Supplementary material

Gallina T, Żuławińska B, Stępniewski J, et al. Recognition of emerging cardiac diagnoses by echocardiography in 5th-year medical students — the role of focused e-learning. Kardiol Pol. 2021.

Please note that the journal is not responsible for the scientific accuracy or functionality of any supplementary material submitted by the authors. Any queries (except missing content) should be directed to the corresponding author of the article.

Supplementary Methods 1

Distractors to questions about echocardiographic images

Correct answer	Other distractors*
Acute aortic dissection	Restrictive cardiomyopathy
	Severe systolic dysfunction of the left
	ventricle
	Cardiac tamponade
Acute pulmonary embolism	Infective endocarditis
	Cardiac tamponade
	Thrombus in the left ventricle
Acute myocardial infarction	Cardiac tamponade
	Myocarditis
	Acute pulmonary embolism
Cardiac tamponade	Heart aneurysms
	Fluid in pericardium without tamponade
	Mitral valve regurgitation
Infective endocarditis	Acute myocardial infarction
	Acute aortic dissection
	Cardiac tamponade
Mitral valve regurgitation	Aortic valve regurgitation

	Tricuspid valve regurgitation
	Pulmonary valve regurgitation
Severe systolic dysfunction of the left	Acute pulmonary embolism
ventricle	Restrictive cardiomyopathy
	Cardiac tamponade
Thrombus in the left ventricle	Acute myocardial infarction
	Acute pulmonary embolism
	Severe systolic dysfunction of the left
	ventricle

*I do not know answer was possible in each question

Distractors to echocardiographic descriptions

Correct answer	Other distractors (and in each question "I don't' know")
Acute pulmonary embolism	Acute myocardial infarction of the right ventricle Severe systolic dysfunction of the left ventricle Dilated cardiomyopathy
Acute myocardial infarction	Severe aortic valve stenosis Acute aortic dissection Acute pulmonary embolism
Cardiac tamponade	Myocarditis Severe systolic dysfunction of the left ventricle with pericardium leakage

	Fluid in the pericardium without tamponade
High risk of pulmonary hypertension	Cardiac tamponade
	Acute myocardial infarction of the right
	ventricle
	Severe aortic valve stenosis
Infective endocarditis	Restrictive cardiomyopathy
	Acute aortic dissection
	Severe aortic valve stenosis
Severe aortic valve stenosis	Hypertrophic cardiomyopathy
	High risk of pulmonary hypertension
	Restrictive cardiomyopathy
Severe systolic dysfunction of the left	Hypertrophic cardiomyopathy
ventricle	Severe aortic valve stenosis
	Acute pulmonary embolism
Thrombus in the left ventricle	Acute pulmonary embolism
	Myxoma
	Infective endocarditis

Echocardiographic descriptions

1. Acute pulmonary embolism

LV: 45/20, EF: 60%, E/A = 1, E/E' = 3,8, LA: 15 cm²

aortic valve: gradient 6/3 mmHg, normal size of aorta

mitral valve: gradient 2/1 mmHg, mild mitral regurgitation;

RA: 23 cm², TAPSE: 12 mm, RVD1: 60 mm, RV/LV = 1,3/1;

pulmonary valve: gradient 6/3 mmHg, AcT: 40 ms (shortened), widened pulmonary trunk; tricuspid valve: mild tricuspid regurgitation, RVSP: 43, IVC: 25 mm, without respiratory response

2. Acute myocardial infarction

LV: 48/34 mm, wall thickness 9/12 mm, EF: 42% E/A = 0,7, E/E' = 5,5, LA: 13 cm²; aortic valve: bicuspid, gradient 6/3 mmHg, calcified cusps, ascending aorta 33 mm; mitral valve: gradient 2/1 mmHg, mild mitral regurgitation;

RA: 14 cm², TAPSE: 25 mm;

tricuspid valve: mild tricuspid regurgitation, RVSP: 27, IVC: 11 mm, with normal respiratory response;

apical, anterior and septolateral hypo/akinesia.

3. Cardiac tamponade

LV: 46/32 mm, wall thickness 10/13 mm, EF: 65%, E/A = 0,9;

Heart valves without significant pathologies.

RA: 13 cm², IVC: 22 mm, without respiratory response;

Fluid is visible in the pericardium, in diastole there is a layer of liquid in front of the right ventricle 16 mm, behind the left ventricle 15 mm. Collapsing> 1/3 right atrium, partial collapse of the free right ventricular wall in diastole. Respiratory variability of the tricuspid flow.

4. High risk of pulmonary hypertension

LV: 32/19 mm, wall thickness 8/14 mm, EF: 75%, E/A = 0,7, E/E' = 4,4, LA: 13,5 cm²;

aortic valve: tricuspid, gradient 3/2 mmHg, ascending aorta 22 mm;

mitral valve: gradient 4/2 mmHg;

RA: 26,4 cm², TAPSE: 15 mm, RVD1: 51 mm;

pulmonary valve: gradient 3/2 mmHg, widened pulmonary trunk, AcT: 80 ms, mild pulmonary regurgitation;

tricuspid valve: moderate tricuspid regurgitation, RVSP: 130, IVC: 19 mm, without respiratory response.

Fluid in the pericardial sac around the right ventricle 7-9 mm thick, no signs of a tamponade.

5. Infective endocarditis

LV: 77/44 mm, wall thickness 10/19 mm, EF: 72%, LA: 19 cm^2

aortic valve: bicuspid, gradient 38/25 mmHg, moderate aortic regurgitation, calcified cusps, additional mobile structures visible on the aortic cusps, ascending aorta 34 mm;

mitral valve: gradient 6/4 mmHg;

RA: 19 cm²

There is additional space in the area of the aortic valve communicating with the aortic lumen.

6. Severe aortic valve stenosis

LV: 50/36 mm, wall thickness 18/26 mm, EF: 55%, grade 3 diastolic dysfunction

(E/A = 1,5; E/E' = 20), LA: 32 cm²

aortic valve: bicuspid, gradient 67/38 mmHg, AVA: 0,72 cm², calcified cusps, ascending aorta

37 mm;

mitral valve: gradient 4/2 mmHg, mild/moderate mitral regurgitation;

RV: normal size, TAPSE: 27 mm, RA: 19,8 cm²

tricuspid valve: mild tricuspid regurgitation, RVSP: 22, IVC: 14 mm, with normal respiratory response.

7. Severe heart failure

LV: 73/65 mm, wall thickness 9/12 mm, EF: 25%, LA: 44 cm²;

aortic valve: tricuspid, gradient 10/5 mmHg, thickened cusps, ascending aorta 37 mm

mitral valve: gradient 2,7/1 mmHg, severe mitral regurgitation;

RA: 35 cm², TAPSE: 15 mm;

tricuspid valve: severe tricuspid regurgitation, RVSP: 67 mmHg, IVC: 26 mm, without respiratory response

septal hypokinesis, inferior wall akinesia.

8. Thrombus in left ventricle

LV: 59/42 mm, wall thickness 10/15 mm, EF: 47%, E/A = 0.5, E/E' = 4, LA: 22 cm², grade 1 diastolic dysfunction;

RA: 24 cm², TAPSE: 24 mm;

tricuspid valve: mild tricuspid regurgitation, RVSP: 23, IVC: 16 mm, with normal respiratory response.

Akinesis of apical segments, septal and anterior wall hypokinesia. In the apex, an additional well-saturated structure measured 22x13 mm with slide outlines.

Abbreviations:

AcT - pulmonary ejection acceleration time, AVA - aortic valve area, E/A - early to late diastolic transmitral flow velocity, E/E' - early diastolic mitral annular tissue velocity, EF - ejection fraction, IVC - inferior *vena cava*, LA - left atrium, LV - left ventricle, RA - right atrium, RVD1 - right ventricular *basal* diameter, RVSP - right ventricular systolic pressure, TAPSE - tricuspid annular plane systolic excursion.

Supplementary Methods 2

Sample size calculation

The sample size was predefined based on a study by Salerno A et al. (J Emerg Med. 2020;58:947-9521) who compared the knowledge of transesophageal echocardiography before and after a course combining interactive e-learning and hands-on simulation. The proportion of students who significantly improved knowledge to pass the a multiple-choice test improved

from 40% on the pre-course test to 80% on the post-course test. Accordingly, in our study we assumed that at least 80% of students in the post-course group and no more than 40% of students in the control group would be able to pass the final test. For an alfa level of 0.05 and beta level of 0.2, the minimal number of students in each group was calculated as 22. Therefore we decided to stop enrollment to our study when the number of students who completed the test and who met the inclusion criteria was 25 in each group.

Supplementary Discussion 1

Publication	Subjects	Study characteristics
Our study	50	Type of course: on-line, synchronous courses
		including: theory, discussion and active case
		presentations
		Participants: 5 th year medical students
		Course materials : basic knowledge about
		echocardiography and emergency cardiac condition
		Assessment method: on-line test to check the ability
		to make the wright diagnosis based on echo imaging
		and to interpret a description of echocardiographic
		description
Salerno A, et al. J	15-42	Type of course: e-learning and hands-on simulation
Emerg Med. 2020 ¹	depending	Participants: emergency physicians and medical
	on the part	intensive care unit fellows
	of the	Course materials: transesophageal echocardiography
	study	Assessment methods: a multiple-choice test of
		knowledge

Summary of previous publication about on-line teaching of echocardiography:

Kailin JA et al.	124	Type of course: online learning combined with lecture-
Pediatr Cardiol. 2021		based and hands-on teaching
2		Participants: cardiology and critical care fellows
		national and international participants recruited from an
		online echo education website
		Course materials : online learning modules and a 3-day
		training program with hands-on workshops and didactic
		lectures
		Assessment method: 80-question pre and post-test
		multiple choice exams
Mitchell JD et. al. J	33	Type of course : online modules and live teaching vs to
Cardiothorac Vasc		a live-teaching-only
Anesth. 2015 ³		Participants: anesthesia trainees
		Course materials: transesophageal echocardiography
		Assessment methods: 80-question pre and post-test
		multiple choice exams
Weber U. et al.	51	Type of course: tutorial about theoretical knowledge
Medicine 2019 ⁴		followed by 2 practical study sessions either by e-
		learning using an online simulator with the simulation
		mannequin or in the operating room
		Participants: anesthesia and intensive care residents
		Course materials: transesophageal echocardiography
		Assessment methods: practical and theoretical exam

Torabi AJ, et al.	127	Type of course: self-directing classes on e-Learning
Echocardiography.		software
2021 ⁵		Participants: 2 nd year medical students
		Course materials: echocardiography anatomy
		Assessment methods: post-course multichoice exam

Supplementary references

- Salerno A, Euerle BD, Witting MD. Transesophageal Echocardiography Training of Emergency Physicians Through an E-Learning System. J Emerg Med. 2020 Jun;58(6):947-952. doi: 10.1016/j.jemermed.2020.03.036. Epub 2020 Apr 30. PMID: 32362376.
- Kailin JA, Kyle WB, Altman CA, Wood AC, Schlingmann TS. Online Learning and Echocardiography Boot Camp: Innovative Learning Platforms Promoting Blended Learning and Competency in Pediatric Echocardiography. Pediatr Cardiol. 2021 Feb;42(2):389-396. doi: 10.1007/s00246-020-02494-w. Epub 2020 Nov 11. PMID: 33179179.
- Mitchell JD, Mahmood F, Wong V, Bose R, Nicolai DA, Wang A, Hess PE, Matyal R. Teaching concepts of transesophageal echocardiography via Web-based modules. J Cardiothorac Vasc Anesth. 2015 Apr;29(2):402-9. doi: 10.1053/j.jvca.2014.07.021. Epub 2014 Nov 14. PMID: 25440653.
- Weber U, Zapletal B, Base E, Hambrusch M, Ristl R, Mora B. Resident performance in basic perioperative transesophageal echocardiography: Comparing 3 teaching methods in a randomized controlled trial. Medicine (Baltimore). 2019 Sep;98(36):e17072. doi: 10.1097/MD.000000000017072. PMID: 31490407; PMCID: PMC6738965.

 Torabi AJ, Feigenbaum H, Bateman PV. Introducing echocardiography to medical students: A novel echocardiography E-Learning experience. Echocardiography. 2021 Apr;38(4):549-554. doi: 10.1111/echo.15013. Epub 2021 Mar 1. PMID: 33650107.