The role of pneumococcal vaccination in reducing the cardiovascular risk of cardiac patients: Expert opinion of the Prevention Committee of the Polish Cardiac Society supported by the Polish Vaccinology Society

Authors: Artur Mamcarz, Marcin Welnicki, Jarosław Drożdż, Marcin Grabowski, Piotr Jankowski, Ernest Kuchar, Przemysław Leszek, Przemysław Mitkowski, Jacek Wysocki

Article type: Expert opinion

Received: July 17, 2023

Accepted: July 17, 2023

Early publication date: July 27, 2023

This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
The role of pneumococcal vaccination in reducing the cardiovascular risk of cardiac patients: Expert opinion of the Prevention Committee of the Polish Cardiac Society supported by the Polish Vaccinology Society

Artur Mamcarz¹, Marcin Welnicki¹, Jarosław Drożdż², Marcin Grabowski³, Piotr Jankowski⁴, Ernest Kuchar⁵, Przemysław Leszek⁶, Przemysław Mitkowski⁷, Jacek Wysocki⁸

¹³rd Department of Internal Medicine and Cardiology, Medical University of Warsaw, Warszawa, Poland
²²nd Department of Cardiology, Medical University of Lodz, Łódź, Poland
³¹st Chair and Department of Cardiology, Medical University of Warsaw, Warszawa, Poland
⁴Department of Internal Diseases and Gerontocardiology, Center of Postgraduate Medical Education in Warsaw, Warszawa, Poland
⁵Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warszawa, Poland
⁶Department of Heart Failure and Transplantation Medicine, Cardinal Stefan Wyszyński Institute of Cardiology in Warsaw, Warszawa, Poland
⁷¹st Department of Cardiology, Poznan University of Medical Sciences, Poznań, Poland
⁸Chair and Department of Health Prophylaxis, Medical University of Poznan, Poznań, Poland

Correspondence to:
Marcin Welnicki, MD, PhD,
³rd Department of Internal Medicine and Cardiology,
Medical University of Warsaw, Lindleya 4, 02–005 Warszawa, Poland,
phone: +48 22 502 11 44,
e-mail: welnicki.marcin@gmail.com

ABSTRACT
Respiratory diseases have been the fourth most common cause of death in Poland in recent years. Respiratory infection, especially pneumonia, can lead to exacerbation of chronic cardiovascular disease. *Streptococcus pneumoniae* is the most common bacterial pathogen causing community-acquired pneumonia. Pneumococci are also the most common pathogen complicating the course of influenza virus infection. Pneumonia, especially invasive pneumococcal disease, is associated with the risk of death in the course of respiratory failure
or sepsis and also with the worsening of the prognosis of the existing cardiovascular disease. Despite those facts recommendations for pneumococcal vaccination are still not well established in cardiovascular guidelines. The aim of this document is to summarize current knowledge on the importance of preventing invasive pneumococcal disease in the context of cardiac patients.

Key words: pneumococcal vaccination, community-acquired pneumonia, invasive pneumococcal disease, cardiovascular diseases

INTRODUCTION
Respiratory diseases have been the fourth most common cause of death in Poland in recent years [1]. These conditions, especially pneumonia, can lead to exacerbation of chronic cardiovascular disease. By this mechanism, respiratory infections may be indirectly responsible for the most common cause of death in Poland, which is cardiovascular disease [1]. In 2019, 50% of hospitalizations due to respiratory diseases — nearly 60 000 hospitalizations — were related to community-acquired pneumonia (CAP) [2]. Microbiological diagnosis of patients with CAP is a real challenge in practice, because sputum cultures are unfortunately not routinely collected and many blood culture results in hospitalized patients may be non-diagnostic due to previously started empiric antibiotic therapy (in outpatient or nursing homes and care and treatment facilities). According to some studies, in as many as 40% of patients the pathogen causing CAP cannot be identified [3]. At the same time, in the case of confirmed aetiology, regardless of the patient's location, the most common pathogen is Streptococcus pneumoniae (Figure 1) [4]. Pneumococci are also the most common pathogen complicating the course of influenza virus infection [5]. Bacterial co-infection affects 11%–35% of patients hospitalized for influenza, while influenza infection increases the risk of pneumococcal pneumonia in specific ways [5–7]. It has been observed that the influenza virus accelerates the proliferation of S. pneumoniae, facilitates the colonization of the respiratory tract, and promotes bacterial aspiration [5–7]. For years, educational campaigns have been conducted to convince people of the validity of annual influenza vaccination in order to reduce the risk of cardiovascular events [8]. This is a kind of health bonus, apart from the possibility of reducing the risk of the infection itself and its severe course. The experience of the COVID-19 pandemic has been a painful reminder of how important acute respiratory infections can be for patients with heart and vascular diseases [9–12]. Currently, there is no doubt that the severe course of coronavirus infection concerned,
among others, people with a history of cardiovascular diseases, and vaccination against COVID-19 turned out to be the most effective weapon against the pandemic. It is worth emphasizing that, also in the case of coronavirus infection, pneumococci were the most common pathogen complicating the course of infection [13].

Regarding pneumococci, many studies in recent years have indicated that we should put more emphasis on preventing infection. The aim of this document is to summarize current knowledge on the importance of preventing invasive pneumococcal disease (IPD) in the context of cardiac patients.

COMMUNITY-ACQUIRED PNEUMONIA AND INVASIVE PNEUMOCOCCAL DISEASE

Polish data on the prevalence of pneumococcal infections come mainly from the National Reference Centre for Diagnostics of Bacterial Infections of the Central Nervous System (KOROUN), to which only community acquired invasive forms of the disease are reported (all confirmed cases of invasive bacterial infections are reported, not only meningitis, and regardless of the ward where the patient was admitted). Therefore, it can be assumed that the incidence rates of pneumococcal pneumonia (confirmed) and CAP with sepsis are underestimated [14]. It is estimated that bacteraemia accompanies about 25% of pneumonias, so this percentage of infections meets the definition of IPD (Figure 2) [14].

The course of infection is mainly influenced by the serotype of the bacteria. However, there are a number of risk factors related to the patient and the patient’s environment (Figure 3) [15, 16]. Many of these factors, such as age over 65, smoking, and coexisting diabetes or chronic kidney disease, are typical of patients with chronic cardiovascular diseases, which in themselves are one of the risk factors for a severe course of IPD [17–21]. There is no doubt that advanced age is one of the most important risk factors. According to KOROUN data, the mortality rate from IPD in people over 65 years of age was over 65%, and this was the highest among the assessed age groups (Figure 4) [22].

Concomitant diseases affect both the risk of developing CAP and its course. Remirez et al. [23], analysing the incidence of CAP in the United States in the years 2014–2016 on the basis of nearly 75 000 adults, emphasize the importance of the coexistence of comorbidities typical of patients with cardiovascular diseases [23]. In the general population, the incidence of CAP was 634/100 000: 1808/100 000 in patients with diabetes; 3456/100 000 in patients with heart failure; and 5832/100 000 in patients with COPD [23]. In-hospital mortality was 6.5%, but it increased with time from the beginning of hospitalization. The 30-day, 6-month, and 1-year
mortality rates were 13%, 23.4%, and 30.6%, respectively [23]. Curcio et al. [24], on the other hand, proved that the coexistence of typical cardiac diseases, such as COPD or diabetes, especially in the case of advanced age and active smoking, may multiply the risk of CAP, pneumococcal infection, and its invasive form. The authors comment on the observations made in earlier years by, among others, Shea et al. [25]. They proved that the coexistence of diseases such as diabetes, chronic heart disease, and chronic lung disease significantly increases the risk of pneumococcal pneumonia compared with that in healthy people, especially in people over 65 years of age (respectively 2.8 times, 3.8 times, and 7.7 times for diabetes, chronic heart disease, and chronic lung disease) [25].

However, Curio [24] suggests that the importance of the simultaneous occurrence of these factors may be underestimated. Polish epidemiological data, although still scarce, seem to indirectly confirm Curio’s observations. According to the information contained in the report “Pneumococcal pneumonia in adults — the situation in Poland. Epidemiology, consequences, prevention” in 2019, nearly 605 000 cases of CAP were reported in Poland, of which almost 76 500 patients required hospitalization [26]. However, the incidence of CAP requiring hospitalization per 100 000 people is clearly age-dependent and amounts to 36.2/100 000 among people aged 18–49; 141.3/100 000 aged 50–64; 318.7/100 000 in the case of people aged 65–74; and as many as 908.1/100 000 in the group over 75 years of age [26]. In 2019, 7676 patients died due to CAP, with almost 20% of these deaths in patients aged 65–74 and 65.8% in patients aged over 75 [26]. Therefore, when considering the validity of vaccinating cardiac patients against pneumococcal disease, the following facts should be borne in mind:

• Pneumococcal infection is the leading cause of pneumonia;
• The risk of pneumonia increases many times in patients with coexisting typical internal and chronic cardiac diseases;
• Age and the coexistence of chronic diseases (including heart failure, diabetes, COPD, etc.) as well as typical addictions (smoking, alcohol abuse) increase the risk of a severe course of infection;
• About 25% of pneumonias are associated with bacteraemia, meeting the definition of IPD;
• IPD in a patient over 65 years of age is associated with a 65% in-hospital mortality rate;
• In Poland, 20% of deaths due to pneumonia occur in patients aged 65–74, and 65% in patients over 75 years of age.

THE LINK BETWEEN PNEUMONIA AND CARDIOVASCULAR DISEASE
A history of pneumonia, especially invasive pneumococcal disease, is associated not only with the risk of death in the course of respiratory failure or sepsis, but also with the worsening of the prognosis of the existing cardiovascular disease. Already in 2015, Corrales-Medina and colleagues, based on the analysis of data from the period 1987–1994 in the USA, proved that in patients ≥65 years of age hospitalized due to CAP, a significant increase in the risk of a cardiovascular event persisted even at 10 years [27]. Bergh and colleagues, in turn, found that the risk of clinically manifest ischaemic heart disease was more than 6 times higher in individuals within a year of hospitalization due to infection (CP or sepsis) than it was in the control group (hazard ratio [HR], 6.33; 95% confidence interval [CI] 5.65–7.09, adjusted for classical risk factors) [28]. The highest risk persists up to 3 years after infection, but remains significantly elevated even 5 years after hospitalization [28].

Having an infection also increases the risk of heart failure symptoms. According to the analyses carried out by the Canadian team of Eurich et al. [29], within 90 days of infection the risk of heart failure or death due to heart failure was up to 50% higher than it was in the control group (HR, 1.53; 95% CI, 1.44–1.63). Interestingly, the highest relative risk of heart failure (HF) death was observed in subjects under 65 years of age (HR, 1.98; 95% CI, 1.55–2.53), and this effect was independent of the severity of PZP [29]. Recent studies suggest a significant relationship between the bacterial serotype responsible for infection and the risk of cardiovascular complications. In 2021, the Africano team published the results of a multi-centre, retrospective observational study that analysed the relationship between the serotype of the bacteria causing invasive pneumococcal disease and the occurrence of a composite endpoint of the study, defined as myocardial infarction, heart failure, or arrhythmia [30]. The analysis included 310 microbiologically confirmed cases of IPD: 60% CAP with bacteriemia, 18% meningitis, and 21% primary sepsis. The average age of the subjects was 61 years. A composite endpoint occurred in 23% of all subjects and 28% of patients with CAP. Serotype 19A was the most common, bacteraemia was present in 87% of patients with a major cardiovascular event, and infection with serotype 3 was an independent risk factor (OR, 1.48; 95% CI, 1.21–2.27; \(P = 0.013\)), as was infection with 9n (OR, 1.29; 95% CI, 1.08–2.24; \(P = 0.02\)) [30].

Thus, there is scientific evidence to support the association between CAP, including CAP with confirmed pneumococcal aetiology, and the risk of cardiovascular disease. The adverse impact on the cardiovascular prognosis of patients is associated not only with the acute phase of infection (stimulation of inflammatory processes, prothrombotic processes, hypoxia), but also for many months/years after infection. Certain pneumococcal serotypes may specifically
increase the risk of cardiovascular events. The arguments presented above justify the interest in pneumococcal vaccination as a potential method of cardiovascular prevention.

THE ROLE OF PNEUMOCOCCAL VACCINATION IN THE PREVENTION OF CARDIOVASCULAR DISEASES

Recommendations for pneumococcal vaccination are still not well established in cardiovascular guidelines. An unambiguous position is presented only by the authors of guidelines on the diagnosis and treatment of pulmonary hypertension [31, 32]. Both the document from 2015 and the latest ESC/PTK document from 2022 recommend both annual influenza vaccination and pneumococcal vaccination (class and strength of recommendations IC) [31, 32]. The authors of the guidelines for the diagnosis and treatment of heart failure from 2021 state that this vaccination can be considered (IIbB), while in the latest ESC orders on cardiovascular prevention, vaccination recommendations are only class IIbC, meaning vaccination can be considered [33–35]. This conservative attitude of guideline authors towards vaccines with proven efficacy may be misinterpreted. Thus, it should be made clear that the “cardiocentric” view of vaccine effectiveness is not about preventing CAP/ICD in general or reducing the risk of severe and fatal infections, but about the potential additional impact of vaccination on cardiovascular risk.

In the context of the potential beneficial effect of pneumococcal vaccination on the cardiovascular prognosis of patients, it is worth paying attention to three meta-analyses: Marra et al., Ren et al. and Vlachopoulos et al. [36–38]. The first of the meta-analyses included 18 studies in which the end point was the occurrence of a cardiovascular event, myocardial infarction, or stroke [36]. In terms of reducing the risk of a cardiovascular event, there was a 9% relative risk reduction (odds ratio [OR], 0.91; 95% CI, 0.84–0.99; I² = 74.64%; \(P < 0.0001 \)). The reduction in the risk of myocardial infarction was 12% (OR, 0.88; 95% CI, 0.79–0.98; I² = 75.4%; \(P < 0.0001 \)). Improved outcomes were observed due to the beneficial effects of vaccination in patients over 65 years of age [36]. Separate analyses for patients <65 years of age did not show statistically significant effects [36]. Pneumococcal vaccination also had no significant effect on the risk of stroke (OR, 0.96; 95% CI, 0.83–1.10; I² = 74.3%; \(P < 0.001 \)); however, there was a favourable trend bordering on statistical significance (OR, 0.92; 95% CI, 0.81–1.04; I² = 40.5%; \(P = 0.15 \)) [36]. The meta-analysis by Marra et al. [36] therefore proves that the pneumococcal polysaccharide vaccine (PPV23) may reduce the risk of cardiovascular events, including myocardial infarction, in patients over 65 years of age.
The other two meta-analyses concerned 8 and 13 observational studies with a polysaccharide vaccine [37, 38]. Ren et al. [37] also observed a reduction in the risk of myocardial infarction in patients over 65 years of age who were vaccinated (OR, 0.83; 95% CI, 0.71–0.97; I² = 77%), while Vlachopoulos et al. [38] reported a 14% reduction in the risk of a cardiovascular event (RR, 0.86; 95% CI, 0.76–0.97; P = 0.016) and an 8% reduction in the risk of cardiovascular death (RR, 0.92; 95% CI, 0.86–0.98, P = 0.01) in favour of the vaccinated [37, 38]. So far, only Vlachopoulos et al. [38] have observed that it is possible to reduce the risk of stroke in people vaccinated against pneumococci only in patients over 65 years of age, and the effect was borderline statistically significant (RR, 0.86; 95% CI, 0.75–0.99; P = 0.032).

These meta-analyses, however, have all found that statistically significant benefits in the context of cardiovascular risk are obtained only in patients over 65 years of age. It should also be assumed from a technical point of view that the meta-analyses of Ren et al. [37] and Vlachopoulos et al. [38] are included in Marra’s meta-analysis. A separate analysis of individual studies on the cardioprotective effects of the polysaccharide vaccine also allows us to see another regularity, apart from the age that predisposes to benefits. In studies whose methodology assumed a shorter observation period (3–6 months), the benefits in terms of reducing the risk of myocardial infarction were greater. In the study of Chang et al. in patients over 65 years of age, the RR was 0.71 (95% CI, 0.54–0.93). In the studies of Zahid et al. and Eurich et al. [39–41] in patients in all age groups, the respective RRs were 0.44 (95% CI, 0.22–0.88) and 0.46 (95% CI, 0.28–0.76). This observation is summarized by Vlachopoulos et al. [38], who state that the protective effect of PPV23 in the cardiac context persists up to 1 year after vaccination. The trend towards cardiovascular benefits of vaccination was more pronounced the more the history of the vaccinated patient was burdened. In this context, it is worth noting the results of the meta-analysis by Jaiswal et al. [42], which included 15 studies, including three evaluating the effectiveness of PPV23 in dialysis patients and in patients with advanced renal failure (these studies were not included in the previously cited meta-analyses). Jaiswal et al. [42] proved that pneumococcal vaccination reduces all-cause mortality (HR, 0.76; 95% CI, 0.66–0.87; P <0.001) and the risk of myocardial infarction (RR, 0.73; 95% CI, 0.56–0.96; P = 0.02) [41]. It is worth noting that in this meta-analysis, cardiac benefits were evident in patients with the highest baseline cardiovascular risk: namely, dialysis patients and patients with previously diagnosed coronary artery disease [42].

The authors also confirm their predecessors’ observations that the cardioprotective effect of pneumococcal vaccination with PPV23 disappears over time [42]. Perhaps new data in this regard will be provided by the prospective, double-blind AUSPICE study, which involves a 6-
year comparative observation of patients vaccinated with PPV23 and receiving placebo in the context of the occurrence of fatal and non-fatal myocardial infarctions and strokes [43]. Preliminary results are available from the first years of observation, regarding the presence and concentration of anti-pneumococcal antibodies in the IgG and IgM classes, and anti-OxLDL antibodies in both classes [44]. This is one of the postulated potential mechanisms of the cardioprotective effect of pneumococcal vaccines [45]. Ren et al. [44, 45] have shown that the administration of PPV generates a sustained increase in the titre of anti-pneumococcal antibodies in the IgG class, a less sustained increase in the IgM class, and only a transient increase in the titre of anti-OxLDL antibodies in the IgM class in the absence of an IgG reaction. Two years after PPV administration, the authors of the study did not observe significant differences in hsCRP concentration, pulse wave velocity, or intima-media thickness, all variables observed as surrogates of the atherosclerotic process [44].

Given the interesting results of the AUSPICE study on the polysaccharide vaccine available on the market since 1983, further observations of new, pneumococcal conjugate vaccines may turn out to be even more interesting.

PNEUMOCOCCAL VACCINATION AVAILABLE

Currently, three conjugated vaccines (PCV) and one unconjugated polysaccharide vaccine (PPV23) are available on the Polish market. Of the conjugated vaccines, PCV10 is only licensed for children (up to 5 years of age), while PCV13, PCV20, and the PPV23 polysaccharide vaccine can be used in the adult population; the latter three are compared in Table 1.

The latest-generation vaccine is PCV20, and the inclusion of 7 pneumococcal serotypes in addition to PCV13 is justified by the current global epidemiological situation [57]. Additional serotypes (all 7) are largely responsible for the occurrence of IPD. They are associated with the problem of increasing antibiotic resistance (11A, 15B, 22F, 33F) or higher mortality (almost all 7) [58–67]. In Poland, in 2019, IPD (according to KOROUN data) was mainly caused by four serotypes: 3, 4, 19A, and 8 [22]. It is also worth emphasizing that PPV23 is effective in reducing the risk of developing IPD, and the additional benefit of conjugate vaccines is that they also reduce the risk of CAP. It should also be noted that, due to the already proven effectiveness of older-generation vaccines in reducing the risk of developing IPD or CAP, for ethical reasons it is not possible to conduct direct studies comparing PCV20 with other vaccines or with placebo. The basis for the registration of the latest vaccine is confirmation of an acceptable safety profile and confirmation of equivalent immunogenicity
compared with that observed with older vaccines. The studies carried out so far confirm the good tolerance of pneumococcal vaccines: side effects are rare, self-limiting, and usually mild or moderately severe (pain at the injection site, general malaise, fever).

According to the latest Polish experts recommendations, published in Family Medicine & Primary Care Review pneumococcal vaccination should be recommended to all adults over 65 years of age and to those adults aged 19–64 who have additional risk factors [68]. Polish experts recommendations consistent in this respect with the American recommendations [69]. These additional risk factors include, in addition to immunocompromised conditions, chronic heart disease, renal failure, and diabetes, as well as chronic lung disease [68–69]. Therefore, it can be safely assumed that these criteria are met by the vast majority of patients hospitalized in cardiology and internal medicine wards. According to the Communication of the Chief Sanitary Inspector of October 28, 2022, on the preventive vaccination program for 2023, two pneumococcal vaccination schemes are considered optimal for adults:

1. PCV20 administration without the need for a booster.
2. Administration of PCV13 followed by PPV23 after at least 8 weeks for those aged 18–64 (with risk factors) or after at least 1 year for those aged 65 and over.

In addition, the American Advisory Committee on Immunization Practices (ACIP) also recommends a regimen consisting of the administration of the new PCV15 vaccine and then PPV23 after at least 8 weeks in the case of people aged 18–64 (with risk factors) or after at least 1 year in people over 65 years of age [68]. At the moment, however, PCV15 is not available in Poland.

CONCLUSIONS
A cardiac patient is particularly exposed to pneumococcal infection, especially CAP and its invasive form (pneumonia with sepsis). The number of such cases in Poland seems to be underestimated, considering the data on the incidence of CAP and its impact on cardiovascular prognosis. The problem of “low-quality” evidence regarding the benefit to the cardiovascular prognosis (impact on major adverse cardiac event) of pneumococcal vaccination may be due to the heterogeneous design of the studies analysed, the fact that polysaccharide vaccines protected primarily against IPD and to a lesser extent against CAP, and the lower immunogenicity of older-generation vaccines compared with that of conjugate vaccines. However, the mere fact that the "average patient with cardiovascular disease" most often meets the definition of a patient for whom pneumococcal vaccination is currently recommended, even with only poor-quality evidence of additional benefit in reduced risk of cardiovascular events
in the vaccinated, should encourage cardiologists to actively recommend this vaccination. It is also worth emphasizing that, according to current recommendations, it is possible to fully vaccinate an adult with one dose of PCV20. Verbal encouragement or a recommendation to vaccinate on the discharge card may be a good solution, but another is issuing a vaccine prescription to the patient when they leave the cardiology/ internal medicine ward (Figure 5).

Article information

Conflict of interest: None declared.

Funding: None.

Open access: This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, which allows downloading and sharing articles with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.

References

55. Apexxnar Product Characteristics [in Polish].

65. van Hoek AJ, Andrews N, Waight PA, et al. Effect of serotype on focus and mortality of invasive pneumococcal disease: coverage of different vaccines and insight into non-

Figure 1. Etiology of CAP depending on the patient's location. Based on [4]

Abbreviations: CAP, community-acquired pneumonia; ICU, Intensive Care Unit
Figure 2. Types of pneumococcal infections divided into non-invasive and invasive. It is estimated that 75% of pneumococcal pneumonias are non-invasive, but in 25% of cases they are accompanied by bacteremia and these infections should be treated as invasive [14].

Figure 3. Factors increasing the risk of severe IPD [17–21]
Abbreviations: IPD, invasive pneumococcal disease

Figure 4. IPD-related mortality rate by age group [22]
Abbreviation: IPD, invasive pneumococcal disease

Figure 5. Summary of the authors proposed strategy to promote pneumococcal vaccination in the population of patients with cardiovascular disease

Table 1. Comparison of key features of three pneumococcal vaccines registered for use in adults in Poland [46–56]

<table>
<thead>
<tr>
<th>Type of vaccine</th>
<th>Conjugated (PCV)</th>
<th>Unconjugated (PPSV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The latest vaccine</td>
<td>PCV20: 2021 (US), 2022 (UE)</td>
<td>PPSV23: 1983</td>
</tr>
<tr>
<td>Serotype coverage of the latest vaccine</td>
<td>20 serotypes</td>
<td>23 serotypes</td>
</tr>
<tr>
<td>Immunological memory [46]</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Mucosal response [47]</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>The order of administration in adults according to PSO 2023 [48]</td>
<td>PCV13 as first or PCV20 first and only one</td>
<td>PPSV23 as second, after PCV13</td>
</tr>
<tr>
<td>Response to the next dose [49]</td>
<td>T-lymphocytes dependent (hiper-responsiveness)</td>
<td>T-lymphocytes independent (hipo-responsiveness)</td>
</tr>
</tbody>
</table>
Effectiveness in risk groups | PCV13 effective in the group 65–84 years of age [50], in immunocompromised patient and chronic diseases [51] | May be lower <2 years and ≥ 75 years and with chronic diseases [52, 54]

Protection time | At least 4–5 years for PCV13 [55, 56] | It is not known how long the protective titer of antibodies lasts; revaccination recommended in some elderly people [54]

Abbreviations: PCV, multivalent pneumococcal conjugate vaccine, PCV, 20-valent pneumococcal conjugate vaccine; PCV13, 13-valent pneumococcal conjugate vaccine; PSO, Program Szczepień Ochoronnych (polish abbreviation governmental Protective Vaccination Programme); PPSV23, 23-valent polysaccharide vaccine

The dates given refer to the year of registration of the respective vaccine

References given in the table refer to the position of the source text in the collective references of the study