English Polski
Tom 12, Nr 2 (2019)
Artykuł przeglądowy
Opublikowany online: 2019-09-06

dostęp otwarty

Wyświetlenia strony 1131
Wyświetlenia/pobrania artykułu 2620
Pobierz cytowanie

Eksport do Mediów Społecznościowych

Eksport do Mediów Społecznościowych

Rozwój technologii opartych na metodach biologii molekularnej do oznaczania grup krwi

Katarzyna Guz1, Agnieszka Orzińska1, Ewa Brojer1
Journal of Transfusion Medicine 2019;12(2):56-64.

Streszczenie

W ciągu ostatnich lat obserwuje się gwałtowny rozwój technologii badań molekularnych stosowanych w immunohematologii. Na świecie są one obecnie używane nie tylko przez laboratoria referencyjne i wysokospecjalistyczne, lecz są wdrażane do badań masowych w centrach krwiodawstwa, gdzie służą przede wszystkim do genotypowania klinicznie istotnych antygenów w celu zwiększenia dostępności dawców dla chorych z alloprzeciwciałami. W nieodległej przyszłości będzie też możliwe dobieranie dla chorych zależnych od przetoczeń dawców zgodnych w najbardziej immunogennych antygenach, tak by zapobiegać alloimmunizacji. Z myślą o tak ambitnych planach, są opracowywane na świecie zaawansowane technologie, umożliwiające masowe genotypowanie antygenów komórek krwi. W niniejszym artykule zostaną omówione metody biologii molekularnej przydatne dla takich badań.

Artykuł dostępny w formacie PDF

Pokaż PDF Pobierz plik PDF

Referencje

  1. Denomme GA, Johnson ST, Pietz BC. Mass-scale red cell genotyping of blood donors. Transfus Apher Sci. 2011; 44: 93–9.
  2. Flegel WA, Gottschall JL, Denomme GA. Integration of red cell genotyping into the blood supply chain: a population-based study. The Lancet Haematology. 2015; 2: e282–e288.
  3. Wagner FF. Molecular testing in transfusion medicine. Expert Opin Med Diagn. 2010; 4(5): 411–428.
  4. Veldhuisen B, van der Schoot CE, de Haas M. Multiplex ligation-dependent probe amplification (MLPA) assay for blood group genotyping, copy number quantification, and analysis of RH variants. Immunohematology. 2015; 31(2): 58–61.
  5. Latini FR, Gazito D, Arnoni CP, et al. A new strategy to identify rare blood donors: single polymerase chain reaction multiplex SNaPshot reaction for detection of 16 blood group alleles. Blood Transfus. 2014; 12 Suppl 1: s256–s263.
  6. Hopp K, Weber K, Bellissimo D, et al. High-throughput red blood cell antigen genotyping using a nanofluidic real-time polymerase chain reaction platform. Transfusion. 2010; 50: 40–6.
  7. Brouard D, Ratelle O, Perreault J, et al. PCR-free blood group genotyping using a nanobiosensor. Vox Sang. 2015; 108(2): 197–204.
  8. Avent ND, Madgett TE, Halawani AJ, et al. Next-generation sequencing: academic overkill or high-resolution routine blood group genotyping? ISBT Science Series. 2015; 10(S1): 250–256.
  9. Watkins N. Blood group genotyping –SNPs to sequencing. Vox Sang 2013; 105 (, 4A-S34-01. ; 59(Suppl.1).
  10. Haer-Wigman L, Ji Y, Lodén M, et al. Comprehensive genotyping for 18 blood group systems using a multiplex ligation-dependent probe amplification assay shows a high degree of accuracy. Transfusion. 2013; 53(11 Suppl 2): 2899–2909.
  11. Altayar MA, Halawani AJ, Kiernan M, et al. Extensive genotyping of blood groups Duffy Kidd and ABO by next generation sequencing. Vox Sang. 2014; 107(supl. 1): 187.
  12. Keller MA, Crowley JA, Horn T, et al. Kidd antigen discrepancies: genotype-predicted phenotype vs serologic phenotype. Vox Sang. 2014; 107(supl. 1): 37.
  13. Wagner FF, Bittner R, Herrmann O, et al. Estimation of minor blood group antigen frequencies in high geographical resolution . Vox Sang. ; 2014(Suppl 1): 195.
  14. Rieneck K, Clausen FB, Erikstrup C, et al. Large scale genetic screening of donors in the Danish blood donor study (DBDS) for rare blood groups. Vox Sang. ; 2014(Suppl 1): 191.
  15. Peyrard T. Use of genomics for decision-making in transfusion medicine: laboratory practice. ISBT Science Series. 2013; 8(1): 11–15.
  16. Westhoff CM. Molecular DNA-based testing for blood group antigens: recipient-donor focus. ISBT Science Series. 2013; 8(1): 1–5.
  17. Svensson A, Delaney M. Considerations of red blood cell molecular testing in transfusion medicine. Expert Rev Mol Diagn. 2015; 15(11): 1455–64.
  18. Veldhuisen B, van der Schoot CE, de Haas M. Blood group genotyping: from patient to high-throughput donor screening. Vox Sang. 2009; 97(3): 198–206.
  19. Flegel WA, Gottschall JL, Denomme GA. Implementing mass-scale red cell genotyping at a blood center. Transfusion. 2015; 55: 2610–5.
  20. Portegys J, Rink G, Bloos P, et al. Towards a Regional Registry of Extended Typed Blood Donors: Molecular Typing for Blood Group, Platelet and Granulocyte Antigens. Transfus Med Hemother. 2018; 45(5): 331–340.
  21. www.isbtweb.org/working-parties/rare-donors.
  22. Hustinx H. DGTI Register of Rare Donors. Transfus Med Hemother. 2014; 41(5): 338–341.
  23. http://www.iblutspende.ch/en/rare-donors.html.
  24. Hendrickson JE, Tormey CA, Shaz BH. Red blood cell alloimmunization mitigation strategies. Transfus Med Rev. 2014; 28(3): 137–144.
  25. Martinelli G, Buzzi M, Farabegoli P, et al. New strategies for selection of unrelated bone marrow donors. Bone Marrow Transplant. 1993; 11 Suppl 1: 31–32.
  26. Boccoz SA, Le Goff G, Blum LJ, et al. Microarrays in blood group genotyping. Methods Mol Biol. 2015; 1310: 105–113.
  27. Avent ND, Martinez A, Flegel WA, et al. The Bloodgen Project of the European Union, 2003-2009. Transfus Med Hemother. 2009; 36(3): 162–167.
  28. Avent ND, Martinez A, Flegel WA, et al. The BloodGen project: toward mass-scale comprehensive genotyping of blood donors in the European Union and beyond. Transfusion. 2007; 47(1 Suppl): 40S–6S.
  29. https://www.beckmancoulter.com.
  30. Paris S, Rigal D, Barlet V, et al. Flexible automated platform for blood group genotyping on DNA microarrays. J Mol Diagn. 2014; 16(3): 335–342.
  31. https://www.bag-healthcare.com/en/diagnostics/transfusion-diagnostics/ery-spotr-sso/ery-spotr-products/.
  32. Finning K, Bhandari R, Sellers F, et al. Evaluation of red blood cell and platelet antigen genotyping platforms (ID CORE XT / ID HPA XT) in routine clinical practice. Blood Transfus. 2016; 14: 160–7.
  33. Tanaka M, Kamada I, Takahashi J, et al. Evaluation of a blood group genotyping platform (BLOODchip(®) Reference) in Japanese samples. Transfus Med. 2014; 24(1): 39–44.
  34. Goldman M, Núria N, Castilho LM. An overview of the Progenika ID CORE XT: an automated genotyping platform based on a fluidic microarray system. Immunohematology. 2015; 31(2): 62–68.
  35. Hashmi G, Shariff T, Seul M, et al. A flexible array format for large-scale, rapid blood group DNA typing. Transfusion. 2005; 45(5): 680–688.
  36. Hashmi G, Shariff T, Zhang Y, et al. Determination of 24 minor red blood cell antigens for more than 2000 blood donors by high-throughput DNA analysis. Transfusion. 2007; 47: 736–47.
  37. McBean RS, Hyland CA, Flower RL. Blood group genotyping: the power and limitations of the Hemo ID Panel and MassARRAY platform. Immunohematology. 2015; 31(2): 75–80.
  38. Gassner C, Meyer S, Frey BM, et al. Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry-based blood group genotyping-the alternative approach. Transfus Med Rev. 2013; 27: 2–9.
  39. Meyer S, Vollmert C, Trost N, et al. Validation of KEL (Kell) SLC14A1 (Kidd) and DARC (Duffy) MALDI-TOF MS high throughput blond group genotyping using >3.100 serologically pre-typed donor samples. Vox Snag. 2013; 105(suppl.1): 60.
  40. Meyer S, Trost N, Frey BM, et al. Parallel donor genotyping for 46 selected blood group and 4 human platelet antigens using high-throughput MALDI-TOF mass spectrometry. Methods Mol Biol. 2015; 1310: 51–70.
  41. http://www.thermofisher.com.
  42. https://www.fluidigm.com.
  43. Svobodová I, Pazourková E, Hořínek A, et al. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach. PLoS One. 2015; 10(11): e0142572.
  44. Hopp K, Weber K, Bellissimo D. High-throughput red blood cell antigen genotyping using a nanofluidic real-time polymerase chain reaction platform. Transfusion. 2010; 50: 40–6.
  45. Venter J, Adams M, Myers E, et al. The sequence of the human genome. Science. 2001; 291: 1304–51.
  46. Cvejic A, Haer-Wigman L, Stephens JC, et al. SMIM1 underlies the Vel blood group and influences red blood cell traits. Nat Genet. 2013; 45: 542–5.
  47. Towns D, Hannon J, Hendry J, et al. Hemolytic disease of the fetus and newborn caused by an antibody to a low-prevalence antigen, anti-SARA. Transfusion. 2011; 51(9): 1977–1979.
  48. McBean R, Hyland C, Roscioli T, et al. The low frequency SARAH blood group antigen: evidence for a new MNS antigen. Vox Sang. 2014; 107(Suppl 1): 17.
  49. Erlich H. HLA DNA typing: past, present, and future. Tissue Antigens. 2012; 80(1): 1–11.
  50. Quail MA, Smith M, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics. 2012; 13: 341.
  51. Szymańska S, Studzińska S, Pareek C, et al. Techniki sekwencjonowania jako nowej generacji analityka w omice. Analityka. 2012; 3: 27–36.
  52. Fichou Y, Audrézet MP, Guéguen P, et al. Next-generation sequencing is a credible strategy for blood group genotyping. Br J Haematol. 2014; 167(4): 554–562.
  53. Lane W, Westhoff C, Uy J, et al. Comprehensive red blood cell and platelet antigen prediction from whole genome sequencing: proof of principle. Transfusion. 2016; 56(3): 743–54.
  54. Montemayor-Garcia C, Westhoff CM. The "next generation" reference laboratory? Transfusion. 2018; 58(2): 277–279.