Rozwój technologii opartych na metodach biologii molekularnej do oznaczania grup krwi
Streszczenie
W ciągu ostatnich lat obserwuje się gwałtowny rozwój technologii badań molekularnych stosowanych w immunohematologii. Na świecie są one obecnie używane nie tylko przez laboratoria referencyjne i wysokospecjalistyczne, lecz są wdrażane do badań masowych w centrach krwiodawstwa, gdzie służą przede wszystkim do genotypowania klinicznie istotnych antygenów w celu zwiększenia dostępności dawców dla chorych z alloprzeciwciałami. W nieodległej przyszłości będzie też możliwe dobieranie dla chorych zależnych od przetoczeń dawców zgodnych w najbardziej immunogennych antygenach, tak by zapobiegać alloimmunizacji. Z myślą o tak ambitnych planach, są opracowywane na świecie zaawansowane technologie, umożliwiające masowe genotypowanie antygenów komórek krwi. W niniejszym artykule zostaną omówione metody biologii molekularnej przydatne dla takich badań.
Słowa kluczowe: genotypowanie antygenów komórek krwinanofluidowa/cyfrowa reakcja łańcuchowa polimerazymikromacierzespekrometria masowa MALDI-TOFmultipleksowa amplifikacja zależna od ligacji sond (MLPA)sekwencjonowanie następnej generacji (NGS)
Referencje
- Denomme GA, Johnson ST, Pietz BC. Mass-scale red cell genotyping of blood donors. Transfus Apher Sci. 2011; 44: 93–9.
- Flegel WA, Gottschall JL, Denomme GA. Integration of red cell genotyping into the blood supply chain: a population-based study. The Lancet Haematology. 2015; 2: e282–e288.
- Wagner FF. Molecular testing in transfusion medicine. Expert Opin Med Diagn. 2010; 4(5): 411–428.
- Veldhuisen B, van der Schoot CE, de Haas M. Multiplex ligation-dependent probe amplification (MLPA) assay for blood group genotyping, copy number quantification, and analysis of RH variants. Immunohematology. 2015; 31(2): 58–61.
- Latini FR, Gazito D, Arnoni CP, et al. A new strategy to identify rare blood donors: single polymerase chain reaction multiplex SNaPshot reaction for detection of 16 blood group alleles. Blood Transfus. 2014; 12 Suppl 1: s256–s263.
- Hopp K, Weber K, Bellissimo D, et al. High-throughput red blood cell antigen genotyping using a nanofluidic real-time polymerase chain reaction platform. Transfusion. 2010; 50: 40–6.
- Brouard D, Ratelle O, Perreault J, et al. PCR-free blood group genotyping using a nanobiosensor. Vox Sang. 2015; 108(2): 197–204.
- Avent ND, Madgett TE, Halawani AJ, et al. Next-generation sequencing: academic overkill or high-resolution routine blood group genotyping? ISBT Science Series. 2015; 10(S1): 250–256.
- Watkins N. Blood group genotyping –SNPs to sequencing. Vox Sang 2013; 105 (, 4A-S34-01. ; 59(Suppl.1).
- Haer-Wigman L, Ji Y, Lodén M, et al. Comprehensive genotyping for 18 blood group systems using a multiplex ligation-dependent probe amplification assay shows a high degree of accuracy. Transfusion. 2013; 53(11 Suppl 2): 2899–2909.
- Altayar MA, Halawani AJ, Kiernan M, et al. Extensive genotyping of blood groups Duffy Kidd and ABO by next generation sequencing. Vox Sang. 2014; 107(supl. 1): 187.
- Keller MA, Crowley JA, Horn T, et al. Kidd antigen discrepancies: genotype-predicted phenotype vs serologic phenotype. Vox Sang. 2014; 107(supl. 1): 37.
- Wagner FF, Bittner R, Herrmann O, et al. Estimation of minor blood group antigen frequencies in high geographical resolution . Vox Sang. ; 2014(Suppl 1): 195.
- Rieneck K, Clausen FB, Erikstrup C, et al. Large scale genetic screening of donors in the Danish blood donor study (DBDS) for rare blood groups. Vox Sang. ; 2014(Suppl 1): 191.
- Peyrard T. Use of genomics for decision-making in transfusion medicine: laboratory practice. ISBT Science Series. 2013; 8(1): 11–15.
- Westhoff CM. Molecular DNA-based testing for blood group antigens: recipient-donor focus. ISBT Science Series. 2013; 8(1): 1–5.
- Svensson A, Delaney M. Considerations of red blood cell molecular testing in transfusion medicine. Expert Rev Mol Diagn. 2015; 15(11): 1455–64.
- Veldhuisen B, van der Schoot CE, de Haas M. Blood group genotyping: from patient to high-throughput donor screening. Vox Sang. 2009; 97(3): 198–206.
- Flegel WA, Gottschall JL, Denomme GA. Implementing mass-scale red cell genotyping at a blood center. Transfusion. 2015; 55: 2610–5.
- Portegys J, Rink G, Bloos P, et al. Towards a Regional Registry of Extended Typed Blood Donors: Molecular Typing for Blood Group, Platelet and Granulocyte Antigens. Transfus Med Hemother. 2018; 45(5): 331–340.
- www.isbtweb.org/working-parties/rare-donors.
- Hustinx H. DGTI Register of Rare Donors. Transfus Med Hemother. 2014; 41(5): 338–341.
- http://www.iblutspende.ch/en/rare-donors.html.
- Hendrickson JE, Tormey CA, Shaz BH. Red blood cell alloimmunization mitigation strategies. Transfus Med Rev. 2014; 28(3): 137–144.
- Martinelli G, Buzzi M, Farabegoli P, et al. New strategies for selection of unrelated bone marrow donors. Bone Marrow Transplant. 1993; 11 Suppl 1: 31–32.
- Boccoz SA, Le Goff G, Blum LJ, et al. Microarrays in blood group genotyping. Methods Mol Biol. 2015; 1310: 105–113.
- Avent ND, Martinez A, Flegel WA, et al. The Bloodgen Project of the European Union, 2003-2009. Transfus Med Hemother. 2009; 36(3): 162–167.
- Avent ND, Martinez A, Flegel WA, et al. The BloodGen project: toward mass-scale comprehensive genotyping of blood donors in the European Union and beyond. Transfusion. 2007; 47(1 Suppl): 40S–6S.
- https://www.beckmancoulter.com.
- Paris S, Rigal D, Barlet V, et al. Flexible automated platform for blood group genotyping on DNA microarrays. J Mol Diagn. 2014; 16(3): 335–342.
- https://www.bag-healthcare.com/en/diagnostics/transfusion-diagnostics/ery-spotr-sso/ery-spotr-products/.
- Finning K, Bhandari R, Sellers F, et al. Evaluation of red blood cell and platelet antigen genotyping platforms (ID CORE XT / ID HPA XT) in routine clinical practice. Blood Transfus. 2016; 14: 160–7.
- Tanaka M, Kamada I, Takahashi J, et al. Evaluation of a blood group genotyping platform (BLOODchip(®) Reference) in Japanese samples. Transfus Med. 2014; 24(1): 39–44.
- Goldman M, Núria N, Castilho LM. An overview of the Progenika ID CORE XT: an automated genotyping platform based on a fluidic microarray system. Immunohematology. 2015; 31(2): 62–68.
- Hashmi G, Shariff T, Seul M, et al. A flexible array format for large-scale, rapid blood group DNA typing. Transfusion. 2005; 45(5): 680–688.
- Hashmi G, Shariff T, Zhang Y, et al. Determination of 24 minor red blood cell antigens for more than 2000 blood donors by high-throughput DNA analysis. Transfusion. 2007; 47: 736–47.
- McBean RS, Hyland CA, Flower RL. Blood group genotyping: the power and limitations of the Hemo ID Panel and MassARRAY platform. Immunohematology. 2015; 31(2): 75–80.
- Gassner C, Meyer S, Frey BM, et al. Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry-based blood group genotyping-the alternative approach. Transfus Med Rev. 2013; 27: 2–9.
- Meyer S, Vollmert C, Trost N, et al. Validation of KEL (Kell) SLC14A1 (Kidd) and DARC (Duffy) MALDI-TOF MS high throughput blond group genotyping using >3.100 serologically pre-typed donor samples. Vox Snag. 2013; 105(suppl.1): 60.
- Meyer S, Trost N, Frey BM, et al. Parallel donor genotyping for 46 selected blood group and 4 human platelet antigens using high-throughput MALDI-TOF mass spectrometry. Methods Mol Biol. 2015; 1310: 51–70.
- http://www.thermofisher.com.
- https://www.fluidigm.com.
- Svobodová I, Pazourková E, Hořínek A, et al. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach. PLoS One. 2015; 10(11): e0142572.
- Hopp K, Weber K, Bellissimo D. High-throughput red blood cell antigen genotyping using a nanofluidic real-time polymerase chain reaction platform. Transfusion. 2010; 50: 40–6.
- Venter J, Adams M, Myers E, et al. The sequence of the human genome. Science. 2001; 291: 1304–51.
- Cvejic A, Haer-Wigman L, Stephens JC, et al. SMIM1 underlies the Vel blood group and influences red blood cell traits. Nat Genet. 2013; 45: 542–5.
- Towns D, Hannon J, Hendry J, et al. Hemolytic disease of the fetus and newborn caused by an antibody to a low-prevalence antigen, anti-SARA. Transfusion. 2011; 51(9): 1977–1979.
- McBean R, Hyland C, Roscioli T, et al. The low frequency SARAH blood group antigen: evidence for a new MNS antigen. Vox Sang. 2014; 107(Suppl 1): 17.
- Erlich H. HLA DNA typing: past, present, and future. Tissue Antigens. 2012; 80(1): 1–11.
- Quail MA, Smith M, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012; 13: 341.
- Szymańska S, Studzińska S, Pareek C, et al. Techniki sekwencjonowania jako nowej generacji analityka w omice. Analityka. 2012; 3: 27–36.
- Fichou Y, Audrézet MP, Guéguen P, et al. Next-generation sequencing is a credible strategy for blood group genotyping. Br J Haematol. 2014; 167(4): 554–562.
- Lane W, Westhoff C, Uy J, et al. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. Transfusion. 2016; 56(3): 743–54.
- Montemayor-Garcia C, Westhoff CM. The "next generation" reference laboratory? Transfusion. 2018; 58(2): 277–279.