal monitoring and emergency caesarean section. BJOG. 2002; 109(12): 1406–1407.
  1086. Miyoshi T, Kamiya CA, Katsuragi S, et al. Safety and efficacy of implantable cardioverter-defibrillator during pregnancy and after delivery. Circ J. 2013; 77(5): 1166–1170.
  1087. Abello M, Peinado R, Merino JL, et al. Cardioverter defibrillator implantation in a pregnant woman guided with transesophageal echocardiography. Pacing Clin Electrophysiol. 2003; 26(9): 1913–1914.
  1088. Hartz J, Clark BC, Ito S, et al. Transvenous nonfluoroscopic pacemaker implantation during pregnancy guided by 3-dimensional electroanatomic mapping. HeartRhythm Case Rep. 2017; 3(10): 490–492.
  1089. Bauersachs J, König T, van der Meer P, et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur J Heart Fail. 2019; 21(7): 827–843.
  1090. Duncker D, König T, Hohmann S, et al. Avoiding untimely implantable cardioverter/defibrillator implantation by intensified heart failure therapy optimization supported by the wearable cardioverter/defibrillator-the PROLONG study. J Am Heart Assoc. 2017; 6(1): e004512.
  1091. Duncker D, Westenfeld R, Konrad T, et al. Risk for life-threatening arrhythmia in newly diagnosed peripartum cardiomyopathy with low ejection fraction: a German multi-centre analysis. Clin Res Cardiol. 2017; 106(8): 582–589.
  1092. Jeejeebhoy FM, Zelop CM, Lipman S, et al. Cardiac arrest in pregnancy: a scientific statement from the American Heart Association. Circulation. 2015; 132(18): 1747–1773.
  1093. Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, et al. ESC Guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011; 32(24): 3147–3197.
  1094. Rashba EJ, Zareba W, Moss AJ, et al. Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. LQTS Investigators. Circulation. 1998; 97(5): 451–456.
  1095. Ishibashi K, Aiba T, Kamiya C, et al. Arrhythmia risk and β-blocker therapy in pregnant women with long QT syndrome. Heart. 2017; 103(17): 1374–1379.
  1096. Cheung CC, Lieve KV, Roston TM, et al. Pregnancy in catecholaminergic polymorphic ventricular tachycardia. JACC Clin Electrophysiol. 2019; 5(3): 387–394.
  1097. Wu L, Liang E, Fan S, et al. Effect of pregnancy in arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2020; 125(4): 613–617.
  1098. Bauce B, Daliento L, Frigo G, et al. Pregnancy in women with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur J Obstet Gynecol Reprod Biol. 2006; 127(2): 186–189.
  1099. Gandjbakhch E, Varlet E, Duthoit G, et al. Pregnancy and newborn outcomes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Int J Cardiol. 2018; 258: 172–178.
  1100. Rodríguez-Mañero M, Casado-Arroyo R, Sarkozy A, et al. The clinical significance of pregnancy in Brugada syndrome. Rev Esp Cardiol (Engl Ed). 2014; 67(3): 176–180.
  1101. Benito B, Berruezo A. Brugada syndrome and pregnancy: delving into the role of sex hormones in ion channelopathies. Rev Esp Cardiol (Engl Ed). 2014; 67(3): 165–167.
  1102. Ostrowska B, Kommata B, Malmborg H, Lundqvist CB. Arrhythmias in pregnancy. In: ESC CardioMed. 3rd ed. Oxford University Press 2022: 2868–2870.
  1103. Sliwa K, Blauwet L, Tibazarwa K, et al. Evaluation of bromocriptine in the treatment of acute severe peripartum cardiomyopathy: a proof-of-concept pilot study. Circulation. 2010; 121(13): 1465–1473.
  1104. Hilfiker-Kleiner D, Haghikia A, Berliner D, et al. Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Eur Heart J. 2017; 38(35): 2671–2679.
  1105. Driver K, Chisholm CA, Darby AE, et al. Catheter ablation of arrhythmia during pregnancy. J Cardiovasc Electrophysiol. 2015; 26(6): 698–702.
  1106. Wang Z, Chen YW, Jiang YH, et al. Electrophysiological characteristics and therapeutic efficacy of radiofrequency ablation of focal atrial tachycardia originating from the right atrial appendage during pregnancy [article in Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020; 48(10): 859–865.
  1107. Tuzcu V, Kilinc OU. Implantable cardioverter defibrillator implantation without using fluoroscopy in a pregnant patient. Pacing Clin Electrophysiol. 2012; 35(9): e265–e266.
  1108. Fröhlich GM, Holzmeister J, Hübler M, et al. Prophylactic implantable cardioverter defibrillator treatment in patients with end-stage heart failure awaiting heart transplantation. Heart. 2013; 99(16): 1158–1165.
  1109. Sandner SE, Wieselthaler G, Zuckermann A, et al. Survival benefit of the implantable cardioverter-defibrillator in patients on the waiting list for cardiac transplantation. Circulation. 2001; 104(12 Suppl 1): I171–I176.
  1110. Algalarrondo V, Perault R, Bories MC, et al. Prophylactic implantable cardioverter defibrillators for primary prevention: From implantation to heart transplantation. Arch Cardiovasc Dis. 2018; 111(12): 758–765.
  1111. Cantero-Pérez EM, Sobrino-Márquez JM, Grande-Trillo A, et al. Implantable cardioverter defibrillator for primary prevention in patients with severe ventricular dysfunction awaiting heart transplantation. Transplant Proc. 2013; 45(10): 3659–3661.
  1112. Pezawas T, Grimm M, Ristl R, et al. Primary preventive cardioverter-defibrillator implantation (Pro-ICD) in patients awaiting heart transplantation. A prospective, randomized, controlled 12-year follow-up study. Transpl Int. 2015; 28(1): 34–41.
  1113. Kao AC, Krause SW, Handa R, et al. Wearable defibrillator use in heart failure (WIF): results of a prospective registry. BMC Cardiovasc Disord. 2012; 12: 123.
  1114. Alba AC, Foroutan F, Ng Fat Hing NK, et al. Incidence and predictors of sudden cardiac death after heart transplantation: A systematic review and meta-analysis. Clin Transplant. 2018; 32(3): e13206.
  1115. Vakil K, Taimeh Z, Sharma A, et al. Incidence, predictors, and temporal trends of sudden cardiac death after heart transplantation. Heart Rhythm. 2014; 11(10): 1684–1690.
  1116. Alba AC, Fan CPS, Manlhiot C, et al. The evolving risk of sudden cardiac death after heart transplant. An analysis of the ISHLT Thoracic Transplant Registry. Clin Transplant. 2019; 33(3): e13490.
  1117. Eskander MA, Adler E, Hoffmayer KS. Arrhythmias and sudden cardiac death in post-cardiac transplant patients. Curr Opin Cardiol. 2020; 35(3): 308–311.
  1118. Tsai VW, Cooper J, Garan H, et al. The efficacy of implantable cardioverter-defibrillators in heart transplant recipients: results from a multicenter registry. Circ Heart Fail. 2009; 2(3): 197–201.
  1119. Klein HU, Meltendorf U, Reek S, et al. Bridging a temporary high risk of sudden arrhythmic death. Experience with the wearable cardioverter defibrillator (WCD). Pacing Clin Electrophysiol. 2010; 33(3): 353–367.
  1120. Corrado D, Zorzi A. Sudden death in athletes. Int J Cardiol. 2017; 237: 67–70.
  1121. Rajan D, Garcia R, Svane J, et al. Risk of sports-related sudden cardiac death in women. Eur Heart J. 2022; 43(12): 1198–1206.
  1122. Corrado D, Basso C, Schiavon M, et al. Screening for hypertrophic cardiomyopathy in young athletes. N Engl J Med. 1998; 339(6): 364–369.
  1123. Malhotra A, Dhutia H, Finocchiaro G, et al. Outcomes of cardiac screening in adolescent soccer players. N Engl J Med. 2018; 379(6): 524–534.
  1124. Corrado D, Pelliccia A, Bjørnstad H, et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Eur Heart J. 2005; 26(5): 516–524.
  1125. Corrado D, Schmied C, Basso C, et al. Risk of sports: do we need a pre-participation screening for competitive and leisure athletes? Eur Heart J. 2011; 32(8): 934–944.
  1126. Baggish AL, Hutter AM, Wang F, et al. Cardiovascular screening in college athletes with and without electrocardiography: A cross-sectional study. Ann Intern Med. 2010; 152(5): 269–275.
  1127. Corrado D, Basso C, Pavei A, et al. Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA. 2006; 296(13): 1593–1601.
  1128. Sharma S, Estes NA, Vetter VL, et al. Clinical decisions. Cardiac screening before participation in sports. N Engl J Med. 2013; 369(21): 2049–2053.
  1129. Sarto P, Zorzi A, Merlo L, et al. Serial versus single cardiovascular screening of adolescent athletes. Circulation. 2021; 143(17): 1729–1731.
  1130. Steinvil A, Chundadze T, Zeltser D, et al. Mandatory electrocardiographic screening of athletes to reduce their risk for sudden death proven fact or wishful thinking? J Am Coll Cardiol. 2011; 57(11): 1291–1296.
  1131. Corrado D, Pelliccia A, Heidbuchel H, et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J. 2010; 31(2): 243–259.
  1132. Sharma S, Drezner JA, Baggish A, et al. International recommendations for electrocardiographic interpretation in athletes. Eur Heart J. 2018; 39: 1466–1480.
  1133. Crescenzi C, Zorzi A, Vessella T, et al. Predictors of left ventricular scar using cardiac magnetic resonance in athletes with apparently idiopathic ventricular arrhythmias. J Am Heart Assoc. 2021; 10(1): e018206.
  1134. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016; 37(29): 2315–2381.
  1135. Rizzo M, Spataro A, Cecchetelli C, et al. Structural cardiac disease diagnosed by echocardiography in asymptomatic young male soccer players: implications for pre-participation screening. Br J Sports Med. 2012; 46(5): 371–373.
  1136. Heidbuchel H, Arbelo E, D'Ascenzi F, et al. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: ventricular arrhythmias, channelopathies, and implantable defibrillators. Europace. 2021; 23(1): 147–148.
  1137. Drezner JA, Peterson DF, Siebert DM, et al. Survival after exercise-related sudden cardiac arrest in young athletes: can we do better? Sports Health. 2019; 11(1): 91–98.
  1138. Drezner JA, Rogers KJ, Horneff JG. Automated external defibrillator use at NCAA Division II and III universities. Br J Sports Med. 2011; 45(15): 1174–1178.
  1139. Borjesson M, Serratosa L, Carre F, et al. Consensus document regarding cardiovascular safety at sports arenas: position stand from the European Association of Cardiovascular Prevention and Rehabilitation (EACPR), section of Sports Cardiology. Eur Heart J. 2011; 32(17): 2119–2124.
  1140. Drezner JA, Owens DS, Prutkin JM, et al. Electrocardiographic screening in national collegiate athletic association athletes. Am J Cardiol. 2016; 118(5): 754–759.
  1141. Erbel R, Möhlenkamp S, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010; 56(17): 1397–1406.
  1142. Yeboah J, McClelland RL, Polonsky TS, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012; 308(8): 788–795.
  1143. Pappone C, Vicedomini G, Manguso F, et al. Wolff-Parkinson-White syndrome in the era of catheter ablation: insights from a registry study of 2169 patients. Circulation. 2014; 130(10): 811–819.
  1144. Obeyesekere MN, Leong-Sit P, Massel D, et al. Risk of arrhythmia and sudden death in patients with asymptomatic preexcitation: a meta-analysis. Circulation. 2012; 125(19): 2308–2315.
  1145. Heidbuchel H, Adami PE, Antz M, et al. Recommendations for participation in leisure-time physical activity and competitive sports in patients with arrhythmias and potentially arrhythmogenic conditions: part 1: supraventricular arrhythmias. A position statement of the Section of Sports Cardiology and Exercise from the European Association of Preventive Cardiology (EAPC) and the European Heart Rhythm Association (EHRA), both associations of the European Society of Cardiology. Eur J Prev Cardiol. 2020; 28: 1539–1551.
  1146. Pappone C, Santinelli V, Manguso F, et al. A randomized study of prophylactic catheter ablation in asymptomatic patients with the Wolff-Parkinson-White syndrome. N Engl J Med. 2003; 349(19): 1803–1811.
  1147. Perry JC, Garson A. Supraventricular tachycardia due to Wolff-Parkinson-White syndrome in children: early disappearance and late recurrence. J Am Coll Cardiol. 1990; 16(5): 1215–1220.
  1148. Cohen MI, Triedman JK, Cannon BC, et al. PACES/HRS expert consensus statement on the management of the asymptomatic young patient with a Wolff-Parkinson-White (WPW, ventricular preexcitation) electrocardiographic pattern: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology Foundation (ACCF), the American Heart Association (AHA), the American Academy of Pediatrics (AAP), and the Canadian Heart Rhythm Society (CHRS). Heart Rhythm. 2012; 9(6): 1006–1024.
  1149. Barsheshet A, Moss AJ, Huang DT, et al. Applicability of a risk score for prediction of the long-term (8-year) benefit of the implantable cardioverter-defibrillator. J Am Coll Cardiol. 2012; 59(23): 2075–2079.
  1150. Expósito V, Rodríguez-Mañero M, González-Enríquez S, et al. Primary prevention implantable cardioverter-defibrillator and cardiac resynchronization therapy-defibrillator in elderly patients: results of a Spanish multicentre study. Europace. 2016; 18(8): 1203–1210.
  1151. Alhakak A, Østergaard L, Butt JH, et al. Cause-specific death and risk factors of 1-year mortality after implantable cardioverter-defibrillator implantation: a nationwide study. Eur Heart J Qual Care Clin Outcomes. 2022; 8(1): 39–49.
  1152. Poupin P, Bouleti C, Degand B, et al. Prognostic value of Charlson Comorbidity Index in the elderly with a cardioverter defibrillator implantation. Int J Cardiol. 2020; 314: 64–69.
  1153. Aktaa S, Batra G, Wallentin L, et al. European Society of Cardiology methodology for the development of quality indicators for the quantification of cardiovascular care and outcomes. Eur Heart J Qual Care Clin Outcomes. 2022; 8(1): 4–13.
  1154. Minchin M, Roland M, Richardson J, et al. Quality of care in the United Kingdom after removal of financial incentives. N Engl J Med. 2018; 379(10): 948–957.
  1155. Song Z, Ji Y, Safran DG, et al. Health care spending, utilization, and quality 8 years into global payment. N Engl J Med. 2019; 381(3): 252–263.



Polish Heart Journal (Kardiologia Polska)