open access

Vol 10, No 4 (2017)
Review paper
Published online: 2018-01-17
Get Citation

Platelet-type von Willebrand disease (PT-VWD) — epidemiology, molecular basis, diagnosis

Ksenia Bykowska, Bernardeta Ceglarek
Journal of Transfusion Medicine 2017;10(4):138-148.

open access

Vol 10, No 4 (2017)
REVIEWS
Published online: 2018-01-17

Abstract

Platelet type von Willebrand disease (PT-VWD) is an autosomal dominant bleeding disorder that results from a glycoprotein GPIba gene mutations, platelet von Willebrand factor receptor. Paradoxically, GPIba mutations in PT-VWD do not decrease but significantly increase affinity of abnormal platelet GPIba to von Willebrand factor (VWF). While the von Willebrand disease (VWD) is a common bleeding disorder with a prevalence of approximately 1% in the general population, platelet type von Willebrand disease (PT-VWD, pseudo VWD) appears sporadically and up to date only 55 such cases have been described. Patients with PT-VWD present mild to moderate bleeding, regardless of age and gender. Life threatening bleedings can appear in stressful conditions such as infection, pregnancy or surgical procedures. PT-VWD phenotype resembles VWD 2B but their etiology differs. So each case of VWD 2B diagnosis requires comprehensive laboratory discrimination between VWD 2B and PT-VWD for confirmation and introduction of adequate treatment.

Abstract

Platelet type von Willebrand disease (PT-VWD) is an autosomal dominant bleeding disorder that results from a glycoprotein GPIba gene mutations, platelet von Willebrand factor receptor. Paradoxically, GPIba mutations in PT-VWD do not decrease but significantly increase affinity of abnormal platelet GPIba to von Willebrand factor (VWF). While the von Willebrand disease (VWD) is a common bleeding disorder with a prevalence of approximately 1% in the general population, platelet type von Willebrand disease (PT-VWD, pseudo VWD) appears sporadically and up to date only 55 such cases have been described. Patients with PT-VWD present mild to moderate bleeding, regardless of age and gender. Life threatening bleedings can appear in stressful conditions such as infection, pregnancy or surgical procedures. PT-VWD phenotype resembles VWD 2B but their etiology differs. So each case of VWD 2B diagnosis requires comprehensive laboratory discrimination between VWD 2B and PT-VWD for confirmation and introduction of adequate treatment.
Get Citation

Keywords

platelet type von Willebrand disorder; von Willebrand factor; glycoprotein Ibα; phenotypic profiles; laboratory assessment

About this article
Title

Platelet-type von Willebrand disease (PT-VWD) — epidemiology, molecular basis, diagnosis

Journal

Journal of Transfusion Medicine

Issue

Vol 10, No 4 (2017)

Article type

Review paper

Pages

138-148

Published online

2018-01-17

Bibliographic record

Journal of Transfusion Medicine 2017;10(4):138-148.

Keywords

platelet type von Willebrand disorder
von Willebrand factor
glycoprotein Ibα
phenotypic profiles
laboratory assessment

Authors

Ksenia Bykowska
Bernardeta Ceglarek

References (87)
  1. Andrews RK, Berndt MC. Platelet physiology and thrombosis. Thromb Res. 2004; 114(5-6): 447–453.
  2. Ruggeri Z. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation. Best Practice & Research Clinical Haematology. 2001; 14(2): 257–279.
  3. Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res. 2007; 120 Suppl 1: S5–S9.
  4. Reininger AJ. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia. 2008; 14 Suppl 5: 11–26.
  5. López JA, Dong Jf. Shear stress and the role of high molecular weight von Willebrand factor multimers in thrombus formation. Blood Coagul Fibrinolysis. 2005; 16 Suppl 1: S11–S16.
  6. Reininger AJ. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia. 2008; 14 Suppl 5: 11–26.
  7. Stockschlaeder M, Schneppenheim R, Budde U. Update on von Willebrand factor multimers: focus on high-molecular-weight multimers and their role in hemostasis. Blood Coagul Fibrinolysis. 2014; 25(3): 206–216.
  8. Lippok S, Obser T, Müller JP, et al. Exponential size distribution of von Willebrand factor. Biophys J. 2013; 105(5): 1208–1216.
  9. Federici AB, Bader R, Pagani S, et al. Binding of von Willebrand factor to glycoproteins Ib and IIb/IIIa complex: affinity is related to multimeric size. Br J Haematol. 1989; 73(1): 93–99.
  10. Dong Jf, Moake JL, Nolasco L, et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood. 2002; 100(12): 4033–4039.
  11. Dong JF. Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J Thromb Haemost. 2005; 3(8): 1710–1716.
  12. Wagner DD, Marder VJ. Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol. 1984; 99(6): 2123–2130.
  13. Sporn LA, Chavin SI, Marder VJ, et al. Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest. 1985; 76(3): 1102–1106.
  14. Ginsburg D, Handin RI, Bonthron DT, et al. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science. 1985; 228(4706): 1401–1406.
  15. Madabhushi SR, Shang C, Dayananda KM, et al. von Willebrand factor (VWF) propeptide binding to VWF D'D3 domain attenuates platelet activation and adhesion. Blood. 2012; 119(20): 4769–4778.
  16. Szántó T, Joutsi-Korhonen L, Deckmyn H, et al. New insights into von Willebrand disease and platelet function. Semin Thromb Hemost. 2012; 38(1): 55–63.
  17. de Wit TR, van Mourik JA. Biosynthesis, processing and secretion of von Willebrand factor: biological implications. Best Pract Res Clin Haematol. 2001; 14(2): 241–255.
  18. Baldauf C, Schneppenheim R, Stacklies W, et al. Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis. J Thromb Haemost. 2009; 7(12): 2096–2105.
  19. Padilla A, Moake JL, Bernardo A, et al. P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface. Blood. 2004; 103(6): 2150–2156.
  20. Arya M, Anvari B, Romo GM, et al. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood. 2002; 99(11): 3971–3977.
  21. Moake JL, Turner NA, Stathopoulos NA, et al. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest. 1986; 78(6): 1456–1461.
  22. Moake JL, Rudy CK, Troll JH, et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med. 1982; 307(23): 1432–1435.
  23. Turner N, Nolasco L, Moake J. Generation and Breakdown of Soluble Ultralarge von Willebrand Factor Multimers. Seminars in Thrombosis and Hemostasis. 2012; 38(01): 38–46.
  24. Ruggeri ZM, Mendolicchio GL. Interaction of von Willebrand factor with platelets and the vessel wall. Hamostaseologie. 2015; 35(3): 211–224.
  25. Ulrichts H, Udvardy M, Lenting PJ, et al. Shielding of the A1 domain by the D'D3 domains of von Willebrand factor modulates its interaction with platelet glycoprotein Ib-IX-V. J Biol Chem. 2006; 281(8): 4699–4707.
  26. Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002; 347(8): 589–600.
  27. Reiter RA, Knöbl P, Varadi K, et al. Changes in von Willebrand factor-cleaving protease (ADAMTS13) activity after infusion of desmopressin. Blood. 2003; 101(3): 946–948.
  28. Schneider SW, Nuschele S, Wixforth A, et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A. 2007; 104(19): 7899–7903.
  29. Fischer BE, Kramer G, Mitterer A, et al. Effect of multimerization of human and recombinant von Willebrand factor on platelet aggregation, binding to collagen and binding of coagulation factor VIII. Thromb Res. 1996; 84(1): 55–66.
  30. Whalley IN, Perry DJ. 2B or not 2B? Differential identification of Type 2B, versus pseudo-,von Willebrand disease. Br J Haematol. 2007; 136(2): 345; author reply 345–6.
  31. Lisman T, Raynal N, Groeneveld D, et al. A single high-affinity binding site for von Willebrand factor in collagen III, identified using synthetic triple-helical peptides. Blood. 2006; 108(12): 3753–3756.
  32. Löf A, Müller JP, Brehm MA. A biophysical view on von Willebrand factor activation. J Cell Physiol. 2017 [Epub ahead of print].
  33. Casa LDC, Ku DN. Thrombus Formation at High Shear Rates. Annu Rev Biomed Eng. 2017; 19: 415–433.
  34. Skipwith CG, Cao W, Zheng XL. Factor VIII and platelets synergistically accelerate cleavage of von Willebrand factor by ADAMTS13 under fluid shear stress. J Biol Chem. 2010; 285(37): 28596–28603.
  35. Shim K, Anderson PJ, Tuley EA, et al. Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress. Blood. 2008; 111(2): 651–657.
  36. Xie L, Chesterman CN, Hogg PJ. Control of von Willebrand factor multimer size by thrombospondin-1. J Exp Med. 2001; 193(12): 1341–1349.
  37. Kumar RA, Dong Jf, Thaggard JA, et al. Kinetics of GPIbalpha-vWF-A1 tether bond under flow: effect of GPIbalpha mutations on the association and dissociation rates. Biophys J. 2003; 85(6): 4099–4109.
  38. Andrews RK, Gardiner EE, Shen Y, et al. Glycoprotein Ib–IX–V. The International Journal of Biochemistry & Cell Biology. 2003; 35(8): 1170–1174.
  39. Huizinga EG, Tsuji S, Romijn RAP, et al. Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science. 2002; 297(5584): 1176–1179.
  40. Nuyttens BP, Thijs T, Deckmyn H, et al. Platelet adhesion to collagen. Thromb Res. 2011; 127 Suppl 2: S26–S29.
  41. Luo SZ, Mo Xi, Afshar-Kharghan V, et al. Glycoprotein Ibalpha forms disulfide bonds with 2 glycoprotein Ibbeta subunits in the resting platelet. Blood. 2007; 109(2): 603–609.
  42. Nieuwenhuis HK, Akkerman JW, Houdijk WP, et al. Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature. 1985; 318(6045): 470–472.
  43. Lopez JA, Chung DW, Fujikawa K, et al. Cloning of the alpha chain of human platelet glycoprotein Ib: a transmembrane protein with homology to leucine-rich alpha 2-glycoprotein. Proceedings of the National Academy of Sciences. 1987; 84(16): 5615–5619.
  44. Kasirer-Friede A, Cozzi MR, Mazzucato M, et al. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood. 2004; 103(9): 3403–3411.
  45. Andrews RK, Berndt MC. Platelet adhesion: a game of catch and release. J Clin Invest. 2008; 118(9): 3009–3011.
  46. Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res. 2007; 100(12): 1673–1685.
  47. De Ceunynck K, Rocha S, Feys HB, et al. Local elongation of endothelial cell-anchored von Willebrand factor strings precedes ADAMTS13 protein-mediated proteolysis. J Biol Chem. 2011; 286(42): 36361–36367.
  48. Murata M, Russell SR, Ruggeri ZM, et al. Expression of the phenotypic abnormality of platelet-type von Willebrand disease in a recombinant glycoprotein Ib alpha fragment. J Clin Invest. 1993; 91(5): 2133–2137.
  49. Miller JL, Castella A. Platelet-type von Willebrand's disease: characterization of a new bleeding disorder. Blood. 1982; 60(3): 790–794.
  50. Othman M. Platelet-type Von Willebrand disease: three decades in the life of a rare bleeding disorder. Blood Rev. 2011; 25(4): 147–153.
  51. Othman M. Differential identification of PT-VWD from type 2B VWD and GP1BA nomenclature issues. Br J Haematol. 2008; 142(2): 312–4; author reply 314.
  52. Othman M, Kaur H, Emsley J. Platelet-type von Willebrand disease: new insights into the molecular pathophysiology of a unique platelet defect. Semin Thromb Hemost. 2013; 39(6): 663–673.
  53. Othman M, Lopez JA, Ware J. Platelet-type von Willebrand disease update: the disease, the molecule and the animal model. Expert Rev Hematol. 2011; 4(5): 475–477.
  54. Weiss HJ, Meyer D, Rabinowitz R, et al. Pseudo-von Willebrand's disease. An intrinsic platelet defect with aggregation by unmodified human factor VIII/von Willebrand factor and enhanced adsorption of its high-molecular-weight multimers. N Engl J Med. 1982; 306(6): 326–333.
  55. Takahashi H, Nagayama R, Hattori A, et al. Von Willebrand disease associated with familial thrombocytopenia and increased ristocetin-induced platelet aggregation. Am J Hematol. 1981; 10(1): 89–99.
  56. Takahashi H, Oda E, Hattori A, et al. Von Willebrand disease with an increased ristocetin-induced platelet aggregation and a qualitative abnormality of the factor VIII protein. Am J Hematol. 1980; 8(3): 299–308.
  57. Othman M, Kaur H, Favaloro EJ, et al. Platelet type von Willebrand disease and registry report: communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis. 2016; 14(2): 411–414.
  58. Othman M, Hamilton A. Platelet-type von Willebrand disease: results of a worldwide survey from the Canadian PT-VWD project. Acta Haematol. 2010; 123(2): 126–128.
  59. Rodeghiero F, Castaman G, Dini E. Epidemiological investigation of the prevalence of von Willebrand's disease. Blood. 1987; 69(2): 454–459.
  60. Favaloro EJ. Von Willebrand disease: local diagnosis and management of a globally distributed bleeding disorder. Semin Thromb Hemost. 2011; 37(5): 440–455.
  61. Hamilton A, Ozelo M, Leggo J, et al. Frequency of platelet type versus type 2B von Willebrand disease. An international registry-based study. Thromb Haemost. 2011; 105(3): 501–508.
  62. Othman M, Emsley J. Platelet-type von Willebrand disease: toward an improved understanding of the. Semin Thromb Hemost. 2014; 40(2): 146–150.
  63. Othman M, Lillicrap D. Distinguishing between non-identical twins: platelet type and type 2B von Willebrand disease. Br J Haematol. 2007; 138(5): 665–666.
  64. Othman M. Platelet-Type Von Willebrand Disease: A Rare, Often Misdiagnosed and Underdiagnosed Bleeding Disorder. Seminars in Thrombosis and Hemostasis. 2011; 37(05): 464–469.
  65. Miller JL, Cunningham D, Lyle VA, et al. Mutation in the gene encoding the alpha chain of platelet glycoprotein Ib in platelet-type von Willebrand disease. Proc Natl Acad Sci U S A. 1991; 88(11): 4761–4765.
  66. Russel SD, Roth GJ. Pseudo-von Willebrand disease: a mutation in the platelet glycoprotein Ib alpha gene associated with a hyperactive surface receptor. Blood. 1993; 81: 1787–1791.
  67. Moriki T, Murata M, Kitaguchi T, et al. Expression and functional characterization of an abnormal platelet membrane glycoprotein Ib alpha (Met239 --> Val) reported in patients with platelet-type von Willebrand disease. Blood. 1997; 90(2): 698–705.
  68. Doggett TA, Girdhar G, Lawshe A, et al. Alterations in the intrinsic properties of the GPIbalpha-VWF tether bond define the kinetics of the platelet-type von Willebrand disease mutation, Gly233Val. Blood. 2003; 102(1): 152–160.
  69. Matsubara Y, Murata M, Sugita K, et al. Identification of a novel point mutation in platelet glycoprotein Ibalpha, Gly to Ser at residue 233, in a Japanese family with platelet-type von Willebrand disease. J Thromb Haemost. 2003; 1(10): 2198–2205.
  70. Woods AI, Sanchez-Luceros A, Bermejo E, et al. Identification of p.W246L as a novel mutation in the GP1BA gene responsible for platelet-type von Willebrand disease. Semin Thromb Hemost. 2014; 40(2): 151–160.
  71. Lavenu-Bombled C, Guitton C, Dupuis A, et al. A novel platelet-type von Willebrand disease mutation (GP1BA p.Met255Ile) associated with type 2B. Thromb Haemost. 2016; 116(6): 1070–1078.
  72. Enayat MS, Guilliatt AM, Lester W, et al. Distinguishing between type 2B and pseudo-von Willebrand disease and its clinical importance. Br J Haematol. 2006; 133(6): 664–666.
  73. Nurden P, Lanza F, Bonnafous-Faurie C, et al. A second report of platelet-type von Willebrand disease with a Gly233Ser mutation in the GPIBA gene. Thromb Haemost. 2007; 97(2): 319–321.
  74. Favaloro EJ, Patterson D, Denholm A, et al. Differential identification of a rare form of platelet-type (pseudo-) von Willebrand disease (VWD) from Type 2B VWD using a simplified ristocetin-induced-platelet-agglutination mixing assay and confirmed by genetic analysis. Br J Haematol. 2007; 139(4): 623–626.
  75. Enayat S, Ravanbod S, Rassoulzadegan M, et al. A novel D235Y mutation in the GP1BA gene enhances platelet interaction with von Willebrand factor in an Iranian family with platelet-type von Willebrand disease. Thromb Haemost. 2012; 108(5): 946–954.
  76. Takahashi H, Murata M, Moriki T, et al. Substitution of Val for Met at residue 239 of platelet glycoprotein Ib alpha in Japanese patients with platelet-type von Willebrand disease. Blood. 1995; 85(3): 727–733.
  77. Giannini S, Cecchetti L, Mezzasoma AM, et al. Diagnosis of platelet-type von Willebrand disease by flow cytometry. Haematologica. 2010; 95(6): 1021–1024.
  78. Othman M, Notley C, Lavender FL, et al. Identification and functional characterization of a novel 27-bp deletion in the macroglycopeptide-coding region of the GPIBA gene resulting in platelet-type von Willebrand disease. Blood. 2005; 105(11): 4330–4336.
  79. Sánchez-Luceros A, Woods AI, Bermejo E, et al. PT-VWD posing diagnostic and therapeutic challenges - small case series. Platelets. 2017; 28(5): 484–490.
  80. Franchini M, Montagnana M, Lippi G. Clinical, laboratory and therapeutic aspects of platelet-type von Willebrand disease. Int J Lab Hematol. 2008; 30(2): 91–94.
  81. Kaur H, Ozelo M, Scovil S, et al. Systematic analysis of bleeding phenotype in PT-VWD compared to type 2B VWD using an electronic bleeding questionnaire. Clin Appl Thromb Hemost. 2014; 20(8): 765–771.
  82. O'Connor D, Lester W, Willoughby S, et al. Pregnancy in platelet-type VWD: a case series. Thromb Haemost. 2011; 106(2): 386–387.
  83. Grover N, Boama V, Chou MR. Pseudo (platelet-type) von Willebrand disease in pregnancy: a case report. BMC Pregnancy Childbirth. 2013; 13: 16.
  84. Favaloro EJ. Phenotypic identification of platelet-type von Willebrand disease and its discrimination from type 2B von Willebrand disease: a question of 2B or not 2B? A story of nonidentical twins? Or two sides of a multidenominational or multifaceted primary-hemostasis coin? Semin Thromb Hemost. 2008; 34(1): 113–127.
  85. Frontroth JP, Favaloro EJ. Ristocetin-Induced Platelet Aggregation (RIPA) and RIPA Mixing Studies. Methods Mol Biol. 2017; 1646: 473–494.
  86. Favaloro E, Bonar R, Meiring M, et al. 2B or not 2B? Disparate discrimination of functional VWF discordance using different assay panels or methodologies may lead to success or failure in the early identification of type 2B VWD. Thrombosis and Haemostasis. 2007.
  87. Favaloro EJ. 2B or not 2B? Differential identification of type 2B, versus pseudo-von Willebrand disease. Br J Haematol. 2006; 135(1): 141–2; author reply 143.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Journal of Transfusion Medicine dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest Via Medica sp. z o.o. sp. komandytowa, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl