Double chambered right ventricle in a patient with hypertrophic cardiomyopathy.
A unique coexistence

Authors: Paweł Tyczyński, Mateusz Śpiewak, Przemysław Chmielewski, Krzysztof Kotliński, Tomasz Deptuch, Adam Witkowski, Piotr Szymański

Article type: Clinical vignette
Received: May 11, 2021
Accepted: May 23, 2021
Published online: May 25, 2021

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
Double chambered right ventricle in a patient with hypertrophic cardiomyopathy.

A unique coexistence

Paweł Tyczyński¹, Mateusz Śpiewak², Przemysław Chmielewski³, Krzysztof Kotliński⁴, Tomasz Deptuch⁵, Adam Witkowski¹, Piotr Szymański⁶

¹Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warszawa, Poland
²Department of Magnetic Resonance Unit, National Institute of Cardiology, Warszawa, Poland
³Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, Warszawa, Poland
⁴Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warszawa, Poland
⁵Cardiology Center, Józefów, Poland
⁶Central Clinical Hospital of the Ministry of the Interior and Administration, Centre of Postgraduate Medical Education, Warszawa, Poland

Short title: DCRV and HOCM

Conflict of interest: None declared.

Correspondence to:
Paweł Tyczyński, MD, PhD,
Department of Interventional Cardiology and Angiology,
Institute of Cardiology,
Alpejska 42, 04–628 Warszawa, Poland,
phone: +48 22 3434272,
e-mail: medykpol@wp.pl

Double chambered right ventricle (DCRV) is a rare pathology (0.5%–2.0% of all congenital heart defects) and is considered a primarily congenital defect. The right ventricle (RV) is separated into two chambers with a low and high pressure (see detailed description elsewhere) [1]. Numerous papers have reported its coexistence with other heart and extra-cardiac anomalies. Nonetheless only casuistic reports described the coexistence of DCRV among patients with hypertrophic cardiomyopathy (HCM). Said et al presented the outcomes of
surgical repair of DCRV in 61 patients. Among them in four patients the primary diagnosis was HCM [2]. Park et al. described an 80-year-old HCM-patient with DCRV who experienced recurrent hypotension and chest discomfort during hemodialysis [3]. Yamamoto reported most probably the first case of a 47-years-old DCRV-patient coexisting with severe left ventricle outflow tract obstruction (LVOTO) [4]. We describe a HCM-patient in whom DCRV was diagnosed in adulthood.

A 52-years-old female with previously diagnosed HCM (without LVOTO) and with elevated pulmonary pressure was referred for further assessment. Transthoracic echocardiography (TTE) showed asymmetrical hypertrophy of the interventricular septum (29 mm), mild tricuspid regurgitation with estimated right ventricular systolic pressure (RVSP) 77 mm Hg and enlarged right atrium (32 cm²). Transesophageal echocardiography and repeated TTE showed additional tissue narrowing the proximal muscular tunnel between RV-inflow tract (RVIT) and RV-outflow tract (RVOT) (Figure 1A and 1B). Cardiac magnetic resonance (CMR) clearly showed hypertrophied moderator band causing RV narrowing at the level of its basal segments (Figure 1E). Right heart catheterization revealed RV systolic pressure gradient (RVSPG) of 80 mm Hg and the pulmonary hypertension was excluded. Subsequently the patient underwent surgical treatment. After RVOT opening, additional muscular tissue was removed and partial excision of the muscular tunnel between RVIT and RVOT and finally RVOT enlargement with pericardial patch were performed. Postoperative course was complicated by the right pleural effusion requiring thoracentesis. No recurrence of narrowing within RV was visible in repeated TTE’s during 8 years of follow-up nor in CMR done 3.5 years after cardiac surgery. RVSP was around 45 mm Hg without significant changes.

DCRV is most frequently encountered in infants and children and not in adult patients as in our case. This report highlights the pitfalls of TTE and the necessity of complimentary modalities for the proper diagnosis of rare cardiac defects like DCRV. First TTE-based diagnoses was misleading and indicating high probability of pulmonary hypertension. This was excluded by right heart catheterization (and already changed the treatment strategy). As acknowledged by other authors, TTE may not be satisfactory in visualization of anomalous RV muscle band [5]. transesophageal echocardiography and CMR clearly showed the RV anatomy for pre-surgical work-up. The presence of SPG within RV among HCM-population is not an infrequent finding. In a historic HCM-population RVSPG was present in 15% of patients and ranged between 10 mm Hg and 55 mm Hg (Frank et al., Circulation. 1968). Still, it was well below of RVSPG
observed in our patient. In summary, it is crucial to distinguish DCRV from other forms of RV obstructions. Of note, DCRV is the only RVOT obstruction classified as sub-infundibular.

REFERENCES

Figure 1. Transthoracic echocardiography; **A.** Apical four chamber view; **B.** and **C.** 3D view. White arrow indicates narrowing between the inflow tract and the outflow tract of the right ventricle; **D.** Magnification of the image “A”. White arrow indicates hypertrophied moderator band within the right ventricle; **E.** Cardiac magnetic resonance. Short axis end-diastolic cine image demonstrating hypertrophied moderator band (black arrow). Small amount of pericardial effusion is also seen; **F.** Post-surgery image after resection of the additional muscular tissue.