Frequency and predictors of diagnostic coronary angiography and percutaneous coronary intervention related to stroke

Authors: Bartłomiej Staszczak, Krzysztof P Malinowski, Wojciech Wańha, Zbigniew Siudak, Magdalena Jędrychowska, Michał Susuł, Sławomir Surowiec, Szymon Darocha, Andrzej Surdacki, Marcin Kurzyna, Wojciech Wojakowski, Jacek Legutko, Krzysztof Bartuś, Stanisław Bartuś, Rafał Januszek

Article type: Original article
Received: June 6, 2021
Accepted: August 31, 2021
Published online: August 31, 2021

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
Frequency and predictors of diagnostic coronary angiography and percutaneous coronary intervention related to stroke

Bartłomiej Staszczak¹, Krzysztof P Malinowski², Wojciech Wańha³, Zbigniew Siudak⁴, Magdalena Jędrychowska¹, Michał Susuł¹, Sławomir Surowiec¹, Szymon Darocha⁵, Andrzej Surdacki¹,², Marcin Kurzyna⁶, Wojciech Wojakowski³, Jacek Legutko⁶, Krzysztof Bartuš⁷, Stanisław Bartuš¹,², Rafał Januszek¹,⁸

¹Department of Cardiology and Cardiovascular Interventions, University Hospital, Kraków, Poland
²Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
³Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
⁴Collegium Medicum, Jan Kochanowski University, Kielce, Poland
⁵Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Center of Postgraduate Medical Education, European Health Center, Otwock, Poland
⁶Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
⁷Department of Cardiovascular Surgery and Transplantology, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
⁸Department of Clinical Rehabilitation, University of Physical Education, Kraków, Poland

Short title: Stroke related to coronary angiography and PCI

Conflict of interest: None declared.

Correspondence to:
Rafał Januszek, MD, PhD,
Department of Cardiology and Cardiovascular Interventions,
University Hospital in Kraków,
Jakubowskiego 2, 30–688 Kraków, Poland;
phone: +48 12 400 22 50;
e-mail: jaanraf@interia.pl
WHAT'S NEW?
Both diagnostic coronary angiography (DCA) and percutaneous coronary interventions (PCIs) are the gold standard for the diagnosis and treatment of coronary artery disease. The study aim was to assess the relationship between the type of coronary procedure and incidence of stroke as well as its predictors. This analysis included 1 177 161 coronary procedures. We found that the incidence of periprocedural stroke did not change in patients undergoing DCA, while it decreased in patients treated with PCI ± DCA. Among the non-modifiable (prior stroke, age, more advanced and disseminated coronary atherosclerosis, femoral access and contrast amount) of stroke in patients undergoing DCA, we also distinguished intravascular ultrasound, optical coherence tomography, unfractionated heparin use during DCA and direct transport to the catheterization laboratory. Predictors of periprocedural stroke in patients treated with PCI ± DCA included, among others those well-recognized such as thrombolysis and prior stroke, treatment with bivalirudin and ASA loading during PCI.

ABSTRACT
Background: Stroke related to percutaneous coronary interventions (PCIs) is an infrequent complication, potentially life-threatening and often leading to serious disability.
Aims: The study aim is to assess the relationship between the type of coronary procedure and incidence of stroke as well as its predictors.
Methods: This retrospective analysis was performed on prospectively collected data gathered in the Polish National Registry of Percutaneous Coronary Interventions (ORPKI) between January 2014 and December 2019, and included 1 177 161 coronary procedures. Among them, 650,674 patients underwent isolated diagnostic coronary angiography (DCA) and 526,487 PCI. Stroke was diagnosed in 157 patients (0.013%), of which 100 (0.015%) during DCA and 57 (0.011%) during PCI. Multivariable logistic regression analysis was performed to separate predictors of stroke in patients undergoing coronary angiography and PCI.
Results: The percentage of patients with periprocedural stroke was higher in a group treated with isolated DCA during the analysed time. Among predictors of stroke in patients undergoing DCA we confirmed prior stroke ($P <0.001$), contrast amount ($P = 0.007$), femoral access ($P = 0.002$), unfractionated heparin use ($P = 0.01$), direct transport ($P = 0.04$), older age ($P <0.001$) and multi-vessel disease ($P <0.001$). While for PCI ± DCA, these were: prior stroke ($P <0.001$), thrombolysis ($P = 0.003$), treatment with bivalirudin ($P <0.001$) and acetyl-salicylic acid loading during PCI ($P = 0.003$).
Conclusions: Based on the large national registry, PCI ± DCA is associated with fewer risk factors and lower rate of periprocedural strokes than isolated DCA.

Key words: coronary angiography, percutaneous coronary intervention, periprocedural complication, stroke

INTRODUCTION
Both diagnostic coronary angiography (DCA) and percutaneous coronary interventions (PCIs) are the gold standard and daily performed procedures in modern cardiology for the diagnosis and treatment of coronary artery disease. Clinical and epidemiological data have shown that one of the most severe and life-threatening complication related to high mortality is periprocedural stroke, however, modern diagnostic and therapeutic strategies make it possible to significantly reduce the adverse effects of cardiac catheterisation related cerebrovascular events [1–3]. Stroke is considered the second leading cardiovascular cause of death worldwide and is a major cause of disability, as ischemic heart disease is known to be the most common. It affects patients undergoing isolated DCA as well as PCI. The previously available registries indicate the periprocedural stroke occurs in 0.05%–0.1% of DCA and in 0.18%–0.44% of PCIs [4]. However, formerly provided data may be limited [5]. The last years have shown a significant upward trend in number of elder patients with a higher number of risk factors treated with cardiovascular procedures [6]. Other factors worth-mentioning that may have impact on the frequency of periprocedural stroke are vascular access, clinical presentation, type of catheter, progress of arteriosclerosis, type of procedure (thrombectomy, rotational atherectomy, etc.) [7–9]. Despite all the improvements in reperfusion strategies, such as using radial access, smaller catheters and pharmacotherapy, achieved in the last few years, the incidence of periprocedural stroke remains the same or even slightly increases [10].

In the present study, we aimed to assess the frequency of periprocedural stroke in patients undergoing DCA and PCI ± DCA to determine their predictors in comparison with other available registries.

METHODS
Study design and patient population
This retrospective analysis was performed on prospectively collected data. Data for conducting the current study were obtained from the Polish National Registry of Percutaneous Coronary Interventions (ORPKI) [11]. Data were collected between January 2014 and December 2019.
We selected 1 177 161 patients qualified for diagnostic coronary angiography (DCA) alone or followed by PCI during the analysed period. Among them, 650 674 patients underwent DCA alone, and 526 487 DCA followed by PCI or PCI alone. There were 100 periprocedural strokes in the DCA group (0.015%) and 57 periprocedural strokes in the DCA ± PCI group (0.011%) (Figure 1). Technical aspects of the procedure such as the choice of access site (femoral or radial sheath), catheter size as well as guidewires, type of thrombectomies and other devices, were at the operator’s discretion. Patients were qualified for percutaneous revascularisation and treated according to current European Guidelines [12]. Antiplatelet therapy was implemented according to current European Guidelines [13]. Periprocedural stroke was diagnosed according to the current recommendations [14]. The protocol complied with the 1964 Declaration of Helsinki, and all participants provided their written informed consent for the percutaneous intervention. Due to the retrospective nature as well as anonymisation of the collected data and registry, obtaining consent of the Bioethics Committee was not required.

Endpoints
The primary endpoint of the current study was to assess the frequency of periprocedural strokes in patients undergoing percutaneous coronary diagnostics and/or intervention, and its possible fluctuation through the 6-year-long period. The secondary endpoint was to assess the predictors of periprocedural stroke in the group of patients undergoing DCA and PCI ± DCA.

Statistical analysis
Categorical variables are presented as numbers and percentages. Continuous variables are expressed as mean (SD). Normality was assessed via the Shapiro-Wilk test. Equality of variance was evaluated using Levene’s test. Differences between the two groups were compared using the Student’s or Welch’s t-test, depending on the equality of variances for normally distributed variables. The Mann-Whitney U test was applied for non-normally distributed continuous variables. Categorical variables were compared with Pearson’s chi-squared or Fisher’s exact test if 20% of the cells had an expected count of less than 5 (Monte Carlo simulation for Fisher’s test using tables of higher dimensions than 2 × 2). All baseline/demographic characteristics were used as potential predictors of stroke in univariable logistic regression models. Than variables with \(P \)-value <0.2 or variables of clinical importance were included into multivariable model. Final multivariable logistic regression models were constructed using minimisation of Akaike Information Criterion to find predictors of stroke in the DCA and PCI ± DCA group.
Statistical analysis was performed using the R, version 3.5.3 (R Foundation for Statistical Computing 2019, Vienna, Austria) with the ‘lme4’, version 1.1-21 package.

RESULTS
Frequency and trends of periprocedural stroke
The frequency of periprocedural stroke assessed in the groups of patients is presented in Figure 1. While trends in the frequency of periprocedural-related stroke did not change significantly in the DCA alone ($P = 0.35$), it has decreased significantly in the PCI ± DCA group ($P = 0.001$). This is presented in the Table 1.

General characteristics
Patients from the DCA group and with periprocedural stroke were significantly older when compared to the non-stroke sub-group (72.6 [8.7] vs 66.3 [10.7] years, $P < 0.001$). There were no significant differences in age between stroke and non-stroke patients from the DCA and PCI ± DCA groups (69.5 [13.1] vs 67.1 [10.9] years, $P = 0.1$). Considering gender differences, there were significantly more females in the stroke sub-group compared to non-stroke patients from the DCA and PCI groups (67.5% vs 52%, $P = 0.02$). This and other indices are presented in the Supplementary material, Table S1.

Clinical presentation
There were no significant differences between the sub-group of stroke and non-stroke patients in the isolated DCA and PCI ± DCA groups of patients in clinical state before percutaneous intervention assessed by Killip-Kimball class grade (Supplementary material, Table S1). When considering clinical presentation of coronary artery disease in the DCA group, significantly more patients in the stroke subgroup presented with acute myocardial infarction at baseline (AMI, non-ST segment elevation myocardial infarction [NSTEMI] and ST segment elevation myocardial infarction [STEMI]), while less with chronic coronary syndrome when compared to the non-stroke subgroup (Supplementary material, Table S1).

Procedural indices
Statistically significantly more patients with periprocedural stroke were treated from femoral access when compared to radial (left and right radial) in the DCA alone and PCI ± DCA group (Supplementary material, Table S2). Patients from the DCA alone and with periprocedural stroke presented significantly more with significant coronary atherosclerosis compared to non-
stroke patients (Supplementary material, Table S2). There were no such significant differences in the group of patients undergoing PCI ± DCA (Supplementary material, Table S2).

Periprocedural pharmacotherapy
Acetyl-salicylic acid (ASA), unfractionated heparin and P2Y\textsubscript{12} inhibitors were significantly more frequently used in patients with periprocedural stroke when compared to patients without stroke in DCA alone, while this significance was maintained only for ASA in the PCI ± DCA group (Supplementary material, Table S1). This and other pharmacotherapy treatments are presented in the Supplementary material, Table S1.

Periprocedural complications and others
Considering periprocedural occurrence of cardiac arrests, there were no significant differences between patients with or without periprocedural stroke in the DCA alone and PCI ± DCA groups (Supplementary material, Table S1). However, direct transport was present significantly more often in patients with periprocedural stroke when compared to the non-stroke group in DCA alone and PCI ± DCA groups (Supplementary material, Table S1).

Predictors of stroke in patients undergoing DCA alone assessed by multivariable logistic regression analysis
Among the independent predictors of periprocedural stroke occurrence in patients undergoing DCA, via multivariable logistic regression analysis, we confirmed prior stroke ($P < 0.001$), intravascular ultrasound during angiography ($P = 0.03$), optical coherence tomography performed during angiography ($P = 0.03$), greater contrast dose used during angiography ($P = 0.007$), femoral compared to radial access ($P = 0.002$), unfractionated heparin used during angiography ($P = 0.01$), direct transport to the catheterisation laboratory ($P = 0.04$), older age ($P < 0.001$), left main coronary artery disease when compared to single-vessel disease ($P < 0.001$) and presence of multi-vessel disease in coronary angiography when compared to single-vessel disease ($P < 0.001$) (Figure 2).

Predictors of stroke in patients undergoing PCI ± DCA assessed by multivariable logistic regression analysis
When considering PCI ± DCA among the predictors of periprocedural stroke, by multivariable logistic regression analysis, we confirmed prior stroke ($P < 0.001$), thrombolysis ($P = 0.003$),
treatment with bivalirudin ($P < 0.001$) and acetyl-salicylic acid loading during PCI ($P = 0.003$) (Figure 3).

Discussion

In summary, first of all, we confirmed that in the analyzed registry between the years 2014 and 2019, the incidence of periprocedural stroke did not change in patients undergoing DCA, while it decreased significantly in patients treated with PCI ± DCA. Secondly, among the non-modifiable and confirmed predictors (prior stroke, age, more advanced and disseminated coronary atherosclerosis with the left main coronary artery atresia (LMCA) involvement, femoral access and contrast amount) of periprocedural stroke in patients undergoing DCA, we also distinguished intravascular ultrasound (IVUS) and optical coherence tomography (OCT) use during DCA, as well unfractionated heparin use during DCA and direct transport to the catheterization laboratory. Thirdly, we also identified predictors of periprocedural stroke in patients treated with PCI ± DCA which included, among others those well-recognized such as thrombolysis and prior stroke, treatment with bivalirudin and ASA loading during PCI.

The frequency of reported periprocedural stroke in patients undergoing DCA and PCI depends on several factors, which include, inter alia, the type of study (registry or prospective clinical trial), duration of observed periprocedural period (periprocedural, in-hospital or even post-discharge period) and the manner of stroke confirmation (computed tomography, cardiac magnetic resonance [CMR] or clinical symptoms). It may be concluded that in some circumstances, the incidence of periprocedural stroke is lower in patients observed only for a short-term period at the catheterization laboratory or when there was no diagnosis in the direction of silent stroke (CMR). Therefore, in previously published studies, the rate of cerebrovascular disease complications after DCA and PCI was reported to be 0.1%–1% for DCA and 0.1%–0.6% for PCI, which remains in line with our results [15]. The frequency of strokes related to DCA and PCI were usually lower in papers based on registries [16]. Nonetheless, the frequency of asymptomatic procedure-related stokes could reach even more than 10% [17]. In the majority of recently published studies, a stable frequency has been reported of periprocedural strokes related to DCA and PCI, however, in some studies it was noted that there is an increasing trend in the overall group of patients treated with PCI [5]. The authors concluded that this is owed to the increasing complexity (radial access, chronic total occlusions, use of mechanical circulatory support devices or multivessel disease with higher atherosclerotic plaque burden) of patients undergoing PCI over time [5].
Identifying predictors of stroke related to DCA and PCI could be helpful in developing effective prevention strategies, especially against modifiable predictors. Older age, female gender, vascular disease, renal failure, prior stroke or transient ischemic attack, heart failure, use of mechanical circulatory devices or vein graft interventions were reported among predictors of stroke [16]. In the current study, we divided predictors of stroke into two groups: those related to DCA and those related to PCI ± DCA.

Predictors of stroke related to DCA
Prior stroke is a common, usually strong and sanctioned finding as a predictor of stroke related to DCA and PCI ± DCA [15]. Intravascular ultrasound is often used in patients treated due to advanced atherosclerosis, not infrequently located in the aorto-ostial area, which could, in some cases, predispose to embolization by small debris released during PCI. Additionally, IVUS is advised for the assessment of possible embolic etiology of AMI in patients with non-obstructive coronary arteries. These maneuvers within the IVUS probe could, in some circumstances, be related to thrombus dislodgement and further cerebrovascular embolization [18]. In recently published studies, it has been reported that the currently used non-occlusive technique of optical coherence tomography improves its feasibility and reduction in complication risk [19]. The complication risk based on smaller studies varies between 0%–2%, but on large-scale registry by van der Sijde et al., it was demonstrated that complications occur there rarely (<0.2%) [19]. However, major complications during OCT occur, including coronary spasm, vessel dissection, thrombus and ventricular fibrillation, and some of them may lead to cerebrovascular adverse events [20]. Greater contrast amount used during DCA and PCI ± DCA is usually related to more complicated procedures, more advanced and disseminated atherosclerosis, more severe state, lower left ventricle ejection fraction or use of left ventricle support mechanical devices, which are strictly related to the increased probability of thrombus formation and risk of procedure-related stroke [7].

Shoji et al. demonstrated that consecutive patients undergoing PCI from transradial access were at a reduced risk of periprocedural stroke compared to transfemoral intervention [21]. Jurga et al. revealed that radial access used for DCA generates more particulate cerebral microemboli than femoral access and thus, may influence the occurrence of silent cerebral trauma [22]. They also suggested that manipulation in the subclavian artery may cause silent cerebral microemboli; otherwise, clinically relevant cerebral infarction may originate from large plaques, mainly located in the aortic arch [22]. Katibzadeh et al. demonstrated that localization
atherosclerotic plaques prone to dislodgement in the thoracic aorta (descending and arch) predispose to ischemic stroke in patients treated from femoral access [23]. Using heparin during angiography may lead to heparin induced thrombocytopenia syndrome (HITS) in a short period of time, especially among patients in serious condition with prevalence of additional risk factors. HITS is an uncommon immunologic disorder mediated by antibodies to the heparin-platelet factor 4 complex [24]. It can cause new or worsening of previously present blood clots, which can even result in periprocedural stroke. The occurrence of immune thrombocytopenia may be treated as an independent risk factor of ischaemic stroke [25]. Considering direct transport, patients treated in emergency mode are associated to greater rate of periprocedural related strokes. It has been reported that periprocedural stroke occurs more often in patients treated with PCI due to AMI (0.8%–1.4%) than those due to unstable angina (0.4%–10.8%) [9,26]. This was also confirmed in the study published by Budaj et. al., in which the frequency of stroke was 1.3% in STEMI, 0.9% in NSTEMI and 0.5% in unstable angina patients [27]. In another study published by Werner et al., it was confirmed that hemodynamic instability, which is strictly related to direct transport, was among predictors of stroke related to PCI [15].

It has been found that not only older age, type of plaque and its location in the aorta (ascending, descending and arch) are related to a greater amount of debris which can be scrapped from the artery wall, but it has also been confirmed that catheter type plays important role, and that among those more prone to scrap debris from the internal wall of the aorta, Keelley et al. found Judkins left, multipurpose and voda left [28]. Tokushige et al. demonstrated that asymptomatic strokes detected by CMR within 48 hours after DCA could even reach up to 20% in older patients following coronary artery by-pass grafting (CABG) [8]. In most publications, older age was present among the predictors of stroke related to PCI, however, in our study, this was confirmed only for isolated DCA [15]. In several previously published studies, a relationship between PCI in patients with triple vessel disease and procedure-related stroke has been verified [4].

Predictors of stroke related to PCI ± DCA

In various publications, prior stroke, among others (female gender, atrial fibrillation, heart failure, diabetes mellitus, chronic renal failure atherosclerotic cardiovascular disease, left ventricular thrombus, hypercoagulable state and CABG during admission), was confirmed as a predictor of periprocedural stroke in patients treated with PCI due to AMI [10].
Most of the strokes related to DCA and PCI are supposed to be of embolic etiology, from either dislodgement of a clot or atheromatous debris from off the aortic arch or from thrombus formation on the guide catheter [29]. However, in the case of thrombolysis, it seems that a great matter is due to partial fragmentation of coronary artery thrombus and its dislodgement to the aorta during any manipulation in the ostium of the target coronary artery.

The use of eptifibatide and bivalirudin was found to be non-protective in patients undergoing cardiac catheterization in terms of the frequency of periprocedural stroke [4]. The authors explained these results by dominance of the non-thrombotic mechanism of embolus etiology [4]. Our analysis even allowed to demonstrate that bivalirudin was significantly connected with the greater rate of intraprocedural strokes. Nowadays, bivalirudin is used in patients with AMI, and this could be a factor dominating this relationship.

Acute antiplatelet (ASA and P2Y₁₂ receptor inhibitors) therapy was found to be an independent predictor of ischemic stroke related to PCI due to AMI, which was also confirmed in our analysis [30]. Hachet et al. demonstrated that relationship for patients with AMI treated via PCI whereas a relationship was found in our patients undergoing DCA, however, among those patients, we also had patients with non-obstructive AMI. It could be also suspected that preprocedural treatment with ASA could decrease a potential risk of procedure-related stroke in patients undergoing percutaneous coronary catheterization.

In previously published studies, it has been reported that prior CABG was found to be independently related to periprocedural stroke in patients undergoing DCA. However, in our study, this factor was not confirmed by multivariable logistic regression analysis [8]. In another study published by Kawamura et al., it was demonstrated by multivariable logistic regression analysis that left ventricle ejection fraction was the only independent predictor for stroke in patients treated with PCI due to acute myocardial infarction [31]. We were not able to estimate this relationship because our dataset did not include this parameter.

Limitations

Periprocedural complications, including stroke, depend on self-initiated reporting by the operator, under-reporting cannot be excluded. The diagnosis of stroke was predominantly clinical, made by the treating interventional cardiologist. We do not have information on the type of catheters and their diameter. Furthermore, we do not have information regarding left ventricle ejection fraction, the frequency of atrial fibrillation and specific information about potential complications. The ORPKI registry does not allow to count all procedure-related strokes which occur during hospitalization, after leaving the catheterisation laboratory, and also,
outcomes of patients beyond hospital discharge are not available. All the data gathered in the ORPKI registry refer to the stay in the catheterization laboratory. The typical feature of a large national registry is dataset completeness, which undoubtedly, could cause certain bias in statistical calculation, apart from a wide range of statistical possibilities to decrease this influence.

Conclusions

Based on a large national registry, the incidence of periprocedural stroke did not change in patients undergoing DCA, while this decreased significantly in patients treated with DCA and/or PCI. Among the non-modifiable and confirmed predictors (prior stroke, age, more advanced and disseminated coronary atherosclerosis with the LMCA involvement femoral access and contrast amount) of periprocedural stroke in patients undergoing DCA, we also distinguished IVUS and OCT use during DCA as well unfractionated heparin use during DCA and direct transport to the catheterization laboratory. There were less predictors of periprocedural stroke in patients treated with DCA and/or PCI which included, among others those well-recognized, such as thrombolysis and prior stroke, treatment with bivalirudin and ASA loading during PCI.

REFERENCES

Table 1. Baseline patient characteristics and clinical presentation according to type of performed coronary procedure

<table>
<thead>
<tr>
<th>Years</th>
<th>Isolated diagnostic coronary angiography</th>
<th>PCI ± coronary angiography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke n = 100</td>
<td>Non-stroke n = 650,574</td>
<td>Total n = 650 674</td>
</tr>
<tr>
<td>Year</td>
<td>Isolated DCA</td>
<td>DCA + PCI</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>N = 650,674</td>
<td>N = 526,487</td>
</tr>
<tr>
<td></td>
<td>Stroke</td>
<td>Stroke</td>
</tr>
<tr>
<td></td>
<td>Non-stroke</td>
<td>Non-stroke</td>
</tr>
<tr>
<td></td>
<td>N = 100 (0.015%)</td>
<td>N = 57 (0.011%)</td>
</tr>
<tr>
<td></td>
<td>N = 650,574 (99.985%)</td>
<td>N = 526,430 (99.989%)</td>
</tr>
</tbody>
</table>

Overall group of patients qualified for diagnostic coronary angiography (DCA) and/or percutaneous coronary intervention (PCI)

N = 1,177,161

PCI, percutaneous coronary intervention

Figure 1. Patient flow chart
Figure 2. Predictors of periprocedural stroke in patients undergoing diagnostic coronary angiography assessed by multivariable logistic regression analysis

Abbreviations: CVD, cardiovascular disease; IVUS, intravascular ultrasound; LMCA, left main coronary artery atresia; MVD, multivessel coronary disease; OCT, optical coherence tomography; SVD, single vessel disease

<table>
<thead>
<tr>
<th>Predictor</th>
<th>OR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior stroke</td>
<td>4.11</td>
<td>2.21-7.65</td>
<td><0.001</td>
</tr>
<tr>
<td>IVUS during angiography</td>
<td>3.8</td>
<td>1.12-12.85</td>
<td>0.03</td>
</tr>
<tr>
<td>OCT during angiography</td>
<td>9.47</td>
<td>1.19-75.33</td>
<td>0.03</td>
</tr>
<tr>
<td>Contrast amount (per 1000 mL)</td>
<td>1.2</td>
<td>1.05-1.38</td>
<td>0.007</td>
</tr>
<tr>
<td>Access site (femoral vs. radial)</td>
<td>2.07</td>
<td>1.28-3.33</td>
<td>0.002</td>
</tr>
<tr>
<td>Unfractionated heparin (UFH) during angiography</td>
<td>2.44</td>
<td>1.22-4.86</td>
<td>0.01</td>
</tr>
<tr>
<td>Direct transport</td>
<td>3.07</td>
<td>1.64-9.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Age (per 10 years)</td>
<td>1.96</td>
<td>1.44-2.66</td>
<td><0.001</td>
</tr>
<tr>
<td>Angiography (LMCA disease vs. SVD)</td>
<td>3.04</td>
<td>1.69-5.48</td>
<td><0.001</td>
</tr>
<tr>
<td>Angiography (MVD vs. SVD)</td>
<td>2.83</td>
<td>1.7-4.71</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Figure 3. Predictors of periprocedural stroke in patients undergoing percutaneous coronary intervention ± coronary angiography assessed by multivariable logistic regression analysis

<table>
<thead>
<tr>
<th>Predictor</th>
<th>OR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior stroke</td>
<td>5.39</td>
<td>2.46-11.81</td>
<td><0.001</td>
</tr>
<tr>
<td>Thrombolysis</td>
<td>32.14</td>
<td>3.3-312.97</td>
<td>0.003</td>
</tr>
<tr>
<td>Treatment with bivalirudin</td>
<td>89.63</td>
<td>9.24-868.94</td>
<td><0.001</td>
</tr>
<tr>
<td>ASA loading during PCI</td>
<td>2.52</td>
<td>1.36-4.67</td>
<td>0.003</td>
</tr>
</tbody>
</table>