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A B S T R A C T
The association between vitamin D and the prevalence and severity of coronary artery disease 
(CAD), major established cardiovascular risk factors, and acute ischemic events has been consistently 
demonstrated in large-scale observational studies and meta-analyses, with relevant prognostic 
implications. The rise in prevalence of hypovitaminosis D in recent years, reaching pandemic pro-
portions, has pointed to the importance of the identification and optimization of the indications and 
strategies for the therapeutic use of vitamin D, with particular relevance for cardiovascular health. 
However, vitamin D supplementation has provided so far inconsistent results in primary prevention, 
with even fewer data reported in patients with established CAD. The present review aims to provide 
an updated overview of the available evidence and potential therapeutic applications of vitamin D 
in patients with CAD. 
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INTRODUCTION
Vitamin D is a secosteroid mainly involved 
in the homeostasis of calcium and bone 
tissue but also displaying a broad spectrum 
of systemic hormonal effects, including both 
the modulation of the expression of about 
3% of the human genome, and “acute”, non- 
-genomic-dependent effects, mediated by  
the regulation of intracellular calcium [1]. 

Several large-scale studies have previously 
demonstrated that vitamin D deficiency is 
associated with the development of ather-
osclerosis and its thrombotic complications, 
which increases the risk of cardiovascular 
events and mortality [2–5].

Inadequate levels of vitamin D deficiency 
or insufficiency, defined as <20 ng/ml, have 
reached dramatic prevalence in the last years, 
exceeding 50% in certain areas and subsets of 
population, and especially among elderly and 
more frail subjects, with chronic comorbidi-
ties, renal failure, diabetes, and inflammatory 
disease [6, 7]. This has attracted attention to 

the consequences of vitamin D deficiency in 
the pathogenesis of coronary artery disease 
(CAD) and potential benefits of vitamin D 
supplementation. 

However, there is still much uncertainty 
about the underlying pathophysiological 
mechanisms. The results of the studies con-
ducted so far to assess the cardioprotective 
benefits of vitamin D are still unclear and make 
it impossible to reach a general consensus, de-
velop consistent guidelines, and use vitamin D 
on a large scale as a pharmacological therapy.

The present review provides an update on 
the existing evidence and the current indica-
tions for the supplementation with vitamin 
D in patients with CAD, focusing on potential 
future perspectives. 

VITAMIN D DEFICIENCY: 
A PANDEMIC DISORDER

Severe vitamin D deficiency can cause rickets 
and osteomalacia, which are rarely observed 
in developed countries. However, less severe 
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deficiency is more frequent and associated with osteopo-
rosis and the risk of bone fractures [8]. Vitamin D deficiency 
is currently considered a global health problem [9, 10], 
especially in low- and middle-income countries, where it 
affects about 50% of adults and 90% of infants. In the USA, 
up to 37% of adults and up to 46% of dark-skinned infants 
suffer from this condition [9]. A recent analysis considering 
mostly Nordic and western European populations found 
significant variability between countries [10]. In fact, when 
restricted to the adult population, Nordic countries appear 
to have a lower incidence of vitamin D deficiency, most 
probably due to increased vitamin supplementation or 
food fortification compared to lower-latitude countries. 

VITAMIN D METABOLIC PATHWAY 
Cholecalciferol, the form of vitamin D named D3, is 

synthetized in the skin from 7-dehydrocholesterol upon 
irradiation with ultraviolet waves (ultraviolet B light [UV-B]) 
(Figure 1) [11]. 7-dehydrocholesterol is part of the meta-
bolic pathway that controls the synthesis of cholesterol in 
human cells. By absorbing ultraviolet radiation, 7-dehydro-
cholesterol turns into pre-vitamin D3, which, because of its 
molecular instability, subsequently converts to cholecalcif-
erol that is expelled in the extracellular space, binding to 
a carrier (vitamin D-binding protein). Although production 
of vitamin D3 in the skin is its primary source in humans, it 
can be derived from food, such as fish oil or mushrooms, 
in the form of ergocalciferol (Figure 2) [12]. Skin synthesis 
of vitamin D3 rises proportionally with the intensity of the 
UV radiation. It also reduces proportionally with sunblock 
usage or the quantity of melanin encountered in the skin, 
i.e., in higher-latitude-living populations, during months 
with reduced sun exposure, or in patients with darker skin 
[11, 13, 14]. However, cholecalciferol is not biologically 
active; thus, vitamin D is hydroxylated in the liver cells to 
form 25(OH)D followed by 1α-hydroxylation [11]. The active 
hormonal form is produced in this last step of 1α-hydrox-
ylation mainly in the kidneys and at other extrarenal sites, 
resulting in a compound named 1,25(OH)2D3 [15–17].

MECHANISMS OF ACTION AND ITS 
IMPLICATIONS IN THE PATHOPHYSIOLOGY 

OF ATHEROSCLEROSIS
The hormonal form of vitamin D, which is a lipid-soluble 
molecule, is transported in the blood bound to a serum 
protein named vitamin D-binding protein (DBP) [18]. At mo-
lecular level, vitamin D in the form of 1,25(OH)2D3 exerts its 
actions by binding to a membrane-bound and cytoplasmic 
receptor, the vitamin D receptor (VDR), which can be found 
in almost all human tissue, including the cardiovascular 
system [11, 19]. Binding of vitamin D to its VDR is critical 
for its action because 1.25 dihydroxy vitamin D, the active 
form, penetrates the cell membrane and binds to VDR [20]. 
This vitamin D-VDR complex acts with the retinoic acid 
receptor and forms important heterodimers that activate 
elements of vitamin D response elements by initiation of 
the cascade of molecular interactions regulating the sup-
pression and transcription of specific genes [21]. In total, 
VDR has a direct action on the expression of more than 
1000 genes [22], approximately 3% of the genome [12]. 
Ways in which vitamin D acts non-genomically have also 
been identified, such as through intracellular signaling mol-
ecules, generation of second messengers, and activation 
of specific protein kinases [23]. The change in the chemical 
structure of cholecalciferol leads to the emergence of new 
molecules, which, surprisingly, can bind to VDR. 

Vitamin D deficiency has been consistently associated 
with the prevalence and severity of CAD and acute ischemic 
events. 

Table 1. Derivates of vitamin D with clinical indications

Compound Clinical indication

Calcidiol 3,25(OH)D3 Renal osteodystrophy

Calcitriol 4,1,25(OH) Renal osteodystrophy

Calcipotriol 5, 22-ene-26, 27-dehy-
dro-1,25(OH)2D3

Psoriasis

Doxercalciferol 6, 1α(OH)D2 Secondary hyperparathyroidism

Alfacalcidol 7,1α(OH)D3 Osteoporosis

Tacalcitol 8, 1α, 24(OH)2D3 Psoriasis

Oxacalcitriol 10, 22-oxa-1, 
25(OH)2D3

Psoriasis

Falecalcitriol 11, 1,25(OH)2-26, 
27-F6-D3

Secondary hyperparathyroidism

Table 2. Vitamin D and atherosclerosis: mechanistic links 

Lipid profile •	 Reduces total cholesterol 
•	 Reduces LDL-C 
•	 Reduces triglycerides 
•	 Increases HDL-C

Endothelial 
adhesion and 
activation

•	 Reduces vascular cell adhesion molecule 1 
•	 Reduces E-selectin

Vascular tone 
and endothelial 
function

•	 Increases the level of nitric oxide
•	 Reduces the level of reactive oxygen species 

released

Inflammation and 
atherosclerosis

•	 Reduces proinflammatory type 1 cytokines: IL-12, 
IL-6, IL-8, IFN-gamma, TNF-alpha

•	 Increase anti-inflammatory type 2 cytokines: IL-4, 
IL-5, and IL-10

•	 Reduces oxidative stress through reducing 
cathepsin, IL-6 and adiponectin

Coagulation and 
platelet aggre-
gation

•	 Increases trombomodulin expression
•	 Reduces tissue factor expression
•	 Reduces PAI-1 expression
•	 Reduces thrombospondin expression
•	 Increases the level of nitric oxide
•	 Decreases ADP-induced aggregation

Arterial smooth 
muscle cells

•	 Decreases production of angiotensin II
•	 Decreases oxidative stress
•	 Inhibits cellular senescence
•	 Reduces tissue factor expression

Abbreviations: ADP, adenosine diphosphate; HDL-C, high density lipoprotein cho-
lesterol; IFN, interferon; IL, interleukin; LDL-C, low density lipoprotein cholesterol; 
PAI-1, plasminogen activator inhibitor-1; TNF, tumor necrosis factor
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In fact, vitamin D has been shown to promote endothe-
lial function and to counteract inflammation and oxidative 
stress, thus preventing the development of atherosclerosis 
and its thrombotic complications [24–27]. 

In the ARIC study, vitamin D levels were measured in 
11 945 participants, and an association with the incidence 
of coronary heart disease among white-skinned partici-
pants was reported [28]. 

In the LURIC Study, in a large cohort of subjects 
(n = 1801) referred for coronary angiography, 92% of 
individuals had suboptimal levels of vitamin D, which 
was associated with an increased all-cause mortality and 
cardiovascular mortality [29]. The Framingham Offspring 
Study found that individuals with 25(OH)D <37.5 nmol/l 
had a hazard ratio of 1.62 for the development of cardio-
vascular disease (CVD) compared to those with a level of 
≥37.5 nmol/l [30].

In a large cohort study enclosing over 1400 patients 
undergoing coronary angiography, Verdoia et al. showed 
that lower circulating 25(OH)D was independently related 
with the prevalence and extent of CAD, especially for pa-
tients with values <10 ng/ml [3]. 

Furthermore, calcitriol levels have been inversely asso-
ciated with coronary artery calcifications, thus serving as 
an early marker of coronary atherosclerosis [2].

In fact, vitamin D can directly improve the endothelial 
health and function, promoting the production of nitric 
oxide and reducing the exposure of proteins responsible 
for the adhesion of leukocytes and platelets.  This prevents 
the inflammatory response and thrombotic phenomena. 
In addition, the inhibition of the extravasation and activa-
tion of macrophages and the antioxidant properties can 
prevent lipid oxidation and the production of foam cells, 
which contribute to plaque progression and instability 
[1, 24]. Indeed, levels of 25(OH)D in healthy volunteers 
are independently associated with various measures of 
endothelial function, arterial stiffness, and coronary flow 
reserve. In a subgroup of participants with vitamin D de-
ficiency, normalization of 25(OH)D levels at 6 months was 
associated with a significant increase in reactive hyperemia 
indices, and in other studies, treatment with vitamin D 
improved arterial stiffness [2].

Moreover, vitamin D has been shown to lower tissue 
factor, downregulate the pro-thrombotic plasminogen acti-
vator inhibitor-1 and thrombospondin-1 mRNA expression, 
and upregulate thrombomodulin, thus accounting for its 
antithrombotic properties [31]. 

Additionally, the vitamin D receptor has been also 
identified in platelets, which suggests a direct regulatory 
effect. In effect, platelet activation is a calcium-dependent 
process, and calcitriol has been shown to display also 
a “rapid” non genomic action, mediated by the modulation 
of intracellular calcium. In fact, hypovitaminosis D has been 
previously linked to an enhanced platelet reactivity and 
a reduced effectiveness of antiplatelet drugs [25].

VITAMIN D AND CARDIOVASCULAR  
RISK FACTORS

Vitamin D has displayed a positive interaction with major 
cardiovascular risk factors and was related to the levels 
of blood pressure and a “healthier” metabolic profile [5, 
32, 33]. 

A Mendelian randomization study suggested a link 
between vitamin D deficiency and hypertension risk [34], 
which was further confirmed by experimental evidence 
in animal studies [35]. In effect, vitamin D promotes the 
production of nitric oxide, a potent vasodilator, and down-
regulates the activity of the renin-angiotensin system, thus 
lowering the blood pressure and positively interacting with 
anti-hypertensive drugs [36]. 

Moreover, vitamin D has been shown to lower the glyce-
mia levels in patients with diabetes and to protect against 
diabetes through the regulation of insulin synthesis and 
secretion or through direct action on pancreatic beta-cells 
function [37].

The levels of 25(OH)D have also been shown to condi-
tion the lipid asset, which is associated with lower levels of 
circulating cholesterol and a less atherogenic lipid profile 
and prevents the formation of foam cells with potentiating 
the effectiveness of statins [38–40], 

Furthermore, vitamin D deficiency could be even more 
frequent among subjects at increased cardiovascular risk, 
due to comorbidities, aging or renal failure, or unhealthy 
lifestyle. In fact, low 25(OH)D concentrations can be 
enhanced by obesity, air pollution, or limited outdoors 
activity, which are associated with worse cardiovascular 
outcomes [41]. 

VITAMIN D SUPPLEMENTATION IN CAD: 
CURRENT EVIDENCE

Although several studies have linked lower levels of 
vitamin  D with more severe cardiovascular disease and 
increased mortality [42–44], controversies still exist about 
using vitamin D supplementation in cardiovascular pre-
vention [45, 46].

The ViDA (Vitamin D Assessment) study in New Zealand, 
which randomized over 5 000 subjects, showed an increase 
in serum 25(OH)D concentrations with the supplementa-
tion, although it was ineffective in reducing the primary 
outcome of incident CVD and death [47].

In the recent VITAL trial [48], which randomized over 
25 000 healthy subjects to two groups with either n–3 fatty 
acid or vitamin D3 supplementation, no prognostic differ-
ence was observed at a 5-year follow-up. 

However, heterogeneity in these strategies, with inade-
quate dosing and duration of the treatment and the failure 
to achieve optimal levels of vitamin D, as summarized in 
Table 3, could have determined the negative findings of 
most of the trials. 

Moreover, increased benefits could be expected when 
focusing on higher-risk populations, such as patients with 
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Table 3. Vitamin D supplementation in primary and secondary prevention

Study name Patients 
(n)

Inclusion criteria Vitamin D dosing Follow-up 
duration

Study outcome and results

Secondary prevention

Sokol et al. [49] 90 CAD (angiographic) and vitamin 
D <30 ng/ml

ergocalciferol
(50 000 IU/week)

12 weeks No difference in blood pressure and 
all markers of endothelial function

Bahrami et al. [50] 80 CAD (angiographic) and vitamin 
D <30 ng/ml

Vitamin D 50 000 IU/
week

8 weeks Decreased systolic and diastolic blood 
pressure, waist circumference and fat 

percentage

Aslanabadi et al. [51] 99 Patients undergoing elective 
PCI

300 000 IU dose of 
cholecalciferol given 

before PCI

In-hospital Periprocedural myocardial injury: 
no difference

Wu et al. [29] 90 CAD (angiographic) Calcitriol (0.5 µg/day) 6 months CAD (SYNTAX score) and C-reactive 
protein significantly decreased

Shaseb et al. [52] 95 T2DM with ischemic heart 
disease

Single dose of chole-
calciferol

(300 000 IU, i.m.)

8 weeks Glycemic status: HbA1c was reduced 
by 0.48%

Witham et al. [53] 75 Patients with a prior history 
of MI

Two high-doses of 
orally administered 

cholecalciferol 
(100 000 IU)

6 months Vascular function (reactive hyperemia 
index, systolic BP, diastolic BP) and 

cholesterol levels: no difference. C-re-
active protein: reduced significantly

Farrokhian et al. [54] 60 T2DM patients with coronary 
artery disease.

50 000 IU
cholecalciferol every 

second week

6 months Significant attenuation in vascular 
inflammation and improved glycemic 

status

Schleithoff et al. [55] 123 Participants with heart failure Vitamin D3, 2000 IU/d Average 1.3 
years

Reduced the inflammatory milieu

Primary prevention

Aloia et al. [56] 27 Postmenopausal women Vitamin D3, 400 IU/d 2 years No difference in MACE

Ott et al. [57] 86 Postmenopausal women Vitamin D3, 1000 mg/d 2 years No difference in MACE

Komulainen et al. [58] 227 Women in early postmenopau-
se who were non-osteoporotic

Vitamin D3, 300 and 
100 IU/d

5 years No difference in MACE

STOP IT/Gallagher
et al. [59]

489 Women aged 65-77 years with 
femoral neck density in normal 

range (SD, ≤2) for their age

Calcitriol, 0.25 μg twice 
daily

3 years No difference in MACE

Trivedi et al. [60] 2686 Participants aged 65–85 years Vitamin D3, 100 000 
IU/4 months

5 years No difference in MACE

RECORD/Grant et al. [26] 5292 Participants aged ≥70 years 
who had had a low trauma, 
osteoporotic fracture in the 

previous 10 years

Vitamin D3, 800 IU daily Median (IQR), 
3.8 (3.1–4.3) 

years

No difference in MACE

Brazier et al. [61] 172 Ambulatory women aged >65 
years

Vitamin D3, 400 IU twice 
daily

1 years No difference in MACE

WHI/Jackson et al. [62] 36282 Women aged 50–79 years 
with no evidence of a medical 

condition

Vitamin D3, 400 IU/d 12 years No difference in MACE, improvement 
in hip bone density

Berggren et al. [63] 199 Participants aged ≥70 years 
who had femoral neck fractures

Vitamin D3, 800 IU/d 1 year No difference in MACE

Zhu et al. [64] 120 Women aged 70–80 years Vitamin D3, 1000 IU/d 5 years No difference in MACE

Prince et al. [65] 302 Women aged 70–90 years Vitamin D3, 1000 IU/d 1 year No difference in MACE, reduction 
in falls

Vital D/Sanders et al. [66] 2256 Women aged ≥70 years at high 
risk of fracture

Vitamin D3, 500 000 
IU/year

Median (IQR),
2.96 

(2.92–3.00)

Increased falls, no difference in MACE

Lehouck et al. [67] 182 Current of former smokers with 
COPD

Vitamin D, 100 000 IU/
month

1 year Reduced COPD exacerbations in 
vitamin D deficient patients

VITDISH/Witham et al. [68] 159 Participants aged ≥70 years 
with isolated systolic hyper-

tension

Vitamin D,
100 000 IU/month

1 year MACE, blood pressure, arterial stiff-
ness, endothelial function, cholesterol 

level, glucose level, and walking 
distance: no difference

OPERA/Wang et al. [69] 60 Stages 3–5 chronic kidney 
disease and left ventricle 

hypertrophy

Paricalcitol, 1 μg/d 1 year No impact of left ventricular mass, 
improved secondary hyperparathy-

roidism

Baron et al. [70] 2259 Participants aged 45–75 years 
who had ≥1 colorectal adenoma

Vitamin D3,
1000 IU\d

3 years Adverse events: no difference

EVITA/Zitterman et al. [71] 400 Participants aged 18–79 years 
who were classified as having 

New York Heart Association 
functional class ≥II

Vitamin D3, 4000 IU/d 3 years No difference in mortality

VIDA/Scragg et al. [47] 5110 Vitamin D insuficient patients Cholecalciferol (100 000 
IU/month)

Median 
follow-up
= 3.3 years

No beneficial effects of cholecalciferol
supplementation on CVD risk or 

mortality
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established cardiovascular disease. In the randomized 
controlled trial: the Randomised Evaluation of Calcium 
Or vitamin D (RECORD), treatment with cholecalciferol 
prevented cardiac failure among 5292 older people but 
did not appear to protect against myocardial infarction 
or stroke [78]. 

In addition, Le et al. [79] explored the effects of vitamin 
D on cardiac function in mice with post-myocardial infarc-
tion, showing a significant reduction in the fibrotic scar 
area and wall thinning in the animals receiving calcitriol 
supplementation, mediated by a reduction of fibrosis and 
enhanced myocytes differentiation. Thus, these data could 
further reinforce the incoming evidence of the potential 
benefits of using vitamin D in patients with left ventricular 
dysfunction and heart failure [80]. 

In a study in which calcitriol was administered over 
6 months (0.5 mg/day) in patients with stable CAD, im-
provements were noted in the SYNTAX score and cardio-
metabolic variables [81].

Moreover, Bonakdaran et al. [82] reported that calcitriol 
supplementation could improve metabolic parameters 
and the control of cardiovascular risk factors among 
119 patients with diabetes, suggesting that inadequate 
activation of vitamin D to its active metabolite, calcitriol, 
could represent a cause of the failure of major trials. 

In fact, Saghir Afifeh et al. [83] previously reported 
a prevalence of calcitriol deficiency of about 10% in 

the patients with CAD, even despite adequate levels of 
vitamin D.

FUTURE PERSPECTIVES 
Thus, future trials specific for subsets of higher-risk pa-
tients are certainly warranted to define whether a more 
tailored approach with vitamin D supplementation could 
be beneficial. Nevertheless, considering the positive ef-
fects on reducing overall mortality, cancer and functional 
status, consistently demonstrated in different trials and 
meta-analyses, and the safety, tolerability and low cost 
of vitamin D supplementation, such a strategy should 
certainly be considered, in particular in subjects at higher 
risk of deficiency [46, 84].

Such strategy should certainly be further reinforced in 
the context of the ongoing COVID-19 pandemic. In fact, 
the role of vitamin D in the modulation of the immune sys-
tem and inflammation, and the prevention of thrombotic 
events, has been suggested. Vitamin D was reported to 
lower the rate of complications and improve the outcomes 
for infected patients [85]. Moreover, in addition to empow-
ering the immune defense, vitamin D could prevent of 
contagion, by lowering the expression of the ACE-2 enzyme 
[86], thus leading the scientific societies to recommend the 
maintenance of adequate levels of vitamin D, and especially 
among subjects with increased risk for complications, as in 
patients with CAD [87, 88]. 

Study name Patients 
(n)

Inclusion criteria Vitamin D dosing Follow-up 
duration

Study outcome and results

J-DAVID/Shoji et al. [72] 954 Patients on hemodialysis Alfacalcidol, 0.5 μg/d Median (IQR), 
Vitamin D: 

4.0 (2.6–4.0)a; 
Placebo: 4.0 

(3.5–4.0)

no difference in selected  
cardiovascular events

VITAL/Manson et al. [25] 754 All women Calcium (1000 mg/day) 
+ cholecalciferol  

(400 IU/day)

Average of 
seven years

No significant changes in CAC score

Gulseth et al. [73] 62 Subjects with T2DM Single dose of 400,000 
IU oral vitamin D3

4 weeks No change in insulin sensitivity or 
insulin secretion

Jorde et al. [74] 438 Overweight or obese subjects Vitamin D (3) 40 000 IU 
per week (DD group), 

vitamin D 20 000 IU per 
week (DP group)

12 months Glucose tolerance, blood pressure or 
serum lipids: no change

BEST-D trial /Clarke et 
al. [75]

305 Elderly cholecalciferol (4000 IU 
or 2000 IU)

12 months No significant changes in CVD risk 
factors

Seibert et al. [76] 106 Healthy subjects cholecalciferol (2000 
IU/day)

12 weeks No difference in mortality, major 
cardiovascular events and invasive 

cancer

Forouhi et al. [77] 340 Patients with high risk of diabe-
tes type 2

Ergocalciferol (100,000 
IU/month) or chole-

calciferol (100 000 IU/
month)

4 months Improvements in pulse wave velocity, 
no difference in other cardiometa-

bolic parameters

Abbreviations: CVD, cardiovascular disease; IQR, interquartile range; IU, international units; MACE, major adverse cardiovascular events; PCI, percutaneous coronary interven-
tion; S, supplementary; T2DM, type 2 diabetes mellitus

Endothelial	adhesion	and	activation	#	reduces	vascular	cell	adhesion	molecule	1	(VCAM-1)	#	reduces	E-selectin	Vascular	tone	and	endothelial	function	•	increases	the	level	of	
nitric	oxide	•	reduces	the	level	of	reactive	oxygen	species	released	Inflammation	and	atherosclerosis	#	reduces	proinflammatory	type	1	cytokines:	IL-12,	IL-6,	IL-8,	IFN-gamma,	
TNF-alpha # increase anti-inflammatory type 2 cytokines: IL-4, IL-5, and IL-10 # reduces oxidative stress through reducing cathepsin, IL-6 and adiponectin Arterial smooth 
muscle	cells	•	decreases	production	of	angiotensin	II	•	decreases	oxidative	stress	•	inhibits	cellular	senescence	•	reduces	tissue	factor	expression

Table 3 (cont.). Vitamin D supplementation in primary and secondary prevention
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Moreover, the exact definition of the optimal vitamin 
D levels to reduce the cardiovascular risk and the appro-
priate dosing of pharmacological therapy, still need to be 
settled by experts’ agreement. Possibly, the achievement 
of levels higher than expected is required to observe the 
cardioprotective effects of vitamin D, especially in those 
severely deficient subjects [89]. 

Finally, a tailored approach to vitamin D supplemen-
tation, accounting for the differential mechanisms of de-
ficiency and comorbidities conditioning its effectiveness 
[90], certainly represents a promising option, which should 
be further assessed in future randomized trials. 
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