open access

Vol 2, No 1 (2009)
Review paper
Published online: 2009-02-12
Get Citation

Erythroblastic islands - 50 years after discovery

Joanna Kopeć-Szlęzak
Journal of Transfusion Medicine 2009;2(1):34-39.

open access

Vol 2, No 1 (2009)
REVIEWS
Published online: 2009-02-12

Abstract

Erythroblastic islands are specialized niches in bone marrow and in fetal liver, where mammalian erythroblasts proliferate from CFU-E, differentiate and form reticulocytes after enucleation. These islands were determined 50 years ago by Marcel Bessis. Each island consists of a specific “nurse” cell-central macrophage and a ring of surrounding erythroblasts. The macrophage acts as a regulator of erythropoiesis in erythroblastic island; erythroblast-erythroblast contacts are also important in erythropoiesis. It is possible, that erythroblastic islands migrate to sinusoids in bone marrow and parallely attain a stage of maturing erythroblasts.

Abstract

Erythroblastic islands are specialized niches in bone marrow and in fetal liver, where mammalian erythroblasts proliferate from CFU-E, differentiate and form reticulocytes after enucleation. These islands were determined 50 years ago by Marcel Bessis. Each island consists of a specific “nurse” cell-central macrophage and a ring of surrounding erythroblasts. The macrophage acts as a regulator of erythropoiesis in erythroblastic island; erythroblast-erythroblast contacts are also important in erythropoiesis. It is possible, that erythroblastic islands migrate to sinusoids in bone marrow and parallely attain a stage of maturing erythroblasts.
Get Citation

Keywords

erythroblastic islands; macrophage; erythroblasts; erythropoiesis regulation

About this article
Title

Erythroblastic islands - 50 years after discovery

Journal

Journal of Transfusion Medicine

Issue

Vol 2, No 1 (2009)

Article type

Review paper

Pages

34-39

Published online

2009-02-12

Bibliographic record

Journal of Transfusion Medicine 2009;2(1):34-39.

Keywords

erythroblastic islands
macrophage
erythroblasts
erythropoiesis regulation

Authors

Joanna Kopeć-Szlęzak

References (31)
  1. Bessis M. L’illot erythroblastique. Unite functionelle de la moelle osseuse. Rev Hematol. 1958; 13: 6–11.
  2. Allen TD, Dexter TM. Ultrastructural aspects of erythropoietic differentiation in long-term bone marrow culture. Differentiation. 1982; 21(2): 86–94.
  3. Palis J. Ontogeny of erythropoiesis. Curr Opin Hematol. 2008; 15(3): 155–161.
  4. Sadahira Y, Mori M, Kimoto T. Isolation and short-term culture of mouse splenic erythroblastic islands. Cell Struct Funct. 1990; 15(1): 59–65.
  5. Chasis JA. Erythroblastic islands: specialized microenvironmental niches for erythropoiesis. Curr Opin Hematol. 2006; 13(3): 137–141.
  6. Liu XS, Li XH, Wang Yi, et al. Disruption of palladin leads to defects in definitive erythropoiesis by interfering with erythroblastic island formation in mouse fetal liver. Blood. 2007; 110(3): 870–876.
  7. Fabriek BO, Polfliet MMJ, Vloet RPM, et al. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor. Blood. 2007; 109(12): 5223–5229.
  8. Soni S, Bala S, Gwynn B, et al. Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J Biol Chem. 2006; 281(29): 20181–20189.
  9. Lee G, Spring FA, Parsons SF, et al. Novel secreted isoform of adhesion molecule ICAM-4: potential regulator of membrane-associated ICAM-4 interactions. Blood. 2003; 101(5): 1790–1797.
  10. Spike BT, Dirlam A, Dibling BC, et al. The Rb tumor suppressor is required for stress erythropoiesis. EMBO J. 2004; 23(21): 4319–4329.
  11. Daria D, Filippi MD, Knudsen ES, et al. The retinoblastoma tumor suppressor is a critical intrinsic regulator for hematopoietic stem and progenitor cells under stress. Blood. 2008; 111(4): 1894–1902.
  12. Spike BT, Dibling BC, Macleod KF. Hypoxic stress underlies defects in erythroblast islands in the Rb-null mouse. Blood. 2007; 110(6): 2173–2181.
  13. Isern J, Fraser ST, He Z, et al. The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A. 2008; 105(18): 6662–6667.
  14. Chasis JA, Mohandas N. Erythroblastic islands: niches for erythropoiesis. Blood. 2008; 112(3): 470–478.
  15. Leimberg MJ, Prus E, Konijn AM, et al. Macrophages function as a ferritin iron source for cultured human erythroid precursors. J Cell Biochem. 2008; 103(4): 1211–1218.
  16. Rhodes MM, Kopsombut P, Bondurant MC, et al. Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood. 2008; 111(3): 1700–1708.
  17. Sathyanarayana P, Menon MP, Bogacheva O, et al. Erythropoietin modulation of podocalyxin and a proposed erythroblast niche. Blood. 2007; 110(2): 509–518.
  18. Eshghi S, Vogelezang M, Hynes R, et al. a4b1 Integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development. J Cell Biol. 2007; 177: 871–880.
  19. Yoshida H, Kawane K, Koike M, et al. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature. 2005; 437(7059): 754–758.
  20. Zen Q, Cottman M, Truskey G, et al. Critical factors in basal cell adhesion molecule/lutheran-mediated adhesion to laminin. J Biol Chem. 1999; 274(2): 728–734.
  21. Suenobu S, Takakura N, Inada T, et al. A role of EphB4 receptor and its ligand, ephrin-B2, in erythropoiesis. Biochem Biophys Res Commun. 2002; 293(3): 1124–1131.
  22. Munugalavadla V, Dore LC, Tan BL, et al. Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol Cell Biol. 2005; 25(15): 6747–6759.
  23. Gutiérrez L, Lindeboom F, Langeveld An, et al. Homotypic signalling regulates Gata1 activity in the erythroblastic island. Development. 2004; 131(13): 3183–3193.
  24. Angelillo-Scherrer A, Burnier L, Lambrechts D, et al. Role of Gas6 in erythropoiesis and anemia in mice. J Clin Invest. 2008; 118(2): 593–596.
  25. Socolovsky M, Murrell M, Liu Y, et al. Negative autoregulation by FAS mediates robust fetal erythropoiesis. PLoS Biol. 2007; 5(10): e252.
  26. Zermati Y, Fichelson S, Valensi F, et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000; 28(8): 885–894.
  27. Zamai L, Secchiero P, Pierpaoli S, et al. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood. 2000; 95(12): 3716–3724.
  28. Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006; 26: 323–342.
  29. Secchiero P, Melloni E, Heikinheimo M, et al. TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood. 2004; 103(2): 517–522.
  30. Yokoyama T, Etoh T, Kitagawa H, et al. Migration of erythroblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci. 2003; 65(4): 449–452.
  31. Manwani D, Bieker JJ. The erythroblastic island. Curr Top Dev Biol. 2008; 82: 23–53.

Important: This website uses cookies. More >>

The cookies allow us to identify your computer and find out details about your last visit. They remembering whether you've visited the site before, so that you remain logged in - or to help us work out how many new website visitors we get each month. Most internet browsers accept cookies automatically, but you can change the settings of your browser to erase cookies or prevent automatic acceptance if you prefer.

Czasopismo Journal of Transfusion Medicine dostęne jest również w Ikamed - księgarnia medyczna

Wydawcą serwisu jest Via Medica sp. z o.o. sp. komandytowa, ul. Świętokrzyska 73, 80–180 Gdańsk

tel.:+48 58 320 94 94, faks:+48 58 320 94 60, e-mail: viamedica@viamedica.pl