Optimal hospital discharge time after CIED implantation: A retrospective study from a reference electrotherapy center

Authors: Grzegorz Sławiński, Piotr Zieleniewicz, Mikołaj Młyński, Szymon Budrejko, Tomasz Królak, Ludmiła Daniłowicz-Szymanowicz, Maciej Kempa
Article type: Short communication
Received: May 11, 2023
Accepted: August 28, 2023
Early publication date: September 15, 2023
Optimal hospital discharge time after CIED implantation: A retrospective study from a reference electrotherapy center

Short title: Optimal hospital discharge time after CIED implantation

Grzegorz Sławiński1, 2, Piotr Zieleniewicz1, Mikołaj Młyński1, Szymon Budrejko1, Tomasz Królak1, Ludmiła Daniłowicz-Szymanowicz1, Maciej Kempa1

1Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
2Club 30, Polish Cardiac Society, Poland

Correspondence to:
Grzegorz Sławiński, MD, PhD,
Department of Cardiology and Heart Electrotherapy,
Medical University of Gdańsk,
Smoluchowskiego 17, 80–214 Gdańsk, Poland,
phone: +48 58 584 47 70,
e-mail: gslawinski@gumed.edu.pl

INTRODUCTION
Despite many publications on early complications of cardiac implantable electronic device (CIED) implantations, there are no specific recommendations regarding the suggested discharge time after such procedures. This retrospective pilot observation aimed to evaluate the occurrence of early complications following CIED implantations, which could inform optimal post-procedural patient management and timing of discharge.

METHODS
Retrospective study included patients who underwent a cardiac implantable electronic device (CIED) implantation procedure, with at least one lead implanted, between January 1, 2021, and December 31, 2021. Explantation procedures were also included if they were simultaneously followed by a reimplantation. Patients who underwent only an explantation procedure and those having a pulse generator replacement procedure were excluded from the study. All CIED implantations were performed in the Department of Cardiology and Electrotherapy, Medical
University of Gdańsk. The standard policy in our center was to discharge patients two days after the lead implantation, with a routine chest X-ray on the first day after the procedure. After discharge from the hospital, patients were then routinely invited for the first check-up approximately 3 months after the CIED implantation. In exceptional situations (patients after lead reposition due to dislodgment, pocket hematoma not eligible for intervention, suboptimal lead parameters) patients were asked to report to the clinic on the 7th day after the procedure to remove the sutures and to check CIED parameters. The demographic data, the type of procedure, comorbidities, laboratory test results, and pharmacological treatment were obtained from patients’ electronic medical records available in the hospital’s database and then precisely analyzed. Data on frequently occurring comorbidities (chronic heart failure [CHF], atrial fibrillation, hypertension, coronary artery disease [CAD], type 2 diabetes mellitus, stroke or transient ischemic attack, chronic kidney disease, and active cancer) were extracted from the discharge summary at the time of the implantation procedure. The detection of a complication related to the CIED procedure within the first 30 days after the procedure was qualified as the endpoint.

Statistical analysis

For all comparisons and calculations, the p value of less than 0.05 was assumed as statistically significant. Numerical variables were expressed as mean (SD) if normally distributed or as median (interquartile range [IQR]). In the case of continuous variables, normal distribution was tested using the 1-sample Kolmogorov-Smirnov test. Categorical data were expressed as numbers and percentages. Numerical variables were compared using the independent-sample parametric (unpaired Student t) or nonparametric (Mann-Whitney U) tests. Categorical variables were compared using the χ² test or the Fisher exact test when appropriate. Correlations between selected quantitative variables were assessed using Spearman's rank correlation test. The ultimate analysis to determine risk factors of complications after CIED procedures was based on logistic regression. The multivariable analysis included variables that had yielded statistical significance defined as a P-value of 0.1 or lower, in the univariate analysis. The data were analyzed using the STATISTICA 13 software. The study was approved by the bioethics committee (no. NKBBN/644/2022).

RESULTS AND DISCUSSION

Four hundred sixteen CIED procedures were included in the study, of which 325 (78.1%) were de novo CIED implantation procedures. The majority of the study group were men (n = 261,
62.7%) with mean (SD) age 70 (14) years. The most common comorbidities in the study group were hypertension, CHF, and CAD (Figure 1B). The median (IQR) hospitalization time was 5 (3–8) days. The median (IQR) time from procedure to hospital discharge was 2 (2–3) days. In 162 cases (38.9%), the time to discharge after the procedure was >2 days. It should be emphasized that 51.2% of these prolonged stays occurred due to weekend/holidays following the lead implantation procedure, and in another 11.1% of cases no clear medical reasoning explaining prolonged hospitalization could be identified (Figure 1A). Time to discharge was found to increase with higher levels of B-type natriuretic peptide (p=0.01, R=0.14) and lower left ventricular ejection fraction (P = 0.02; r = –0.12). The descriptive characteristics of the study group are presented in the form of Supplementary material, Table S1.

Complications related to CIED implantation were found in 33 patients (7.9%), with lead dislodgment being the most prevalent (n = 10). Most complications (84.8%) were detected within the first 24 hours after the procedure, and 91.0% were found within the first 48 hours. Complications that occurred over 24 hours were pocket hematoma (n = 3), perforation requiring lead reimplantation — found on the 24th day after the procedure (n = 1), and ischemic stroke found on the second day after the procedure (n = 1). There was one case of death on the 3rd day after the procedure due to aspiration at the time of the procedure and the resulting complicated aspiration pneumonia (Figure 1C).

Patients who experienced CIED-related complications were more likely to have been previously diagnosed with CHF (P = 0.03) and CAD (P = 0.02). Patients with complications observed later than 24 hours after procedures were characterized by a significantly higher median (IQR) age-adjusted Charlson comorbidity index (7 [6–8] vs. 5 [3–6] points, P = 0.03) and were significantly more often treated with vitamin K antagonists (VKA) (2 [[15.4%] vs. 3 [11.5%]; P = 0.04). A univariate analysis proved that CAD (odds ratio [OR], 2.38; 95% CI, 1.12–5.04; P = 0.02) and CHF (OR, 2.41; 95% CI, 1.09–5.33; P = 0.03) were associated with a higher risk of complications, whereas in regards to C-reactive protein concentration a tendency towards a higher risk of complications was observed (OR, 0.96; 95% CI, 0.016–0.99; P = 0.09). Multivariable analysis identified CAD as the only independent predictor of the subsequent complications (OR, 2.26; 95% CI, 1.06–4.79; P = 0.03).

Based on the literature data, it is known that most very early complications following CIED procedures occur within the first 6 hours after the procedure, which makes discharge from the hospital on the day of the procedure safe and preferred by patients [1–3]. Some authors go a step further, proposing discharge after transvenous lead extraction performed for non-infectious reasons on the same day [4]. In contrast, Ohlow et al. state that 100% of potentially
life-threatening acute complications occur during the first 72 hours [5]. These data are consistent with those obtained in our study, where, excluding a case of perforation requiring lead replacement detected only 24 days after the procedure, 100% of the complications were found within the first 72 hours after the procedure. Other authors also emphasize that lead dislodgements occur during the first few days of the implantation but are not limited to the first 24 hours [6]. However, the E-MOTION trial confirmed that early mobilization at 3 hours following CIED procedures is safe and feasible compared with standard immobilization and is not associated with an increased risk of periprocedural complications or 24-month lead dislodgment rate [7]. Significant differences in the duration of hospitalization of patients after CIED implantation are observed not only between individual centers but also between countries — the median length of stay after the implantation of a pacemaker in Japan and in the USA was 8 (7–11) and 1 (1–3) days respectively [8]. Finally, it seems that the approach to early discharge following CIED procedures should still be individualized, and extended stay should apply to patients with pacemaker dependency, especially after lead implantation/extraction or pocket revision, patients with an increased risk of bleeding or thrombosis/thromboembolism, patients with hemodynamic instability, patients with comorbidities requiring continued observation and other risk factors for complications [6]. Based on the data in our study, patients with multiple comorbidities, patients treated with VKA, and those with CAD require longer observation.

The financial aspect is of significance as well. A strategy of early discharge on the first day after the procedure with no exceptions for weekend or holidays could potentially save 150 euros per patient/day. Moreover, such approach would allow shorter waiting time for patients awaiting elective CIED implantation procedures.

In connection with the obtained results, an echocardiogram aimed at assessing the pericardium is performed in patients after CIED implantation in order to detect fluid in the pericardium before discharge from the hospital.

CONCLUSIONS

The complication rate after CIED procedures is low but not negligible, mainly occurring on the first day after the procedure. Considering the growing costs of hospitalization and the prolonged waiting time for elective electrotherapy procedures, it seems safe and justified to discharge selected patients without risk factors for subsequent complications on the first day after CIED implantation. Early follow-up appointments at the hospital outpatient clinic and
remote monitoring could facilitate the detection of rare delayed complications, such as pocket hematomas or lead dislodgment/heart perforation.

Supplementary material
Supplementary material is available at https://journals.viamedica.pl/kardiologia_polska.

Article information

Conflict of interest: None declared.

Funding: None.

Open access: This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, which allows downloading and sharing articles with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.

References

Figure 1. A. Reasons for hospitalizations over 48 hours. B. Prevalence of comorbidities in the study group. C. Rate of complications related with CIED implantation

Abbreviations: AF, atrial fibrillation; CIED, cardiac implantable electronic devices; CAD, coronary artery disease; CKD, chronic kidney disease; HFmrEF, heart failure with mid-range ejection fraction; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; S-ICD, subcutaneous implantable cardioverter-defibrillator; TIA, transient ischemic attack