Pulmonary arterial hypertension secondary to congenital extrahepatic portosystemic shunt — a serious complication of a rare disease

Authors: Anna Migdał, Adam Koleśnik, Małgorzata Żuk, Grażyna Brzezińska-Rajszys

Article type: Clinical vignette

Received: July 3, 2021

Accepted: August 30, 2021

Published online: August 31, 2021
Pulmonary arterial hypertension secondary to congenital extrahepatic portosystemic shunt — a serious complication of a rare disease

Anna Migdał 1,2, Adam Koleśnik2, Małgorzata Żuk1, Grażyna Brzezińska-Rajszys2

1Cardiology Department, The Children's Memorial Health Institute, Warszawa, Poland
2Cardiovascular Interventions Laboratory, The Children’s Memorial Health Institute, Warszawa, Poland

Short title: A rare cause of pulmonary arterial hypertension

Correspondence to:
Anna Migdal,
Cardiology Department, The Children’s Memorial Health Institute,
Dzieci Polskich 20, 04–730 Warszawa, Poland,
phone +48 22 815 12 92,
e-mail: a.migdal@ipczd.pl

Congenital extrahepatic portosystemic shunt (CEPSS) also known as Abernethy malformation, resulting from the embryonic development of the portal vein, is a rare condition in which splanchnic venous flow bypasses the liver. Volume overload, microthrombosis, and prolonged exposure to vasoactive substances that are normally metabolised by the liver are factors lead to pulmonary arterial hypertension (PAH) [1, 2].

Four years old girl was admitted to the Cardiology Department due to suspicion of pulmonary hypertension. She had been diagnosed prenatally with the absence of venous duct and direct connection of umbilical vein to right atrium causing fetal heart failure requiring transplacental digoxin treatment.

On admission, she was in World Health Organization Functional Class (WHO-FC) II with oxygen blood saturation of 97%. Echocardiography revealed elevated right ventricular systolic pressure (RVSP) to 45 mm Hg. N-terminal pro-brain natriuretic peptide (NTproBNP) level was low (55 pg/ml, N <190 pg/ml). The typical diagnostic approach for pulmonary hypertension revealed no abnormalities. Despite normal transaminases and coagulation values, specific liver tests were performed based on prenatal history. Hyperammonemia (158 ug/dl, reference range 19–87 ug/dl) and liver ultrasound suggest CEPSS. Abdominal computed tomography (CT)
showed a hypoplastic portal vein with hypoplastic branches, wide connection vessel between the portal vein and inferior vena cava (Abernethy type IIa) (Figure 1A). The patient was accepted for percutaneous embolization of portosystemic shunt. The procedure was done from the internal jugular vein approach. During the balloon occlusion test (temporary shunt closure) (Figure 1B) no changes in the portal vein flow were recorded. On the basis of diameter of fully inflated balloon the size of the implant was selected. Then, using three-dimensional (3D) overlay derived from CT on fluoroscopy (HeartNavigator, Philips Healthcare, Eindhoven, Netherlands) as roadmap (Figure 1C) Amplatzer Vascular Plug II 16 mm was deployed (Figure 1D). After successful shunt closure the right cardiac catheterization (Figure 1E) was performed: the mean pulmonary arterial pressure was 37 mm Hg, the mean systemic arterial pressure 53 mm Hg, capillary wedge pressure 12 mm Hg, pulmonary vascular resistance 4.3 Wood units × m², cardiac index 5.83 l/min/m²; acute vasoreactivity test was negative. PAH due to CEPSS was confirmed and therapy of bosentan was initiated. During follow-up, ammonia level decreased and normalized 3 months after the procedure. Abdominal ultrasound demonstrated no signs of portal hypertension. Unfortunately, after stable 9 months on single PAH therapy patient deteriorated (WHO-FC III, NTproBNP 4804 pg/ml, RVSP 113 mm Hg) (Figure 1F) and required treatment intensification (sildenafil was added). After 24 months follow-up patient is in the intermediate-risk group (WHO-FC II, NTproBNP 283 pg/ml, RVSP 83 mm Hg) on dual PAH therapy currently without the need of treatment intensification.

PAH is rare, but serious complication of CEPSS leading to RV failure and death [1, 2]. Percutaneous treatment of CEPSS is a feasible and allows normalization of the liver function after shunt closure [2, 3] however the impact on regression of PAH is not well known. Early diagnosis and shunt closure of CEPSS may prevent the progression or even reverse PAH [4] but in most cases PAH persist and required PAH-specific therapies [1–3, 5]. The lack of improvement after early CEPSS closure in this case indicates that volume overload and vasoactive substances may not be the only factors responsible for the development of PAH and the PAH worsening may result from the natural progression of pulmonary vascular disease.

REFERENCES


Figure 1. A. Computed tomography of the abdomen shows a large shunt (asterisk) between extrahepatic PV and VCI. B. Angiography through an inflated balloon (16 mm) catheter (asterisk) positioned across the shunt shows intrahepatic portal veins (arrow). C. Fluoroscopy fusion with CT derived model of shunt (violet structure) — control angiography through the long sheet to confirm position. D. Amplatzer Vascular Plug II (arrow) positioning based on CT derived model overlay. E. Peripheral angiography shows decreased arborisation of pulmonary arteries. F. Echocardiography: enlarged right ventricle and right atrium, left ventricle compressed.

Abbreviations: CT, computed tomography; PV, portal vein; VCI, vena cava inferior