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INTRODUCTION
The incidence of breast cancer ranks first 
among all female malignant tumors [1]. 
Radiotherapy (RT) plays an important role 
in the management of breast cancer, re-
ducing the risk of local relapse and specific 
death. However, RT can increase the risk of 
cardiovascular morbidity and mortality due 
to incidental radiation of cardiac structures 
[2]. The reduction of left ventricular ejection 
fraction (LVEF) mainly leads to significant 
left ventricular dysfunction. It is noteworthy 
that myocardial function can change greatly 
without  any decline in LVEF [3].

Global longitudinal strain (GLS) assessed 
by speckle-tracking echocardiography (STE) 
is a new technique for detecting and quan-
tifying subtle disturbances in left ventricular 
systolic function [4]. In this meta-analysis, we 
aimed to investigate the role of GLS in evaluat-
ing radiotherapy-induced early cardiotoxicity 
in breast cancer. 

METHODS
The present study was conducted in accord-
ance with the Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis. Two 
researchers independently conducted a liter-
ature search through PubMed, EMBASE, Web 
of Science, Cochrane Library, WanFang, and 
CNKI databases in January 2010 and March 
2022, and the language was limited to Chinese 
or English. The search words mainly included 
“breast cancer”, “radiotherapy”, “cardiotoxicity”, 
echocardiography”, etc.

Inclusion and exclusion criteria
Our inclusion criteria were: (1) breast cancer 
patients who received adjuvant RT with or 
without adjuvant chemotherapy; (2) speck-
le-tracking echocardiography performed 
before radiotherapy and during follow-up 
and obtained the result of LVEF and GLS. The 
exclusion criteria were: (1) left and right breast 
cancer data were not recorded separately; (2) 
studies were duplicated or data overlapped; 
(3) letters, case reports, editorials, or reviews.

Data extraction 
Two investigators independently extracted 
the following data: study characteristics 
(authors, year of publication), participant 
characteristics (age, sample size of different 
groups, the proportion of patients undergoing 
chemotherapy and targeted therapy, radio-
therapy dose, use of cardioprotective agents).

Statistics analysis
Data were entered into RevMan 5.4 software 
to conduct the meta-analysis and heterogene-
ity analysis. Since the change in LVEF and GLS 
from baseline to post-RT was regarded as con-
tinuous data, the weighted mean difference 
(WMD) and 95% confidence intervals (95% CI) 
were used to draw a forest plot. A two-sided 
P-value <0.05 was considered statistically 
significant in the WMD analysis. Cochran’s Q 
test and I2 statistics were conducted to assess 
the heterogeneity of the effects. If P-values 
>0.1 or I2 statistics <50% were observed, it 
can be considered that there was no obvious 
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heterogeneity between studies, and a fixed effects model 
was used to pool data. If heterogeneity was detected, 
we conducted subgroup analysis to explore the source 
of heterogeneity.

RESULTS AND DISCUSSION
Finally, 9 articles [3, 5–12] were included in the meta-analy-
sis. The literature retrieval process is shown in Supplemen-
tary material, Figure S1, and the basic information of the 
included literature is shown in Supplementary material, 
Table S1. 

The average LVEF ranged between 60.9% to 73.3% 
before radiotherapy and 58.7% to 70.5% after radiotherapy. 
Merging analysis showed that LVEF after radiotherapy was 
lower than baseline (–0.98 WMD; 95% CI, –1.88 to –0.08; 
P = 0.03), and there was no heterogeneity among studies 
(I2 = 13%, P = 0.33, Supplementary material, Figure S2A). At 
6 months of follow-up, the results of LVEF did not change 
(–0.83 WMD; 95% CI –3.09 to 1.43; P = 0.47), with no heter-
ogeneity among studies (I 2= 0%, P = 0.84, Supplementary 
material, Figure S2B). As for the right breast cancer, LVEF 
after radiotherapy was not different (–0.17 WMD; 95% CI 

–2.07 to 1.72, P = 0.86), and there was no heterogeneity 
among studies (I2 = 0%, P = 0.54, Supplementary material, 
Figure S3).

After radiotherapy for left breast cancer, GLS decreased, 
with average GLS values in the range of –21.4% to –16.0% 
before radiotherapy and –18.7% to –17.2% after radio-
therapy (1.57 WMD; 95% CI, 1.08–2.07; P <0.001). There 
was no significant heterogeneity among studies (I2 = 14%; 
P = 0.32, Figure 1A). GLS was lower than baseline at 6 weeks, 
6 months, and 12 months after radiotherapy (1.84 WMD; 
95% CI, 1.13–2.55; P <0.001, Figure 1B), (1.04 WMD; 95% 
CI, 0.35–1.73; P <0.003, Figure 1C), (1.69 WMD; 95% CI, 
0.88–2.50; P <0.001, Figure 1D), with no heterogeneity 
among studies. After radiotherapy for right breast cancer, 
the result of GLS was 0.18 WMD; 95% CI, –0.55 to 0.91; 
P = 0.62, and there was no heterogeneity among studies 
(I2 = 0%, P = 0.58, Supplementary material, Figure S4).

This meta-analysis showed that LVEF of patients with 
left breast cancer decreased slightly after radiotherapy but 
remained within the normal range, while LVEF of patients 
with right breast cancer did not change significantly after 
radiotherapy. Erven et al. [3] found that baseline LVEF was 

Figure 1. A. GLS changes in left-breast cancer before and after radiotherapy. B. GLS changes in left-breast cancer at 6 weeks after radiothera-
py. C. GLS changes in left-breast cancer at 6 months after radiotherapy. D. GLS changes in left-breast cancer at 12 months after radiotherapy

Abbreviation: GLS, global longitudinal strain
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lower in patients receiving chemotherapy compared to 
the patients not receiving chemotherapy. However, LVEF 
reduction caused by radiotherapy was the same, so it did 
not affect the results of this meta-analysis.

The results also showed that GLS decreased significant-
ly at 6 and 12 months after radiotherapy. Heggemann et al. 
[12] demonstrated that GLS was still lower than baseline 
at 24 months after radiotherapy but better than 6 months 
after radiotherapy. Except for GLS, global myocardial 
deformation indices also include global radial (GRS) and 
circumferential strain (GCS). Stokke [13] showed that GLS 
was the first marker to be affected in many physiological 
and pathological processes, possibly because most of the 
longitudinal fibers were located in the subendocardium 
which was most vulnerable to damage. Perhaps it is not 
enough to focus on global change. Walker [4] focused 
on regional myocardial function and suggested that the 
longitudinal strain change may be more relevant in the 
endocardial layer, in particular, in the most exposed areas 
of the left ventricle, corresponding to the apical region and 
the left anterior descending artery (LAD) territory. In a study 
by Tuohinen et al. [7], patients with left-sided breast cancer 
experienced apical and global decline, whereas patients 
with right-sided breast cancer showed basal changes with 
no changes in GLS. In the future, we need to conduct more 
studies to confirm these observations. After all, early rec-
ognition of radiation-induced heart disease and early use 
of cardioprotective agents were critical to improving the 
quality of life of breast cancer survivors [14, 15].

Limitations of this meta-analysis include (1) the time 
of assessment during radiotherapy and follow-up was 
inconsistent, which may have some influence on the detec-
tion of myocardial changes; (2) differences in delineation 
method and dose limitation of cardiac targets in various 
centers also lead to differences in myocardial changes; 
(3) the research came from various centers, and different 
instruments were used for STE detection; (4) the follow-up 
time was inconsistent; (5) only two studies considered the 
impact of cardioprotective agents.

In conclusion, GLS is a good parameter to identify early 
radiation-induced heart disease in left-side breast cancer. 
As for right-side breast cancer, the segmental changes may 
be more important.

Supplementary material
Supplementary material is available at https://journals.
viamedica.pl/kardiologia_polska.
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