open access

Vol 12, No 2 (2019)
Review paper
Published online: 2019-09-06
Get Citation

Development of molecular biology methods for blood cell antigen genotyping

Katarzyna Guz, Agnieszka Orzińska, Ewa Brojer
DOI: 10.5603/JTM.2019.0002
·
Journal of Transfusion Medicine 2019;12(2):56-64.

open access

Vol 12, No 2 (2019)
REVIEWS
Published online: 2019-09-06

Abstract

In recent years, we have been observing the rapid development of molecular research technologies used in immunohematology. They are currently used not only by reference and highly specialized laboratories, but also for massive examinations in blood centers for genotyping clinically relevant antigens in order to increase the availability of donors for patients with allo-antibodies. In the near future, it will be possible to select donors compatible with patients in the most immunogenic antigens for preventing their alloimmunization. With such ambitious plans in mind, advanced technologies are developed around the world, to facilitate mass genotyping of blood cell antigens. The present study discusses molecular methods which may be used for this purpose.

Abstract

In recent years, we have been observing the rapid development of molecular research technologies used in immunohematology. They are currently used not only by reference and highly specialized laboratories, but also for massive examinations in blood centers for genotyping clinically relevant antigens in order to increase the availability of donors for patients with allo-antibodies. In the near future, it will be possible to select donors compatible with patients in the most immunogenic antigens for preventing their alloimmunization. With such ambitious plans in mind, advanced technologies are developed around the world, to facilitate mass genotyping of blood cell antigens. The present study discusses molecular methods which may be used for this purpose.
Get Citation

Keywords

blood cell antigens genotyping, nanofluidic/digital polymerase chain reaction, microarrays, mass spectrometry MALDI-TOF, multiplex ligation-dependent probe amplification (MLPA), next generation sequencing (NGS)

About this article
Title

Development of molecular biology methods for blood cell antigen genotyping

Journal

Journal of Transfusion Medicine

Issue

Vol 12, No 2 (2019)

Article type

Review paper

Pages

56-64

Published online

2019-09-06

DOI

10.5603/JTM.2019.0002

Bibliographic record

Journal of Transfusion Medicine 2019;12(2):56-64.

Keywords

blood cell antigens genotyping
nanofluidic/digital polymerase chain reaction
microarrays
mass spectrometry MALDI-TOF
multiplex ligation-dependent probe amplification (MLPA)
next generation sequencing (NGS)

Authors

Katarzyna Guz
Agnieszka Orzińska
Ewa Brojer

References (54)
  1. Denomme GA, Johnson ST, Pietz BC. Mass-scale red cell genotyping of blood donors. Transfus Apher Sci. 2011; 44: 93–9.
  2. Flegel WA, Gottschall JL, Denomme GA. Integration of red cell genotyping into the blood supply chain: a population-based study. The Lancet Haematology. 2015; 2: e282–e288.
  3. Wagner FF. Molecular testing in transfusion medicine. Expert Opin Med Diagn. 2010; 4(5): 411–428.
  4. Veldhuisen B, van der Schoot CE, de Haas M. Multiplex ligation-dependent probe amplification (MLPA) assay for blood group genotyping, copy number quantification, and analysis of RH variants. Immunohematology. 2015; 31(2): 58–61.
  5. Latini FR, Gazito D, Arnoni CP, et al. A new strategy to identify rare blood donors: single polymerase chain reaction multiplex SNaPshot reaction for detection of 16 blood group alleles. Blood Transfus. 2014; 12 Suppl 1: s256–s263.
  6. Hopp K, Weber K, Bellissimo D, et al. High-throughput red blood cell antigen genotyping using a nanofluidic real-time polymerase chain reaction platform. Transfusion. 2010; 50: 40–6.
  7. Brouard D, Ratelle O, Perreault J, et al. PCR-free blood group genotyping using a nanobiosensor. Vox Sang. 2015; 108(2): 197–204.
  8. Avent ND, Madgett TE, Halawani AJ, et al. Next-generation sequencing: academic overkill or high-resolution routine blood group genotyping? ISBT Science Series. 2015; 10(S1): 250–256.
  9. Watkins N. Blood group genotyping –SNPs to sequencing. Vox Sang 2013; 105 (, 4A-S34-01. ; 59(Suppl.1).
  10. Haer-Wigman L, Ji Y, Lodén M, et al. Comprehensive genotyping for 18 blood group systems using a multiplex ligation-dependent probe amplification assay shows a high degree of accuracy. Transfusion. 2013; 53(11 Suppl 2): 2899–2909.
  11. Altayar MA, Halawani AJ, Kiernan M, et al. Extensive genotyping of blood groups Duffy Kidd and ABO by next generation sequencing. Vox Sang. 2014; 107(supl. 1): 187.
  12. Keller MA, Crowley JA, Horn T, et al. Kidd antigen discrepancies: genotype-predicted phenotype vs serologic phenotype. Vox Sang. 2014; 107(supl. 1): 37.
  13. Wagner FF, Bittner R, Herrmann O, et al. Estimation of minor blood group antigen frequencies in high geographical resolution . Vox Sang. ; 2014(Suppl 1): 195.
  14. Rieneck K, Clausen FB, Erikstrup C, et al. Large scale genetic screening of donors in the Danish blood donor study (DBDS) for rare blood groups. Vox Sang. ; 2014(Suppl 1): 191.
  15. Peyrard T. Use of genomics for decision-making in transfusion medicine: laboratory practice. ISBT Science Series. 2013; 8(1): 11–15.
  16. Westhoff CM. Molecular DNA-based testing for blood group antigens: recipient-donor focus. ISBT Science Series. 2013; 8(1): 1–5.
  17. Svensson A, Delaney M. Considerations of red blood cell molecular testing in transfusion medicine. Expert Rev Mol Diagn. 2015; 15(11): 1455–64.
  18. Veldhuisen B, van der Schoot CE, de Haas M. Blood group genotyping: from patient to high-throughput donor screening. Vox Sang. 2009; 97(3): 198–206.
  19. Flegel WA, Gottschall JL, Denomme GA. Implementing mass-scale red cell genotyping at a blood center. Transfusion. 2015; 55: 2610–5.
  20. Portegys J, Rink G, Bloos P, et al. Towards a Regional Registry of Extended Typed Blood Donors: Molecular Typing for Blood Group, Platelet and Granulocyte Antigens. Transfus Med Hemother. 2018; 45(5): 331–340.
  21. www.isbtweb.org/working-parties/rare-donors.
  22. Hustinx H. DGTI Register of Rare Donors. Transfus Med Hemother. 2014; 41(5): 338–341.
  23. http://www.iblutspende.ch/en/rare-donors.html.
  24. Hendrickson JE, Tormey CA, Shaz BH. Red blood cell alloimmunization mitigation strategies. Transfus Med Rev. 2014; 28(3): 137–144.
  25. Martinelli G, Buzzi M, Farabegoli P, et al. New strategies for selection of unrelated bone marrow donors. Bone Marrow Transplant. 1993; 11 Suppl 1: 31–32.
  26. Boccoz SA, Le Goff G, Blum LJ, et al. Microarrays in blood group genotyping. Methods Mol Biol. 2015; 1310: 105–113.
  27. Avent ND, Martinez A, Flegel WA, et al. The Bloodgen Project of the European Union, 2003-2009. Transfus Med Hemother. 2009; 36(3): 162–167.
  28. Avent ND, Martinez A, Flegel WA, et al. The BloodGen project: toward mass-scale comprehensive genotyping of blood donors in the European Union and beyond. Transfusion. 2007; 47(1 Suppl): 40S–6S.
  29. https://www.beckmancoulter.com.
  30. Paris S, Rigal D, Barlet V, et al. Flexible automated platform for blood group genotyping on DNA microarrays. J Mol Diagn. 2014; 16(3): 335–342.
  31. https://www.bag-healthcare.com/en/diagnostics/transfusion-diagnostics/ery-spotr-sso/ery-spotr-products/.
  32. Finning K, Bhandari R, Sellers F, et al. Evaluation of red blood cell and platelet antigen genotyping platforms (ID CORE XT / ID HPA XT) in routine clinical practice. Blood Transfus. 2016; 14: 160–7.
  33. Tanaka M, Kamada I, Takahashi J, et al. Evaluation of a blood group genotyping platform (BLOODchip(®) Reference) in Japanese samples. Transfus Med. 2014; 24(1): 39–44.
  34. Goldman M, Núria N, Castilho LM. An overview of the Progenika ID CORE XT: an automated genotyping platform based on a fluidic microarray system. Immunohematology. 2015; 31(2): 62–68.
  35. Hashmi G, Shariff T, Seul M, et al. A flexible array format for large-scale, rapid blood group DNA typing. Transfusion. 2005; 45(5): 680–688.
  36. Hashmi G, Shariff T, Zhang Y, et al. Determination of 24 minor red blood cell antigens for more than 2000 blood donors by high-throughput DNA analysis. Transfusion. 2007; 47: 736–47.
  37. McBean RS, Hyland CA, Flower RL. Blood group genotyping: the power and limitations of the Hemo ID Panel and MassARRAY platform. Immunohematology. 2015; 31(2): 75–80.
  38. Gassner C, Meyer S, Frey BM, et al. Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry-based blood group genotyping-the alternative approach. Transfus Med Rev. 2013; 27: 2–9.
  39. Meyer S, Vollmert C, Trost N, et al. Validation of KEL (Kell) SLC14A1 (Kidd) and DARC (Duffy) MALDI-TOF MS high throughput blond group genotyping using >3.100 serologically pre-typed donor samples. Vox Snag. 2013; 105(suppl.1): 60.
  40. Meyer S, Trost N, Frey BM, et al. Parallel donor genotyping for 46 selected blood group and 4 human platelet antigens using high-throughput MALDI-TOF mass spectrometry. Methods Mol Biol. 2015; 1310: 51–70.
  41. http://www.thermofisher.com.
  42. https://www.fluidigm.com.
  43. Svobodová I, Pazourková E, Hořínek A, et al. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach. PLoS One. 2015; 10(11): e0142572.
  44. Hopp K, Weber K, Bellissimo D. High-throughput red blood cell antigen genotyping using a nanofluidic real-time polymerase chain reaction platform. Transfusion. 2010; 50: 40–6.
  45. Venter J, Adams M, Myers E, et al. The sequence of the human genome. Science. 2001; 291: 1304–51.
  46. Cvejic A, Haer-Wigman L, Stephens JC, et al. SMIM1 underlies the Vel blood group and influences red blood cell traits. Nat Genet. 2013; 45: 542–5.
  47. Towns D, Hannon J, Hendry J, et al. Hemolytic disease of the fetus and newborn caused by an antibody to a low-prevalence antigen, anti-SARA. Transfusion. 2011; 51(9): 1977–1979.
  48. McBean R, Hyland C, Roscioli T, et al. The low frequency SARAH blood group antigen: evidence for a new MNS antigen. Vox Sang. 2014; 107(Suppl 1): 17.
  49. Erlich H. HLA DNA typing: past, present, and future. Tissue Antigens. 2012; 80(1): 1–11.
  50. Quail MA, Smith M, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012; 13: 341.
  51. Szymańska S, Studzińska S, Pareek C, et al. Techniki sekwencjonowania jako nowej generacji analityka w omice. Analityka. 2012; 3: 27–36.
  52. Fichou Y, Audrézet MP, Guéguen P, et al. Next-generation sequencing is a credible strategy for blood group genotyping. Br J Haematol. 2014; 167(4): 554–562.
  53. Lane W, Westhoff C, Uy J, et al. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. Transfusion. 2016; 56(3): 743–54.
  54. Montemayor-Garcia C, Westhoff CM. The "next generation" reference laboratory? Transfusion. 2018; 58(2): 277–279.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Journal of Transfusion Medicine dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest Via Medica sp. z o.o. sp. komandytowa, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl